导航:首页 > 化学知识 > 如何判别水化学类型

如何判别水化学类型

发布时间:2022-08-27 23:17:47

㈠ 化学:冰和水怎么鉴别

鉴别如下:

  1. 冰是固体,水是液体

  2. 冰的温度低于0摄氏度,一般水的温度大于0摄氏度(除非过冷水)

此外冰,水都是H2O组成,为无色无味,透明。

冰,是由水分子有序排列形成的结晶,水分子间靠氢键连接在一起形成非常“开阔”(低密度)的刚性结构。

最邻近水分子的O—O 核间距为0.276nm,O—O—O键角约为109°,十分接近理想四面体的键角109°28′。但仅是相邻而不直接结合的各水分子的O一O间距要大的多,最远的要达0.347nm。每个水分子都能结合另外4个水分子,形成四面体结构,所以水分子的配位数为4。

相关介绍:

水(化学式为H₂O),是由氢、氧两种元素组成的无机物,无毒,可饮用。在常温常压下为无色无味的透明液体,被称为人类生命的源泉,是维持生命的重要物质。

水是地球上最常见的物质之一。地球表面有71%被水覆盖。它是包括无机化合、人类在内所有生命生存的重要资源,也是生物体最重要的组成部分。

纯水导电性十分微弱,属于极弱的电解质。日常生活中的水由于溶解了其他电解质而有较多的阴阳离子,才有较为明显的导电性。

㈡ 水化学类型

这种表示方式是舒卡列夫分类中的一部分,单凭借你给的这个没有办法区分地下水类型,还需要有矿化度的数值才行,我给你解释一下舒卡列夫分类。

地下水化学分类:舒卡列夫分类(据前苏联学者CAЩукалев)

首先,根据地下水中主要七种离子(其K+和Na+中合并,分为6种)的相对含量进行组合分类的一种方法。

如果某种离子含量(毫克当量百分数,或视毫摩尔百分含量)≥25%,参与组合定名,给定编号;

三类阳离子(Ca2+、Mg2+、K+和Na+)可以有7种组合方式;

三类阴离子(HCO3-、SO42-、Cl-)也可组合为7种;

阴、阳离子再组合共计为:7×7=49种水型,参见下表。

你所提到的HS-CM指的就是图标中第9类,字母是化学式的简写,具体按照表去校对。

其次,再加上矿化度大小分为4组,即

A——<1.5g/L,

B——1.5~10g/L

C——10~40g/L

D——>40g/L

例如,上述库尔洛夫式所表示的地下水为:B—46,即中等矿化度的Cl—NaCa型水

通常,A—1号水表示沉积岩地区浅层溶滤水的特点。而49—D型则是矿化度大于40g/L的Cl—Na型水,可能是与海水及海相沉积有关的地下水。

舒卡列夫分类表简明易查,在系统分析水样的化学试验结果中被广泛利用。

这样你明白了吗?望采纳

㈢ 盐湖水化学分类

(一)水化学类型分类方案

盐湖水化学类型分类一般有阿列金、库尔纳可夫-瓦良什科、奥格斯特、M.T.瓦里亚什科等分类方案。

本书采用M.T.瓦里亚什科的水化学分类方案,把盐湖卤水分为3种基本化学类型:碳酸盐型、硫酸盐型和氯化物型。其中硫酸盐型包括硫酸钠亚型和硫酸镁亚型(表4-3)。

表4-3 盐湖分类简表

(二)水化学类型的形成

西藏盐湖水化学类型的形成及演化,总体上还处在补给源的控制作用之下,承袭着补给水的水化学类型,同时亦遵循着正向演化规律。

1.碳酸盐型

大量研究已经表明,碳酸盐型湖的形成,主要与补给重碳酸钠水有关。而重碳酸钠的形成主要因素为:钠硅酸盐(尤其是长石)岩石的风化水解;粘土等胶体中Ca2+,Mg2+与Na的置换作用;硫化物的生物化学还原作用;水中H与岩石矿物中Na的水解作用;有机质的变质作用;深部含碳酸钠水的补给等。上述各作用过程中,褶皱山区、断裂带均有利于空气中CO2和水与岩石的反应。而蚀源区补给占主导的地区,则主要通过含长石类岩石的水解作用,并具有区域性分布规律。就西藏本区而言,蚀源区富长石岩石与水解作用和近代强烈的地热水和火山活动,是碳酸盐型湖形成的主要因素。

2.硫酸钠亚型

主要与含石膏层或较丰富的硫化物及部分区域内的长石风化水解有关。因石膏具有一定溶解性,而形成硫酸盐型水。硫化物在氧化过程中形成硫酸,并与周边钙、镁碳酸盐反应,而在天然水中富集钙或镁以及硫酸根离子。区内雁石坪群含膏盐层的碳酸盐和碎屑岩、新近系康托组的含膏盐层碎屑岩类和燕山期富长石花岗岩类是硫酸钠亚型盐湖形成的重要因素。

3.硫酸镁亚型

该类水型与硫酸钠亚型同为硫酸盐型,其形成机理大致相同,所不同的是它与地层中的膏盐层厚度系数以及碳酸盐类中镁的含量正相关。除发育雁石坪群和康托组含膏地层外,另发育大面积的上新统唢呐湖组,其石膏层含量明显要多。

4.氯化物型

该类型湖泊,多数研究认为是湖泊正向演化最晚期产物。就区内氯化物型湖泊的特征来看,并不完全一致。如多格错仁、东月湖以及羊湖等,虽属氯化物型,但这些显然不像柴达木盆地氯化物型盐湖,有很长的演化历史和大量的盐类沉积,且尚属盐湖早期,矿化度也不是很高。它的成因可能与补给水有选择性溶解大量氯化物有关。

㈣ 在化学中怎么鉴别水

通入无水硫酸铜白色粉末
白色粉末变蓝就证明有水(五水合硫酸铜)
CuSO4+5H2O=CuSO4•5H2O
楼主的问题补充:
1、可以向混合液中通入溴,水层是淡黄色,有机溶剂颜色比水中颜色深
2、向混合物中加入丙三醇,通过密度确定哪一层是水

㈤ 地下水水化学类型分类方法,这个是根据什么规范分类的呢

地下水分高硬度水、低硬度水、矿泉水

㈥ 地下水化学类型用舒卡列夫法怎么分类啊,望高手指点下,举几个具体的例子 不胜感激!

根据矿化度大小, 将地下水分为四组:A组为矿化度40g/L.(网络的答案)
按照矿化度的大小,可以将地下水分为5类:淡水

㈦ 地下水水化学类型变化

随着地下水开采量不断增加,地下水的天然水化学平衡状态被打破,水化学类型也相应发生改变。其变化特征分为两种:①水化学类型向重碳酸型水转变,地下水硬度增加;②水化学类型由重碳酸型水转变为其他类型,矿化度增大,水质变差。

1.水化学类型向重碳酸型水转变,地下水硬度增高

主要发生在山前冲洪积扇前缘和地下水开采漏斗区,由于循环条件的改变,地下水流场发生变化,浅层地下水循环加快。根据目前掌握的资料来看,这种水化学类型变化在西北干旱区基本上没有发生,而在山西六大盆地和华北平原及松嫩平原变化比较明显。

山西盆地浅层地下水化学类型的变化表现为由多种水化学类型逐渐转变为简单的类型。对比太原盆地1983年和2003年两期水化学变化可见:水化学类型由重碳酸-硫酸型水、重碳酸-氯化物型水、硫酸型水、硫酸重-碳酸型水、硫酸-氯化物型水、氯化物-硫酸型水、氯化物-重碳酸型水等多种水质类型变化到目前以重碳—酸硫酸型水和重碳酸—氯化物型水为主(图5-1和图5-2)。1983年矿化度为1~3g/L的面积为1657km2,3~5g/L的面积为40km2;2003年为895km2,基本没有大于3g/L水。在地下水集中开采区,中深层承压水的矿化度和硬度有增加的趋势(图5-3)。

忻州盆地从20世纪70年代以来,冲洪积倾斜平原的中上部的浅层地下水,其地下水主要化学成分及化学类型变化不大,地下水主要化学成分及化学类型变化不大,为重碳酸型水,矿化度小于500mg/L。而在滹沱河中下游段的冲洪积交接带及冲湖积平原区,矿化度减小,水质具有变好的趋势。在崞阳到原平市城区一带,由重碳酸-硫酸型或硫酸-重碳酸型转化为重碳酸型水(图5-4),矿化度由1977年的520~840mg/L降低到2004年的310~510mg/L。在忻府区解原、忻府城区、东楼、西张、双堡、官庄一带,由硫酸-重碳酸或重碳酸-氯化物型水转化为重碳酸型水,矿化度由1977年的500~1300mg/L降低到2004年的300~350mg/L。而在忻府区、定襄县的高城、北张、受禄、定壤县城、季庄等广大地区,由重碳酸-氯化物型水转化为重碳酸-硫酸型水,矿化度由1977年的1000~1600mg/L,降低到2004年的600~930mg/L。

图5-1 太原盆地1983年水化学图

(据韩颖等,2009)

(图中Cl、H、S、N、M、C分别表示Cl、HCO3、SO4、Na、Mg、Ca)

据统计,河北平原浅层地下水重碳酸盐型(包括重碳酸为主的混合型)水的分布面积由1975年的45792km2增加到2005年的56032km2,硫酸盐型(包括硫酸盐为主的混合型)地下水面积由7294km2减少到4279km2,氯化物型(包括氯化物为主的混合型)地下水由19588km2减少到12818km2,见图5-5。

图5-2 太原盆地2003年水化学图

(据韩颖等,2009)

(图中Cl、H、S、N、M、C分别表示Cl、HCO3、SO4、Na、Mg、Ca)

对比鲁北平原1989年与2005年地下水水化学类型(图5-6)可见:西部地下水开采区,水化学类型向重碳酸盐型水转化,浅层地下水开采程度较高,沿黄河地带受到地表淡水的经常性补给,重碳酸盐型水的分布范围不断扩大。冠县-临清的广大地区,1984年水化学类型为重碳酸盐氯化物型水,目前均变为重碳酸盐型水;东阿、平原大部、阳谷、夏津、武城、济阳局部均由1989年的重碳酸盐氯化物型水、重碳酸-硫酸盐-氯化物型水转变为重碳酸盐型水。

图5-3 太原盆地西张水源地中深层水水质变化曲线

(据韩颖等,2009)

豫北平原浅层地下水(重碳酸盐型水)从山前及黄河上游向下游、由渠道轴部向两侧扩展。在1959年至1965年间,地下水开采量很小,豫北地区地表大部分为盐碱地,沿黄一带只有局部地区矿化度小于1g/L,水化学类型大部分为重碳酸硫酸盐型水,只有封丘县一带、武陟县和原阳的黄河大堤以南局部地区为重碳酸型水。人民胜利渠渠首区为HCO3-Ca·Mg水,矿化度小于1g/L。到1978年沿人民胜利渠和其它渠道两侧地下水矿化度大于1g/L界线向北和东扩展,新乡市东部的咸水被切开成两部分,西部的交接洼地地下水矿化度大于1的咸水区成孤立状分布,濮阳县至南乐的地下水矿化度小于1g/L的淡水已连为一体,重碳酸型水已扩至武陟、原阳、封丘北部。至1987年,大部分地区地下水矿化度已变为小于1g/L的淡水;大于1g/L的水已成孤岛状分布于各地,大部分地区地下水水化学类型已变为重碳酸型水,而阳离子Na·Ca型水面积逐渐扩大至原阳县。2002年,淡水面积基本稳定,咸水在1987年基础上又有缩小,沿黄一带仅在封丘东南部的黄河转弯处有一些咸水,淡水扩展缓慢,重碳酸型水扩展缓慢。

华北平原深层地下水重碳酸型水面积增加主要集中在河北平原,其分布面积由20世纪70年代的 50295km2增加到 55066km2,硫酸盐型地下水面积由 1129km2增加到1463km2,氯化物型地下水由6343km2增加到10850km2(表5-1)。天津地区第Ⅱ含水组大量开采后,其水化学特征并没有发生明显变化。

图5-4 忻州盆地地下水化学类型及矿化度动态曲线

(据韩颖等,2009)

表5-1 河北平原深层地下水水化学类型分布面积变化统计表 单位:km2

(据张兆吉等,2009)

图5-5 不同年份浅层水化学类型面积

(据张兆吉等,2009)

图5-6 鲁北平原浅层地下水水化学类型变化图

(据张兆吉等,2009)

西辽河平原部分地区水化学类型从20世纪70年代末80年代初的HCO3-Na·Ca水转变成了HCO3-Ca·Na水,HCO3-Ca·Na水转变成了HCO3-Ca水。在地下水的强开采区(平原中部开鲁、奈曼、科尔沁区),地下水循环交替较快,占绝对优势的Ca·Na型水、Ca·Na·Mg型水面积,2003年比70、80年代有较大增加,与此相反,Na型水、Na·Ca型水面积则明显减少。科左后旗一带的Ca·Na型水,则转化为Ca型水(图5-7)。

图5-7 西辽河平原地下水化学类型变化

(据李志等,2009)

2.水化学类型由重碳酸型水转变为其他类型水,地下水矿化度增大

主要发生在平原或盆地的中下游以及深层承压含水层开采漏斗区,地下水流场改变,承压含水层水头低于相邻含水层,劣质水越流补给承压含水层。目前在新疆准噶尔盆地局部、柴达木盆地、山西盆地和华北平原及东北平原变化比较明显。

新疆准噶尔盆地沙漠边缘的承压含水层,由于开采地下水使承压含水层水头低于潜水,高矿化度和高硬度潜水的混入承压含水层,20世纪80年代中期以来水化学类型明显变化,由HCO3·SO4-Na水转化为SO4·Cl-Na水。

柴达木盆地冷湖镇在开采地下水时出现了咸水入侵现象,冷湖镇水源地在冷湖北岸冲洪积扇潜水区,开采时动水位11~13m,之后形成了下降漏斗,其半径956~1130m,漏斗已扩展到半咸水、咸水区,引起了咸水倒灌。该水源地水质变咸后于1989年在原水源地北又重新开辟新的水源地。经2002年、2003年和2004年在水源地取样分析,一些水井水质已变咸,水化学类型属SO4·Cl·(HCO3)-Ca·Mg水。

格尔木河冲洪积扇戈壁带右翼也出现水质咸化现象,主要原因是该地区地表或浅层普遍存在一层古盐壳,在开采过程中,由于管道漏水等原因将盐壳中的盐分溶滤到含水层中,导致水质咸化;20世纪80年代初该地区地下水位普遍上升,溶滤了古盐壳的盐分,也造成水质咸化;另外,1998、1999年两年格尔木市农牧局为绿化城市于水源地上游营造了60亩防风林带,采用大水漫灌,使包气带盐分溶解并大量下渗而造成矿化度等急剧升高。

临汾盆地20世纪60年代、80年代及2004年水化学对比分析发现,从边山到盆地中心汾河一线,浅层水质序列已经发生明显变化(表5-2),变化的整体趋势是山前冲洪积扇地带HCO3 型水区普遍后移或者消失,取而代之的是HCO3·SO4 型水或者SO4·HCO3型水,SO4·HCO3型水及HCO3·SO4型水的区域分布面积明显变大,中深层水质也有一定程度的改变。

表5-2 临汾盆地代表性剖面浅层水水质序列变化

(据韩颖等,2009)

运城盆地浅层地下水20年来水化学类型相对趋于简化,水质相对变差,矿化度有增高的趋势(图5-8)。在涑水河谷中游东镇—闻喜—水头一线,水质类型由1980年的HCO3—Na、HCO3·SO4—Na、SO4·HCO3—Na、Cl·HCO3—Na、SO4—Na型水,逐渐变为2004年的HCO3、Cl型水,并且范围变大,矿化度增高。在夏县县城附近,HCO3、Cl型水的范围2005年比1980年明显增大,水质相对变差,矿化度增高。在临猗嵋阳一带,HCO3·SO4型水,由1980年的零星分布,逐渐变为片状,水质变差,矿化度增高,在湖积平原区伍姓湖一带,Cl·SO4型水范围2005年与1980年变化明显增大,矿化度增高。

图5-8 运城盆地浅层水水化学变化图

(据韩颖等,2009)

图5-9 运城盆地中深层水水化学变化图

(据韩颖等,2009)

运城盆地中部中深层含水层因为地下水开采导致浅层水进入致使水质变差。从盆地1980年和2005年中深层含水层水化学图5-12和图5-13可以看出,经过20多年的时间,盆地中深层含水层水化学场变化较为明显的地带,主要出现在盆地中部的涑水河冲洪积平原,水化学类型由20世纪80年代的HCO3、HCO3·SO4、HCO3·Cl、SO4·HCO3、SO4·Cl、Cl·SO4 型水演化为2005年的HCO3、HCO3·SO4、SO4·HCO3、SO4·Cl、Cl·HCO3、Cl型水,水化学类型趋于复杂,矿化度有升高之趋势,主要原因是由于地下水强烈开采,地下水流场发生变化及在凿井过程中,使含水层串通、使水质较差的浅层水灌入中深层水中所致。

鲁北平原东部滨海地带的氯化物型水向中西部扩展。在茌平—齐河—禹城—临邑一线、宁津和陵县的东部地区,由重碳酸盐型水变为重碳酸—氯化物型水和重碳酸—硫盐型水。在庆云—阳信一线、滨州市滨城区、利津和沾化交界地带,地下水由重碳酸—硫酸氯化物型水、重碳酸—氯化物型变为氯化物型水。

松嫩平原山前倾斜平原第四系潜水,在20世纪80年代,水化学类型主要是HCO3-Ca·Na水,其次是HCO3·Na水,再次是HCO3-Ca·Mg水。HCO3·SO4 型水只在北部讷河、齐齐哈尔、龙江和林甸县一带有少量分布,目前,泰来县也出现了HCO3·SO4 型水。低平原第四系潜水近20年来地下水水化学类型复杂化,氯化物型水分布面积增大,数量增多,出现了许多新的水化学类型,最典型的是硝酸型水。20世纪80年代,高平原北部潜水水化学类型主要是HCO3型水,局部有HCO3·SO4 型水;HCO3·Cl型水在呼兰河以南地区大片出现、以北零星分布。目前调查发现,在高平原区绥化一带HCO3·SO4(SO4·HCO3)型水及SO4·Cl(Cl·SO4)型水已成片分布。在呼兰河以北地区HCO3·Cl(Cl·HCO3)型水大面积向北扩展。水化学类型变化最大的是呼兰河以北的农业地区,出现了大量与硝酸相关的水化学类型,如 HCO3·NO3(NO3·HCO3)-Ca·Mg 型水、NO3-Ca·Mg型水及NO3·HCO3型水等。

松嫩高平原第四系承压水20世纪80年代,主要水化学类型是HCO3 型水,本次调查发现,在盆地北部呼兰河一带和哈尔滨市,出现了大面积的HCO3-SO4-Ca型水。HCO3-Cl-Ca型水分布面积也比80年代增多。

㈧ 水化学类型怎么读

这指的是水中的离子种类
分别是:
碳酸氢根、钙离子、钠离子
碳酸氢根、硫酸根、钙离子、钠离子
碳酸氢根、钠离子
你可以直接念这些离子或者将其拼成盐的形式念(不推荐):
碳酸氢钙、碳酸氢钠
碳酸氢钙、硫酸钠
碳酸氢钠

㈨ 水化学类型的划分

关于地下水的化学分类,不同的作者提出了不同的方法,其中大多数都在一定程度上利用了主要阴离子与主要阳离子间的对比关系。

1.舒卡列夫分类法

舒卡列夫分类根据地下水中6种主要离子(Na+、Ca2+、Mg2+

、Cl、K+合并于Na+)及矿化度划分。具体步骤如下:

第一步,根据水质分析结果,将6种主要离子中毫克当量百分数大于25%的阴离子和阳离子进行组合,可组合出49型水,并将每型用一个阿拉伯数字作为代号(表1—4)。

第二步,按矿化度的大小划分为4组。

A组 M≤1.5g/L;

B组 1.5<M≤10g/L;

C组 10<M≤40g/L;

D组 M>40g/L。

第三步,将地下水化学类型用阿拉伯数字(1~49)与字母(A、B、C或D)组合在一起表示。

例如,1—A型,表示矿化度不大于1.5g/L的HCO3—Ca型水,沉积岩地区典型的溶滤水;49—D型,表示矿化度大于40g/L的Cl—Na型水,该型水可能是与海水及海相沉积有关的地下水,或是大陆盐化潜水。

这种分类法的优点是简明易懂,可以利用此表系统整理水分析资料。其缺点是:以毫克当量大于25%作为划分类型的依据不充分,此外,划分出的49种水型是由组合方法得到,实际上有些水型在自然界中很少见到,也难以解释它的形成过程。

表1—4 舒卡列夫分类表

2.布罗德斯基分类法

布罗德斯基分类法与舒卡列夫分类法相似,都是考虑六种主要离子成分及矿化度,两者间所不同的是将阴、阳离子各取一对进行组合,便得出36种地下水类型,矿化度按图1—7进行分类。

图1—7 布罗德斯基分类法示意图

1—<0.5g/L;2—0.5~1g/L;3—1~5g/L;4—5~30g/L;5—>30g/L;6—沉积岩中循环水矿化作用的一般方向;7—火成岩中循环水矿化作用的一般方向

布罗德斯基分类法的优点:即可用来分析地下水形成的规律和循环条件。例如在典型的山前倾斜平原的地下水,其化学成分的形成和作用方向具有一定的规律;在径流带内,地下水运动比较强烈,岩石中的可溶性盐类大部分被溶解,剩下的只是钙、镁的碳酸盐,所以在这一带的地下水为淡水(矿化度小于1g/L),到了溢出带,地下水的矿化度逐渐增高,当地下水流至垂直交替带时,不仅运动缓慢,而且消耗于蒸发,故地下水矿化度极高。这种矿化度由低逐渐增高的作用,布罗德斯基称它为总矿化作用。

布罗德斯基分类法的缺点:当两种离子的含量差别不大时,这种主次划分就失去了意义,甚至可能将本来属于同一类的水划分为不同类型。此外,这种分类是不管成对离子含量多少,都要阴阳离子各取一对,如果水中仅有一种离子含量占优势,而另一种离子含量甚微时,分类中仍要表示出来,这样会导致在分析水化学成分形成规律时不能确定主导因素,可能会得出某些不正确的结论。

3.阿廖金分类法

阿廖金分类法是由俄国学者O.A.Aleken提出的,按水体中阴阳离子的优势成分和阴阳离子间的比例关系确定水质化学类型的一种方法。该方法的具体操作步骤如下:

第一步,列出各计算分区中具有代表性水样的

、Cl等3个阴离子和Ca2+、Mg2+、Na+等3个阳离子的浓度含量(均以毫克当量表示)。

第二步,根据各水样中含量最多的阴离子将这些水样分为三类:重碳酸类(以C表示)、硫酸类(以S表示)、氯化类(以Cl表示),它们的矿化度依次增加,水质变差。

第三步,在每类中再根据水样中含量最多的阳离子进一步分为钙质(Ca)、镁质(Mg)、钠质(Na,钾与钠合并)三组。

第四步,按各水样中阴阳离子含量的比例关系分为四种类型:

Ⅰ型

,在S类与Cl类的Ca及Mg组中均无此型;

Ⅱ型

,多数浅层地下水属于此型;

Ⅱ型

,或Cl>Na+,此型为高矿化水;

Ⅳ型

。此型为酸性水,C类各组及S和Cl类的Na组中无此型。

阿廖金分类图解如图1—8所示。

图1—8 阿廖金分类图解

第Ⅰ型水的特点是

。该型水由火成岩地区溶滤作用形成,含有相当数量的钠和钾,它也可以由水中的钙同岩石中钠之间的交换作用形成。该型水是碱性的软水,矿化度低(在内陆湖中或某些油田水中,可以出现高矿化度)。

第Ⅱ型水的特点是

,硬度大于碱度。从成因上讲,该型水与各种沉积岩有关,主要是混合水。大多属低矿化度和中矿化度的河水。湖水和地下水属于这一类型(有

硬度)。

第Ⅲ型水的特点是

或者为Cl>Na+。从成因上讲,该型水也是混合水,由于离子交换使水的成分剧烈变化。成因是天然水中的Na+被土壤底泥或含水层中的Ca2+或Mg2+交换。大洋水、海水、海湾水、残留水和许多高矿化度的地下水属于此种类型(有氯化物硬度)。

第Ⅳ型水的特点是

含量为0,即该型水为酸性水。在重碳酸类水中不包括此型,只有硫酸盐与氯化物类水中的Ca2+组与Mg2+组中才有这一型水。天然水中一般无此类型(pH<4.0)。

上述类型的差异是水体所处自然地理环境造成的,一般来讲,它们有一定的地理分布规律。

第五步,按照阿廖金的分类,水的类别是用主要阴离子的化学符号(即C、S、Cl)表示,组别用主要阳离子的化学符号(即Ca、Mg、Na)表示,而型别用脚码表示。表达式以“类”为基号,以组为上脚号,以型为下脚号,如C类Ca组Ⅱ型可表示为

,又如Cl类Mg组Ⅳ型表示为

。此外,有时还可标上矿化度(精确度至0.1g/L),表达式为

。此分类法是兼顾了主要离子及离子间对比的划分原则,在一定程度上反映水质特点变化的规律性。如矿化度的变化,矿化度逐渐增大的方向是:[C]<[S]<[Cl],Ca<Mg<Na,Ⅰ<Ⅱ<Ⅲ。

阿廖金分类法具有许多优点,它适用于绝大部分天然水,简明易于记忆,而且能将多数离子之间的对比恰当的结合,可以用来判断水的成因、化学性质及其质量。

复习思考题

1.地下水的化学组分有哪些?

2.论述地下水的形成作用有哪些?

3.掌握地下水水质的三类综合评价指标。

4.掌握地下水化学类型的分类方法。

㈩ 求地下水水化学类型分类方法

地下水化学分类:舒卡列夫分类(据前苏联学者CAЩукалев)

首先,根据地下水中主要七种离子(其K+和Na+中合并,分为6种)的相对含量进行组合分类的一种方法。

如果某种离子含量(毫克当量百分数,或视毫摩尔百分含量)≥25%,参与组合定名,给定编号;

三类阳离子(Ca2+、Mg2+、K+和Na+)可以有7种组合方式;

三类阴离子(HCO3-、SO42-、Cl-)也可组合为7种;

阴、阳离子再组合共计为:7×7=49种水型,参见表6-2。

表6—2舒卡列夫分类图表

其次,再加上矿化度大小分为4组,即

A——<1.5g/L,

B——1.5~10g/L

C——10~40g/L

D——>40g/L

例如,上述库尔洛夫式所表示的地下水为:B—46,即中等矿化度的Cl—NaCa型水

通常,A—1号水表示沉积岩地区浅层溶滤水的特点。而49—D型则是矿化度大于40g/L的Cl—Na型水,可能是与海水及海相沉积有关的地下水。

舒卡列夫分类表简明易查,在系统分析水样的化学试验结果中被广泛利用。

阅读全文

与如何判别水化学类型相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:666
乙酸乙酯化学式怎么算 浏览:1338
沈阳初中的数学是什么版本的 浏览:1275
华为手机家人共享如何查看地理位置 浏览:959
一氧化碳还原氧化铝化学方程式怎么配平 浏览:812
数学c什么意思是什么意思是什么 浏览:1328
中考初中地理如何补 浏览:1224
360浏览器历史在哪里下载迅雷下载 浏览:634
数学奥数卡怎么办 浏览:1306
如何回答地理是什么 浏览:955
win7如何删除电脑文件浏览历史 浏览:986
大学物理实验干什么用的到 浏览:1408
二年级上册数学框框怎么填 浏览:1619
西安瑞禧生物科技有限公司怎么样 浏览:760
武大的分析化学怎么样 浏览:1176
ige电化学发光偏高怎么办 浏览:1265
学而思初中英语和语文怎么样 浏览:1561
下列哪个水飞蓟素化学结构 浏览:1356
化学理学哪些专业好 浏览:1420
数学中的棱的意思是什么 浏览:977