导航:首页 > 化学知识 > 化学反应中如何保护酮羰基

化学反应中如何保护酮羰基

发布时间:2022-08-30 12:07:43

① 为什么用乙二醇保护羰基

醇可以和羰基发生缩酮或缩醛反应,生成缩酮或缩醛。以此来保护羰基。然后可以通过水解复原成羰基。缩酮(醛)的结构为醚,乙二醇与羰基反应生成的是五元环的环戊二醚,由于五元环比较稳定,不易在其他反应之中被破坏,所以用乙二醇来保护羰基。

② 高中化学竞赛有机化学

1.易于被保护基团反应,且除被保护基团外不影响其他基团.
2.保护基团必须经受得起在保护阶段的各种反应条件.
3.保护基团易于除去.
化学合成中常用的保护基
碳氢键的保护
羟基的保护
氨基的保护
羰基的保护
羧基的保护
1. 碳氢键的保护
乙炔及末端炔烃中的炔氢较活泼,它可以与活泼金属`强碱`强氧化剂及有机金属化合物反应.
常用的炔氢保护基为三甲硅基.将炔烃转变为格氏试剂后同三甲基氯硅烷作用.即可引入三甲硅基.该保护基对于金属有机试剂`氧化剂很稳定.可在使用这类试剂的场合保护炔基.
2.羟基的保护
醚类
缩醛和缩酮类
酯类
羟基是一个活性基团,它能够分解格氏试剂和其他有机金属化合物,本身易被氧化,叔醇还容易脱水,并可以发生烃基化和酰基化反应.所以在进行某些反应时,若要保留烃基,就必须将它保护起来.
醇羟基常用的保护方法有3类:
2.1 转变成醚
甲醚
用生成甲醚的方法保护羟基是一个经典方法.通常使用硫酸二甲酯,在氢氧化钠或氢氧化钡存在下,在DMF或DMSO溶剂中反应得到.
优点:该保护基很容易引入,且对酸,碱,氧化剂和还原剂都很稳定.
缺点:难于脱保护,用氢卤酸回流脱保护基条件比较剧烈,常使分子遭到破坏,只有当分子中其他部位没有敏感基团时才适用.
2.1 转变成醚
叔丁醚
将醇的二氯甲烷溶液或悬浮液在 硫酸复合物存在下,在室温与过量的异丁烯作用,可得到叔丁醚.
优点:对碱及催化氢化是稳定的.
缺点:对酸敏感,其稳定性低于甲醚.由于脱保护基所用的酸性条件剧烈,当分子中存在对酸敏感的基团时不适用
2.1 转变成醚
三甲硅醚
三甲硅醚广泛用于保护糖类,甾类及其他醇羟基.通常引入三甲基硅基保护基所用的试剂有三甲基氯化硅和碱;六甲基二硅氨烷.在含水醇溶液中加热回流即可除去保护基.
优点:醇的三甲硅醚对催化氢化,氧化还原反应是稳定的,该保护基可在非常温和的条件下引入和去除.
缺点:对酸和碱敏感,只能在中性条件下使用.
2.2 转变成缩醛或缩酮
2,3-二氢-4H-吡喃在酸的催化作用下,与醇类起加成反应,生成四氢吡喃醚衍生物.这是最常用的醇羟基的保护方法之一.此保护基广泛用于炔醇,甾类及核苷酸的合成中.
2.3 转变成酯
醇与酰卤,酸酐作用生成羧酸酯;与氯甲酸作用生成碳酸酯.
所生成的酯在中性和酸性条件下比较稳定,因此可在硝化`氧化和形成酰氯时用成酯的方法保护羟基.保护基团可通过碱性水解除去,或在锌-铜的乙酸溶液中除去.
3.氨基的保护
伯胺和仲胺很容易被氧化,且易发生烃
基化,酰基化以及与醛酮羰基的亲核加成反
应.在合成中常采用:
(1)氨基质子化
(2)变为酰基衍生物
(3)变为烃基衍生物等方法将氨基保护起来
3.1 质子化
此方法仅用于防止氨基的氧化,因为理论上说
采用氨基质子化,即占据氮尚未共用电子对,以阻
止取代反应的放生.这是对氨基保护最简单的法.
3.2 转变为酰基衍生物
将氨基酰化转变成酰胺是保护氨常用的方法.通常伯胺酰基化已足以保护基,防止其被氧化和烃化反应的发生.常用的酰基化试剂为酰卤和酸酐.
保护基可在酸性和碱性条件下水解出去.
3.2 转变为酰基衍生物
邻苯二甲酸酐与伯胺所生成的邻苯二甲酰亚胺非常稳定,不受催化氢化碱性还原,醇解以及氯化氢,溴化氢,乙酸溶液的影响,也适用于保护伯胺.在酸性或碱性条件下水解或用肼解法脱去保护.
3.3 转变为烃基衍生物
用烃基保护氨基主要用三苯甲基或苯甲
基.
三苯甲基衍生物可用胺与溴或氯代三苯
甲烷在碱存在下制备.三苯甲基由于空间位
阻效应对氨基起到很好的保护作用,它对碱
是稳定的.
苯甲基衍生物用胺和氯化苯甲基在碱存
下制得.
4.羰基的保护
羰基具有许多反应性能,是有机化学中
最易发生反应的活性官能团之一.
保护羰基常用的方法:生成缩醛和缩酮
来降低羰基活性而保护羰基.
4.羰基的保护
保护醛酮羰基最常用的方法是通过乙二醇和2-疏基乙醇的反应,生成相应的叫做环缩醛或缩酮的产物.
5.羧基的保护
羰基通常用形成酯的方法保护.常见的有转变为甲酯,乙酯,叔丁酯,苯甲酯.

甲酯和乙酯可以用羧酸直接与甲醇或乙醇发生酯化反应制得,又可以被碱水解.
5.羧基的保护
叔丁酯可由羧酸先变为酰氯,再与叔丁醇作用,或者通过羧酸与异丁烯直接作用而得.它不能氢解,在通常条件下也不被氨解及碱催化水解.
5.羧基的保护
苯甲酯可由羧酸与苯甲基卤在碱性条件下反应而得.它除了可在强酸性或碱性条件下水解,还可以被氢解.

③ 酮的化学性质 最好列出方程式。。。。谢谢

酮的化学性质如果在 C=O 的α-C 联有三个体积不同的

基团,就会造成羰基平面两侧的空间阻碍不同,给亲核试剂进攻羰基创造了空间上的选择性,我们用 L、M、S 分别表示α-C 上体积大、中、小的三个基团。

HCN 亲核加成应用范围:1. 醛 (-CHO);2. 甲基
HCN 亲核加成
酮 (-COCH3); 3. 小于8个碳的环酮。

机理:

例:
与含氧硫亲核加成1. 与 H2O 反应



2. 与 ROH 反应——生
HCN 亲核加成
成缩醛(酮)



机理:

特点:

a. 缩醛(酮)的结构特点是含有 O-C-O 键;

b. 缩醛(酮)反应可用于保护羰基

c. 缩醛(酮)反应仅发生于醛(酮)的羰基,对于其它羰基化合物不发生

此反应;

d. 分子内同时含有羟基和醛(酮)羰基时,可发生分子内缩醛(酮),形成五、六元环。

e. 与 RSH 亲核加成

f. 与NaHSO3亲核加成

应用范围:1. 醛 (-CHO);2. 脂肪族甲基酮 (RCOCH3); 3. 小于8个碳的环酮。

分子内同时含有强碱性基团 -ONa 和强酸性基团 -SO3H,发生分子内酸碱中和使反应不可逆,生成α-羟基磺酸钠晶体从有机相中沉淀出来,α-羟基磺酸钠在酸性条件下可水解为原来的醛(酮),所以,该反应可以用于醛(酮)的分离。-SO3H 是一个很好的离去基团,可以通

过亲核取代反应换成其它基团:

该制备 2-羟基丙腈的方法虽然历经两步,但避免在酸性条件下直接使用 HCN 所带来的危险。
与含氮亲核试剂的亲核加成含氮亲核试剂 (G-NH2) 对醛酮的亲核加成后再消除 H2O,从而生成 C=N-G 的 C=N 键:

因 G 的不同生成的亚胺类化合物具有各自的

名称

1. 与 NH3 的亲核加成

2. 与 RNH2 及 ArNH2 的亲核加成

3. 与肼的衍生物的亲核加成

4. 与 H2NOH 的亲核加成及 Beckmann 重排

5. 与 R2NH 亲核加成——生成烯胺

四、还原反应
1. 催化加氢
2. 还原剂法

3. Wolff-Kishner-黄鸣龙还原

4. Carnnizzarro反应

5. 安息香缩合

五、氧化反应
1. Tollens 试剂、Fehling 试剂和 Benedit 试剂的氧化

2. Baeyer-Villeger 氧化——RCOOOH 氧化

六、Perkin反应
七、Knoevenagel反应
八、Wittig反应

九、Mannich反应

编辑本段酮与 α,β-不饱和醛(酮)的反应亲核加成反应α,β- 不饱和醛(酮)的亲核加成也分为两种情况,1,2- 加成
不饱和酮的反应
和 1,4- 加成。

不饱和酮的反应

1,2- 加成:

1,4- 加成:

α,β- 不饱和醛(酮)的 1,4- 加成实际相当于 3,4- 加成。α,β-不饱和醛(酮)的亲核加成反应主要就是 1,2- 加成还是 1,4- 加成的问题。

1. 与 RLi 的亲核加成——1,2- 加成

2. 与 RMgX 的亲核加成

3. 与 R2CuLi 的亲核加成——1,4- 加成

4. 与 HCN 的亲核加成

5. 含氮、硫亲核试剂
Michael加成有活泼亚甲基化合物形成的碳负离子,对α,β-不饱和羰基化合物的碳碳双键的亲核加成,是活泼亚甲基化物烷基化的一种重要方法,该反应称为Michael反应。 Michael加成最重要的应用是Robinson增环(annelation)反应。若以环酮作为Michael反应的供体,同甲基乙烯基酮(受体)作用,可得产物1,5-二酮,后者经分子内的羟醛缩合并脱水,可在原来环上再增加一个新的六元环,该过程称为Robinson增环反应。
Robinson成环从现代有机合成的观点看,罗宾逊成环反应实际上属于一种串联反应。是由一个麦克尔加成与羟醛缩合相串联而成的反应。在反应开始时,由一个羰基化合物生成的烯醇盐亲核进攻一个α,β-不饱和酮,发生麦克尔加成。产物随即进行分子内羟醛缩合,得到罗宾逊成环反应产物。

④ 高中化学 有机反应中常见的官能团的保护方法总结...

有机合成中有时会遇到这样的情况,本意只想对某个官能团进行处理,结果却影响了其它官能团。“投鼠忌器”,防止对其它官能的影响,常常采用先保护后恢复的方法。有时官能取代的位置有多种可能性,但要求必须上到规定的位置上,那就要进行官能团的定位措施。
一、防官能团受还原影响的保护与恢复
例1.
试以丙烯及其它必要的有机试剂为原料来合成CH
3
COCH
2
0H,无机试剂任选,写出有关反应的化学方程式
已知:(1)
(2)
[简析]解有机合成题可以根据所要合成的物质,采用顺推、逆推齐推的思维方法。依题给的有关信息反应的规律并结合所学的知识,可由顺推法初步形成以下的合成路线;

若将-COOH转化-CH
2
OH就“OK”了。再结合信息反应(2)可知,先将-COOH转化为-COOC
2
H
5
,然后在LiALH
4
作催化剂时与H
2
成即可。但要注意在这一转化过程中,CH
3
-CO-中的
也可与H
2
加成,故必须考虑将该官能团加以掩蔽和保护,最后重新将其
“复原”,这可以利用信息反应(2)的方法而达到目的。从而易写出合成
CH
3
-CO-CH
2
0H的有关反应方程式如下

其他略
二、防官能团受氧化的保护

例2.工业上用甲苯生产对羟基苯甲酸乙酯
,其生产过各如下图
根据上图回答:
(1)有机物A的结构简式为____________。
(2)反应⑤的化学方程式(有机物写结构简式,要注明反应条件):
(3)反应②的反应类型是__________(填编号,下同),反应④的反应类型属_________。
A.取代反应
B.加成反应
C.氧化反应
D.酯化反应
(4)反应③的化学方程式(不用写反应条件,但要配平):____________。
(5)在合成线路中,设计第③和⑥这两步反应的目的是:____________________________。
答案:
(1)
(2)
(3)(4)
(5)略
归纳小结:
1. 酚羟基的保护:酚甲醚对碱稳定,对酸不稳定。
2. 醛、铜羰基的保护: 缩醛(酮)或环状缩醛(酮)对碱Grignard试剂,金属氢化物等稳定,但对酸不稳定。
3. 羧基的保护
4.
氨基的保护
酰胺基对氧化剂稳定,但对酸、碱不稳定。

三、官能团的定位
例3.
维生素C(分子式为C
6
H
8
O
6
)可预防感染、坏血病等。其工业合成路线如下图所示:

I.(1)上述①~③反应中,属于加成反应的有

(填数字序号)。
(2)A~G七种物质中与C互为同分异构体的有

(填字母序号)。
(3)比较D和G的结构可知,G可看成由D通过氧化得到。工业生产中在第⑤步氧化的前后设计④和⑥两步的目的是


(4)H的结构简式是


Ⅱ.已知,
利用本题中的信息,设计合理方案由

(用反应流程图表示,并注明反应条件)。

例:由乙醇合成聚乙烯的反应流程图可表示为
解析:I题中④目的是保护羟基,只让另一个羟基氧化⑥为解保护
II题中,就是要对酰卤的醇在定位在头一任一个羟基,那就要通过酮来,将其它两个羟基先“屏蔽”掉。
答案:、I
(1)
1 3(2)A、D(3)保护D分子中其他羟基不被氧化
有几张图片没粘贴上,加我,给你发过去

⑤ 有机合成中如何保护基团


要:一、保护措施必须符合的要求1.只和要保护的基团发生反应,和其他基团不反应;2.反应较易进行,精制也比较容易;3.保护基易脱除,在除去保护基时,不影响其他基团。二、常见的基团保护措施1.对羟基的保护在氧化时或某些在碱性条件下进行的反应中,往往要对羟基进行保护。(1)防止羟基受碱的影响,可用成醚反应。如:R
OH
R→‘OH
R—O—R‘(2)防止羟基氧化,可用酯化反应。如:2.对羧基的保护羧基在高温或碱性条件下,有时也需要保护。保护羧基最常用的是酯化反应。如:3.对不饱和碳碳键的保护碳碳双键易被氧化,对它们的保护主要是用加成反应使之达到饱和。如:4.对羰基的保护(常以信息题形式出现)羰基,特别是醛基,在进行氧化反应或遇碱时,往往要进行保护。对羰基的保护一般采用生成缩醛或缩酮的方法。如:生成的缩醛或缩酮水解即可变成原来的醛或酮。三、应用举例例1已知下列信息:碳碳双键在一定条件下氧化可生成二元醇:醛能发生如下反应生成缩醛:缩醛比较稳定,与稀碱和氧化剂均难反应,但在稀酸中温热,会水解为原来的醛。现有如下合成路线:试回答下列问题:(1)分别写出A、B的结构简式。(2)写出反应Ⅲ的化学方程式。

⑥ 请问有没有办法在不保护酮羰基的前提下直接将不饱和酮的双键还原

最常用的有以下三种方法:

在HMPA溶剂中加入甲基铜,DIBAL可以先择性地还原不饱和酮的双键。

Li/NH3也可以选择性地还原双键。

在溴化亚铜存在下,用LiAlH(Ot-Bu)3来还原,可以选择性地还原不饱和酮的双键。此方法收率可以达98%
可以参考这个文献:
Semmelback M F, Stauffer R D. J Org Chem, 1975,40,3619

⑦ 羰基的性质

物理性质:具有强红外吸收。
化学性质:由于氧的强吸电子性,碳原子上易发生亲核加成反应。其它常见化学反应包括:亲核还原反应,羟醛缩合反应。

反应:α-氢的反应

(1)羟醛缩合
(1)羟醛缩合
在稀碱或稀酸的作用下,两分子的醛或酮可以互相作用,其中一个醛(或酮)分子中的α-氢加到另一个醛(或酮)分子的羰基氧原子上,其余部分加到羰基碳原子上,生成一分子β-羟基醛或一分子β-羟基酮。这个反应叫做羟醛缩合或醇醛缩合(aldolcondensation)。通过醇醛缩合,可以在分子中形成新的碳碳键,并增长碳链。
羟醛缩合反应历程,以乙醛为例说明如下:
第一步,碱与乙醚中的α-氢结合,形成一个烯醇负离子或负碳离子:
第二步是这个负离子作为亲核试剂,立即进攻另一个乙醛分子中的羰基碳原子,发生加成反应后生成一个中间负离子(烷氧负离子)。
第三步,烷氧负离子与水作用得到羟醛和OH。
稀酸也能使醛生成羟醛,但反应历程不同。酸催化时,首先因质子的作用增强了碳氧双键的极化,使它变成烯醇式,随后发生加成反应得到羟醛。
生成物分子中的α-氢原子同时被羰基和β-碳上羟基所活化,因此只需稍微受热或酸的作用即发生分子内脱水而生成,α,β-不饱和醛。
凡是α-碳上有氢原子的β-羟基醛、酮都容易失去一分子水。这是因为α-氢比较活泼,并且失水后的生成物具有共轭双键,因此比较稳定。
除乙醛外,由其他醛所得到的羟醛缩合产物,都是在α-碳原子上带有支链的羟醛或烯醛。羟醛缩合反应在有机合成上有重要的用途,它可以用来增长碳链,并能产生支链。
具有α-氢的酮在稀碱作用下,虽然也能起这类缩合反应,但由于电子效应、空间效应的影响,反应难以进行,如用普通方法操作,基本上得不到产物。一般需要在比较特殊的条件下进行反应。例如:丙酮在碱的存在下,可以先生成二丙酮醇,但在平衡体系中,产率很低。如果能使产物在生成后,立即脱离碱催化剂,也就是使产物脱离平衡体系,最后就可使更多的丙酮转化为二丙酮醇,产率可达70%~80%。二丙酮醇在碘的催化作用下,受热失水后可生成α,β-不饱和酮。
在不同的醛、酮分子间进行的缩合反应称为交叉羟醛缩合。如果所用的醛、酮都具有α-氢原子,则反应后可生成四种产物,实际得到的总是复杂的混合物,没有实用价值。一些不带α-氢原子的醛、酮不发生羟醛缩合反应(如HCHO、RCCHO、ArCHO、RCCOCR、ArCOAr、ArCOCR等),可它们能够同带有α-氢原子的醛、酮发生交叉羟醛缩合,其中主要是苯甲醛和甲醛的反应。并且产物种类减少,可以主要得到一种缩合产物,产率也较高。反应完成之后的产物中,必然是原来带有α-氢原子的醛基被保留。在反应时始终保持不含α-氢原子的甲醛过量,便能得单一产物。芳香醛与含有α-氢原子的醛、酮在碱催化下所发生的羟醛缩合反应,脱水得到产率很高的α,β-不饱和醛、酮,这一类型的反应,叫做克莱森-斯密特(Claisen-Schmidt)缩合反应。在碱催化下,苯甲醛也可以和含有α-氢原子的脂肪酮或芳香酮发生缩合。另外,还有些含活泼亚甲基的化合物,例如丙二酸、丙二酸二甲酯、α-硝基乙酸乙酯等,都能与醛、酮发生类似于羟醛缩合的反应。
(2)烃基上的卤代反应
(2)烃基上的卤代反应
由于羰基强烈的吸电子作用,醛、酮的α-氢原子容易被卤素取代,生成α-卤代醛、酮。
这类反应可以被酸或碱催化。用酸催化时,可通过控制反应条件(例如酸和卤素的用量,反应温度等),使所得的产物主要是一卤代物,二卤代物或三卤代物。
决定整个反应速度的步骤是生成烯醇的步骤,即取决于丙酮和酸的浓度,而与卤素的浓度无关。
生成的一卤代物继续与卤素反应的速度降低。这是由于卤素原子电负性很大,使一卤代物烯醇式双键上的电子云密度降低,因而与卤素的亲电加成难以进行。所以酸催化卤代反应常停止在一卤代产物上。
碱催化的卤代反应中决定整个反应速度的步骤是生成负碳离子(烯醇负离子)的步骤,即反应速度与丙酮和碱的浓度有关,与卤素的浓度无关。
用碱催化时,则因反应速度很快,一般不能使反应控制在生成一卤代物或二卤代物阶段。这是因为当一个卤素原子引入α-碳原子以后,由于卤素是吸电子的,使得α-氢原子更加活泼,形成新的负碳离子更加容易,形成的负碳离子更加稳定,因此⑴式反应更快,这就是碱催化难以控制在一卤代物的原因。
凡结构式为CH3-C==O的醛或酮(乙醛和甲基酮)与次卤酸或卤素碱溶液作用时,甲基上的三个α-氢原子都被卤素原子取代,生成三卤代衍生物。而这种三卤代衍生物,由于卤素的强吸电子诱导效应,使碳的正电性大大加强,在碱的存在下,发生碳碳键的断裂,分解生成三卤甲烷(俗称卤仿)和羧酸盐。因此,通常把次卤酸钠的碱溶液与乙醛或甲酮作用,α-甲基的三个氢原子都被卤素原子取代,生成的三卤衍生物在受热时,其碳碳键断裂,生成卤仿和羧酸盐的反应称为卤仿反(haloformareaction)。由于次卤酸钠是一个氧化剂,它可以使具有-CHOH-CH3结构的醇氧化变成为含-COCH3结构的醛或酮。因此,凡含有-CHOH-CH3结构的醇也都能发生卤仿反应。
如果用次碘酸钠(碘加氢氧化钠)作试剂,生成难溶于水的且具有特殊臭味黄色结晶碘仿(CHI)的反应称为碘仿反应。
因而常用这个反应来鉴别具有-COCH3结构的醛、酮和具有-CHOH-CH3结构的醇。《中华人民共和国药典》即利用此反应来鉴别甲醇和乙醇。
甲基酮的卤仿反应是制备羧酸的一个途径。另外,由于次卤酸盐对于双键没有干扰,所以一些不饱和的甲基酮也可以通过卤仿反应转变为相应的羧酸。
编辑本段
反应:羰基的亲核加成反应

概述
羰基中的π键和碳碳双键中的π键相似,也易断裂,因此与碳碳双键类似,羰基也可以通过断裂π键而发生加成反应。与碳碳双键不同的是,由于羰基氧原子的电负性比碳原子大,易流动的π电子被强烈地拉向氧原子,所以羰基的氧原子是富电子的,以致氧原子带部分负电荷,羰基的碳原子是缺电子的,使碳原子带部分正电荷(),所以羰基是一个极性基团,具有一定的偶极矩,偶极矩的方向由碳指向氧,使得羰基具有两个反应中心,在碳原子上呈现正电荷中心,在氧原子上呈现负电荷中心。一般地讲,带部分正电荷的碳原子比带负电荷的氧原子具有更大的化学反应活性。因此,与碳碳双键易于发生亲电加成反应不同,碳氧双键最易发生被亲核试剂进攻的亲核加成反应。一般是亲核试剂(NuA)的亲核部分(Nu)首先向羰基碳原子进攻,其次带正电荷的亲电部分(A)加到羰基的氧原子上。所以,羰基的典型反应是亲核加成反应。
(1)与氢氰酸的加成
(1)与氢氰酸的加成
醛、酮与氢氰酸发生加成反应生成α-羟基腈(又叫氰醇)。
羰基与氢氰酸的加成反应在有机合成上很有用,是增长碳链的方法之一。羟基腈是一类活泼化合物,易于转化成其他化合物,因而是有机合成中间体。例如,α-羟基腈可以水解成α-羟基酸,α-羟基酸进一步失水,变成α,β-不饱和酸。
丙酮与氢氰酸在氢氧化钠的水溶液中反应,生成丙酮氰醇,后者在硫酸存在下与甲醇作用,即发生水解、酯化、脱水反应,氰基变成甲氧酰基,最后生成甲基丙烯酸甲酯。甲基丙烯酸甲酯聚合生成聚甲基丙烯酸甲酯,即有机玻璃。
醛、酮与氢氰酸加成时,虽然可以直接用氢氰酸作反应试剂,但是它极易挥发,且毒性很大,所以操作要特别小心,需要在通风橱内进行。为了避免直接使用氢氰酸,常将醛、酮与氰化钾或氰化钠的水溶液混合,然后缓缓加入硫酸来制备氰醇,这样可以一边产生HCN,一边进行反应;也可以先将醛、酮与亚硫酸氢钠反应,再与氰化钠反应制备氰醇。
(2)与格氏试剂的加成
(2)与格氏试剂的加成
在格氏试剂中,可以把R看作是负碳离子(R),它所起的作用与CN、OH、RO等相似。由于负碳离子的亲核性很强,所以格氏试剂可以和大多数醛、酮发生加成反应,生成碳原子更多的、具有新碳架的醇。
格氏试剂与甲醛作用生成伯醇,与其他醛作用生成仲醇,而格氏试剂与酮作用则生成叔醇。但当酮分子中的两个烃基和格氏试剂中的烃基体积都很大时,格氏试剂对羰基的加成可因空间位阻增加而大大减慢,相反却使副反应变得重要了,如空间位阻较大的二异丙基酮与叔丁基溴化镁加成时则有两种副反应产生,一种是二异丙基酮烯醇化得烯醇的镁化物。另一种副反应是羰基被还原成仲醇,格氏试剂中的烃基失去氢变成烯烃。在这种情况下,用活性更强的有机锂化合物代替格氏试剂,仍能得到加成产物,而且产率较高,并易分离。有机锂化合物和醛、酮反应的方式和与格氏试剂相似。例如和醛、酮反应,则分别得到仲醇或叔醇。与格氏试剂不同之处是,有机锂化合物和空间位阻较大的酮加成时,仍以加成产物为主。由于格氏试剂是活性很大的试剂,所以反应的第一步,即格氏试剂与羰基加成这一步,必须要在绝对无水的条件下进行反应。一般用经过干燥处理的乙醚作溶剂,极其微量的水存在都会导致反应的失败。
(3)与醇的加成
(3)与醇的加成
常温下羰基可与羟基发生可逆反应,生成半缩醛、半缩酮:
C=O+HOR ==== C(OR)(OH)
在有Lewis酸存在时,反应可进一步发生生成缩醛、缩酮:
C(OR)(OH)+HOR ====C(OR)2
此反应可用于羰基的保护

⑧ 常用来保护醛酮羰基的试剂有哪些

咨询记录 · 回答于2021-10-26

阅读全文

与化学反应中如何保护酮羰基相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:666
乙酸乙酯化学式怎么算 浏览:1338
沈阳初中的数学是什么版本的 浏览:1275
华为手机家人共享如何查看地理位置 浏览:959
一氧化碳还原氧化铝化学方程式怎么配平 浏览:812
数学c什么意思是什么意思是什么 浏览:1328
中考初中地理如何补 浏览:1224
360浏览器历史在哪里下载迅雷下载 浏览:634
数学奥数卡怎么办 浏览:1306
如何回答地理是什么 浏览:955
win7如何删除电脑文件浏览历史 浏览:986
大学物理实验干什么用的到 浏览:1408
二年级上册数学框框怎么填 浏览:1619
西安瑞禧生物科技有限公司怎么样 浏览:760
武大的分析化学怎么样 浏览:1176
ige电化学发光偏高怎么办 浏览:1265
学而思初中英语和语文怎么样 浏览:1561
下列哪个水飞蓟素化学结构 浏览:1356
化学理学哪些专业好 浏览:1420
数学中的棱的意思是什么 浏览:977