‘壹’ 影响岩石化学风化作用的因素有什么气体
化学风化(chemical weathering)岩石发生化学成分的改变分解,称为化学风化。例如,岩石中含铁的矿物受到水和 化学风化空气作用,氧化成红褐色的氧化铁;空气中的二氧化碳和水气结合成碳酸,能溶蚀石灰岩;某些矿物吸收水分后体积膨胀;水和岩层中的矿物作用,改变原来矿物的分子结构,形成新矿物。这些作用可使岩石硬度减弱、密度变小或体积膨胀,促使岩石分解。
(1)水溶性作用
石材中的矿物经水的浸泡后.在一定温度下.可发生化学变化。这一过程也称为石材的微粒水解。具体是岩石中的长石水解时.水分子中的H+咒换出长石中的碱离子,11+离子进入石材的品格中生成新的钻土矿物.例如正长石经水解后.形成高岭石或铝矾上
(2)氧化反应
主要是石材内的金属矿物与氧发生化学反应使石材变色、酥松、裂隙等。在石材中最常见也是最易发生氧化反应的是铁质矿石中的黄铁矿、硫铁矿.其氧化作川最为明显。许多石材安装之后,发生氧化反应之后出现黄锈、黄斑、流痕,时问长久后这些含铁矿的局部会出现凹坑、裂纹.密集的地方会使强度下降。一些比较稳定的石材,在制作火烧板时因高温使其中的铁矿氧化.也会在以后逐渐发生氧化,所以说.火烧板在一定程度上会降低石材的使用强度。
(3)岩溶反应
通常碳酸盐类石材(石灰石、大理石、白云石、石灰华等)含有二氧化碳水的作用下。碳酸钙逐渐溶解为钙离子、碳酸根,在时间、温度、压力.尤其在城市二氧化碳形成的大量酸雨催化作用下,溶于水的钙会形成新的碳酸钙沉积.形成石灰华:
在地质作用上,这一过程通常是极其漫长的。最明显的是喀斯特地貌(在碳酸盐地区).然而)岩溶反应在城市石材装修中越发明显.表现石材的外观是流白痕。裂隙、酥松。一些用石材建筑的古迹都不同程度地发现此现象。
除此,因大气中二氧化硫的增多,最终形成酸雨后,也对石材中的石膏、碳酸镁、钾、钠盐矿进行溶解、分离.最终形成沉积.对原有的石材都是一种破坏。
(4)生物化学反应
植物生存生成出的有机酸、磷酸、粪便、遗体等的化学物质都会对石材产生风化。
当然石材的风化并不是某一种单纯反应,而是和物理风化、化学风化、生物风化交织在一起的。研究石材风化有利于利用科学的方法进行防治。
以上是石材
1溶解作用
水直接溶解岩石中矿物的作用称为溶解作用。溶解作用的结果,使岩石中的易溶物质被逐渐溶解而随水流失,难溶的物质则残留于原地。岩石由于可溶物质的被溶解而致孔隙增加,削弱了颗粒间的结合力从而降低岩石的坚实程度,更易遭受物理风化作用而破碎。最容易溶解的矿物是卤化盐类(岩盐,钾盐),其次是硫酸盐类(石膏,硬石膏),再次是碳酸盐类(石灰岩,白云岩)。岩石在水里的溶解作用一般进行的十分缓慢,但是当水的温度升高以及压力增大时,水的溶解作用就比较活跃。特别是当水中含有侵蚀性的CO2而发生碳酸化作用时,水的溶解作用就会显着增强,如在石灰岩分布地区,由于这种溶解作用经常会产生溶洞、溶穴等岩溶现象。
2水化作用
有些矿物与水接触后和水发生化学反应,吸收一定量的水到矿物中形成含水矿物,这种作用称为水化作用。如硬石膏经过水化作用变为石膏就是很好的例子。
CaSO4 +2H2O ®CaSO4·2H2O
硬石膏 石膏
水化作用的结果产生了含水矿物。含水矿物的硬度一般低于无水矿物,同时由于在水化过程中结合了一定数量的水分子进人物质的成分之中,改变了原有矿物的成分,引起体积膨胀,对岩石也具有一定的破坏作用。
若岩层中含有硬石膏时,当石膏发生水化作用而体积膨胀,对围岩会产生很大的压力,促使岩层破碎。在隧道施工中,这种压力甚至能引起支撑倾斜、衬砌开裂,应当引起足够的注意。
3水解作用
某些矿物溶于水后,出现离解现象,其离解产物可与水中的H和OH离子发生化学反应,形成新的矿物,这种作用称为水解作用。例如正长石经水解作用后,开始形成的K与水中OH离子结合,形成KOH随水流失,析出一部分SiO2可呈胶体溶液随水流失,或形成蛋白石(SiO2·nH2O)残留于原地;其余部分可形成难溶于水的高岭石而残留于原地。
4K(AlSi3O8)+6H2O ®4KOH + 8SiO2十Al4(Si4O10)(OH)8
正长石 高岭石
4碳酸化作用
当水中溶有CO2时,水溶液中除H和(OH)离子外,还有CO3和HCO3离子,碱金属及碱土金属与之相遇会形成碳酸盐,这种作用称为碳酸化作用。硅酸盐矿物经碳酸化作用其中碱金属变成碳酸盐随水流失,如花岗岩中的正长石受到长期碳酸化作用时,则发生如下反应:
4K(AlSi3O8)+ 4H2O + 2CO2 ®2K2CO3 + 8SiO2+Al4(Si4O10)(OH)8 正长石 高岭石
5氧化作用
矿物中的低价元素与大气中的游离氧化合变为高价元素的作用,称为氧化作用。氧化作用是地表极为普遍的一种自然现象。在湿润的情况下,氧化作用更为强烈。自然界中,有机化合物、低价氧化物、硫化物最容易遭受氧化作用。尤其是低价铁常被氧化成高价铁。例如常见的黄铁矿(FeS2)在含有游离氧的水中,经氧化作用形成褐铁矿(Fe2O3·nH2O),同时产生对岩石腐蚀性极强的硫酸,可使岩石中的某些矿物分解形成洞穴和斑点,致使岩石破坏。
2FeS2 + 7O2 + 2H2O ®2FeSO4 + 2H2SO4
黄铁矿 硫酸亚铁
12FeSO4 + 3O2 + 6H2O ®4Fe2(SO4)3 + 4Fe(OH)3
硫酸亚铁 褐铁矿
Fe2(SO4)3 +6H2O ® 2Fe(OH)3 + 3H2SO4
褐铁矿 硫酸
‘贰’ 母岩的风化
1.风化作用概述
沉积岩的形成作用发生于沉积圈,即包括岩石圈、水圈、大气圈和生物圈,其间界面相互交错重叠的地球表面带,常称表生带。表生带的物理、化学条件的特点是低温、低压、富含水、氧和二氧化碳,生物活动强烈。因此在温度和压力较高的地壳深处结晶的岩石,一旦进入物化条件截然不同的表生环境,原有的平衡就都被打破了,势必要产生结构和成分上的变化来建立新的平衡。这种变化过程就是通过风化作用来完成的。所谓风化作用就是指地壳最表层的岩石在温度变化、大气、水、生物等因素作用下,发生机械破碎和化学变化的一种作用。按作用性质和因素的不同可分为物理风化作用、化学风化作用和生物风化作用。
物理风化作用只造成岩石的机械破碎,没有成分上的变化。化学风化作用则会使矿物发生分解,分解出来的元素有一部分被地表水和地下水带走,其余部分则成为在地表条件下稳定的新生矿物。而生物风化作用的表现形式既有机械的破碎,又有化学的分解,但后者是主要的。
岩石发生机械破碎的基本营力是温度的变化、晶体生长(冰劈作用、盐的结晶)、植物的根劈作用、动物的潜穴活动、重力效应,以及水、风和冰川的机械破坏作用等。有些生物对岩石的机械破碎作用是与生物的化学分解作用同时进行的,如地衣菌丝对岩石的破坏。纯粹的机械破碎作用与化学分解作用相比则是次要的,只在严寒的极地和高山地区,以及气候干燥、温度变化剧烈的沙漠地区才相对重要些。
引起岩石化学分解的主要因素是水、氧和二氧化碳,以及有机质。从本质上讲,化学风化就是富含氧和二氧化碳的水(雨水和土壤水)以及有机酸与矿物发生化学反应的过程。因此,化学风化主要是通过氧化作用、水化和水解作用、酸的作用、离子交换等方式进行的。
近来生物的化学分解作用愈来愈被人们所重视,尤其是微生物和藻类作用,因为它们不仅分布广、适应性强,而且对岩石的分解作用要比其他生物更为有效。生物不但能产生大量有机酸和CO2、H2S等气体,而且还有氧化还原机能、吸附和浓集元素的机能。
无疑,在潮湿炎热和温暖地区,化学和生物化学风化作用既强烈又广泛,就是在机械风化作用为主的地区,化学分解作用仍然在进行着。例如在四千多米的高寒地区见到有微生物化学分解形成的所谓“高山岩漆”;在埃及沙漠地区,发现花岗岩柱被风化的不是向阳面,而是背阴面,风化最厉害的是被砂埋着或曾被埋过的部分,表明化学风化还是在进行着,主要是微量水长期作用的结果。
通常机械破碎作用和化学分解作用不是孤立进行的,而是相互联系、相互促进和相互影响的。由于机械破碎使得母岩产生很多裂隙或破碎成小块,这就增大了岩石与周围介质的接触面,大大促进了化学分解;反过来,化学分解可降低母岩的硬度和强度,给机械破碎创造了有利条件。但就整个风化作用而言,化学和生物化学风化作用具有重要意义,并随着地质历史的发展日益加强,尤其是生物化学风化作用更是如此。
风化作用不仅发生在大陆上,而且也可发生在海底,后者称作海底风化作用,如黑云母变成海绿石,火山灰变成蒙脱石等。但海底风化作用与同生作用不易区别,两者常交织在一起。
2.风化过程中元素析出顺序——元素的风化分异
母岩在化学风化过程中表现为某些元素的淋滤分散和另外一些元素的残积富集两个方面。各种元素在特定的风化条件下迁移能力是不一样的,亦即各种元素从母岩中析出的难易程度不同,因而造成各种元素按一定顺序从母岩中分离出来,即元素的风化分异。根据元素在表生条件下的迁移能力,可把风化带中的元素分为五类:
①最易迁移元素(Kx=n·10~n·102)Cl、Br、I、S;②易迁移元素(Kx=n~n·10)Ca、Mg、Na、F、Sr、K、Zn;③迁移元素(Kx=n·10-1~n)Cu、Ni、Co、Mo、V、Mn、Si(在硅酸盐中)、P;④惰性(微弱迁移)元素(Kx<n·10-1)Fe、Al、Ti、Sc、Y、TR(稀土元素)等;⑤几乎不移动的元素(Kx≈n·10-10)(Si)(石英)。
从迁移序列中可以看出,各种元素的迁移能力相差是很大的。最易迁移的元素是惰性元素迁移能力的成百倍到上千倍,这就使原来共生的元素在风化过程中因迁移能力不等而发生分异,迁移能力最强的Cl、S最先从风化带中流失;其次是Ca、Mg、Na、F等;而K、Mn、Si、P等迁移能力较弱;Al、Fe、Ti等迁移能力很弱,往往残留原地形成红土和铝土矿。
元素的迁移能力与它们的物理化学性质不完全一致。例如Na、K的简单盐类的溶解度大致相同,但在风化带中Na的迁移能力比K大;钙盐和镁盐(CaCO3、CaSO4、MgCO3)比钠盐和钾盐(NaCl、KCl)难溶得多,但Ca、Mg的迁移能力要大于Na、K。这是因为风化过程中元素的迁移能力不单取决于离子特性,而是受到多种因素的影响。一般影响元素迁移能力的因素有:元素自身的原子和离子特性(离子半径、原子价、极化能力等),这在很多情况下决定了离子由固体转变为溶液或由溶液转变为固体的难易性,以及含有该元素的矿物特征和它对于风化作用的抵抗能力,例如钙长石要比钠长石易风化,故在相同条件下Ca要比Na易于析出,而同样的Ca,在石灰岩中要比在钙长石中易于析出;介质的pH和Eh值,例如Fe在氧化环境中迁移能力很小,但在还原环境中则显着增加,而U则相反;生物及气候条件的影响,如潮湿炎热地区的SiO2迁移能力大大增加,几乎与Ca一样。
需要指出,上述迁移序列是一般性的,它主要是根据硅酸盐岩石在温湿气候和氧化环境中发生风化经计算而得到的,对于其他气候条件下和还原占优势的环境中,元素的迁移顺序就不一定与上述相同。
3.风化带发育的阶段性
在风化带中矿物的变化具有明显的阶段性,一种原生矿物随着风化程度的加深,通过一系列中间阶段,依次形成一些过渡性矿物,然后转化为最终产物(与最终风化环境取得平衡的生成物)。某些造岩硅酸盐矿物风化转变的一般阶段是:钾长石→绢云母→水云母→高岭石;辉石→绿泥石→水绿泥石→蒙脱石→多水高岭石→高岭石;黑云母→蛭石→蒙脱石→高岭石。
相应的母岩风化变化也会出现阶段性。波雷诺夫根据元素从风化带中析出的顺序,将结晶岩的风化过程分为四个阶段,不同阶段有其独特的风化产物。今以玄武岩为例(表2-1)予以说明:①碎屑阶段,以物理风化为主,风化产物主要为岩石或矿物碎屑;②饱和硅铝阶段,岩石中如有氯化物和硫酸盐将全部被溶解,然后在CO2和H2O的共同作用下,铝硅酸盐和硅酸盐矿物开始分解,游离出K+、Na+、Ca2+、Mg2+,这些阳离子的存在,使介质呈碱性或中性,并使一部分SiO2转入溶液,这个阶段形成的粘土矿物有蒙脱石、水云母、拜来石、绿脱石以及绿泥石等,同时碱性条件下难溶的碳酸钙开始堆积;③酸性硅铝阶段,碱金属和碱土金属大量被溶滤掉,SiO2进一步游离出来,随着有机质分解形成大量有机酸和CO2,使介质转为酸性。使上阶段形成的矿物(蒙脱石、水云母等)转变成在酸性条件下稳定的不含碱金属和碱土金属的粘土矿物高岭石、变埃洛石等,通常将达到此阶段的风化作用称为粘土型风化作用;④铝铁土阶段,这是风化的最后阶段,在此阶段铝硅酸盐矿物被彻底地分解,碱金属和碱土金属全部游离出来,加上有机酸被地表水淋走或冲淡,使介质又呈中性或碱性,致使SiO2大量流失,此外全部可移动的元素都被带走了,主要就剩下铁和铝的氧化物及部分二氧化硅,在原地形成水铝石、水铝矿、褐铁矿、针铁矿、赤铁矿及蛋白石的堆积,由于它是一种红色疏松的铁质或铝质土壤,所以也称为红土,达到此阶段的风化作用通常称为红土型风化作用。
表2-1 玄武岩的风化过程
(据曾允孚和夏文杰,1986)
上述四个阶段依次表示风化程度加深,是一个一般的完整过程,并不是所有结晶岩的风化都要经历这四个阶段。能否达到风化最深的铝铁土阶段,取决于当时的气候、地形、地壳运动强度、母岩性质和风化时间长短等因素。其中特别是气候因素,如在干旱沙漠地区,母岩风化可长期停留在碎屑阶段;植被发育的温暖潮湿地区则可达到并长期停留在酸性硅铝阶段,而在潮湿炎热地区则可达到铝铁土阶段。
‘叁’ 土的风化作用有哪三种类型,各有什么特征
土的风化作用有物理风化、生物风化、化学风化三种类型。
三种类型风化特征:
1、物理风化
物理风化是指岩石在温度变化、冻融、有机体、水、风和重力等物理机械作用下崩解、破碎成大小不一碎屑和颗粒的过程。
物理风化是最简单的风化作用,在沙漠地区尤其明显。
在有化学作用和生物作用参与的情况下,风化作用进行得更快,风化的过程和产物也更丰富多彩。
2、生物风化
生物对母岩的破坏方式既有机械作用(如根劈作用),也有生物化学作用(如植物、细菌分泌的有机酸对岩石的腐蚀作用),既有直接的作用也有间接的作用。
生物的化学风化作用是通过生物的新陈代谢和生物死亡后的遗体腐烂分解来进行的。植物和细菌在新陈代谢中常常析出有机酸、硝酸、碳酸、亚硝酸和氢氧化铵等溶液而腐蚀岩石。
生物特别是微生物的化学风化作用是很强烈的。据统计,每克土壤中可含几百万个微生物,它们都在不停地制造各种酸类,从而强烈破坏岩石。据估计,微生物对岩石所产生的总分解力远远超过全部动植物所具有的分解力,同时在微生物参与下可加速分解作用。
3、化学风化
化学风化是地壳表面岩石在水及水溶液的作用下发生化学分解的作用。主要有溶解、水化、水解、氧化和碳酸化等几种。包含岩石成分的改变,常常引致其形态的崩溃。这种风化会在一段期间反复发生。
在空间上具有高度的非连续性,这种非连续性广泛存在于从宏观、细观到微观的所有尺度。化学风化可增大水岩界面,提升矿物溶解反应的规模及速率。
影响因素
一、气候条件
气候寒冷或干燥地区,生物稀少,寒冷地区降水以固态形式为主,干旱区降水很少。以物理风化作用为主,化学和生物风化为次。岩石破碎,但很少有化学风化形成的粘土矿物,以生物风化为主形成的土壤也很薄。
气候潮湿炎热地区,降水量大,生物繁茂,生物的新陈代谢和尸体分解过程产生的大量有机酸,具有较强的腐蚀能力,故化学风化和生物风化都十分强烈,形成大量粘土,在有利的条件下可形成残积矿床。可形成较厚的土壤层。
二、地形条件
地形影响气候,间接影响风化作用;另一方面,陡坡上,地下水位低,生物较少,以物理风化为主。 地势平坦,受生物影响较大,化学风化作用为主。
‘肆’ 岩石风化是化学变化吗为什么··· 解释下···
岩石在太阳辐射、大气、水和生物作用下出现破碎、疏松及矿物成分次生变化的现象。导致上述现象的作用称风化作用。\
大约在200年前,人们可能认为高山、湖泊和沙漠都是地球上永恒不变的特征。可现在我们已经知道高山最终将被风化和剥蚀为平地,湖泊终将被沉积物和植被填满,沙漠会随着气候的变化而行踪不定。地球上的物质永无止境地运动着。暴露在地壳表面的大部分岩石都处在与其形成时不同的物理化学条件下,而且地表富含氧气、二氧化碳和水,因而岩石极易发生变化和破坏。表现为整块的岩石变为碎块,或其成分发生变化,最终使坚硬的岩石变成松散的碎屑和土壤。矿物和岩石在地表条件下发生的机械碎裂和化学分解过程称为风化。由于风、水流及冰川等动力将风化作用的产物搬离原地的作用过程叫做剥蚀
地表岩石在原地发生机械破碎而不改变其化学成分也不新矿物的作用称物理风化作用。如矿物岩石的热胀冷缩、冰劈作用、层裂和盐分结晶等作用均可使岩石由大块变成小块以至完全碎裂。化学风化作用是指地表岩石受到水、氧气和二氧化碳的作用而发生化学成分和矿物成分变化,并产生新矿物的作用。主要通过溶解作用水化作用水解作用碳酸化作用和氧化作用等式进行。
虽然所有的岩石都会风化,但并不是都按同一条路径或同一个速率发生变化。经过长年累月对不同条件下风化岩石的观察,我们知道岩石特征、气候和地形条件是控制岩石风化的主要因素。不同的岩石具有不同的矿物组成和结构构造,不同矿物的溶解性差异很大。节理、层理和孔隙的分布状况和矿物的粒度,又决定了岩石的易碎性和表面积。风化速率的差异,可以从不同岩石类型的石碑上表现出来。如花岗岩石碑,其成分主要是硅酸盐矿物。这种石碑就能很好地抵御化学风化。而大理岩石碑则明显地容易遭受风化。
气候因素主要是通过气温、降雨量以及生物的繁殖状况而表现的。在温暖和潮湿的环境下,气温高,降雨量大,植物茂密,微生物活跃,化学风化作用速度快而充分,岩石的分解向纵深发展可形成巨厚的风化层。在极地和沙漠地区,由于气候干冷,化学风化的作用不大,岩石易破碎为棱角状的碎屑。最典型的例子,是将矗立于干燥的埃及已35个世纪并保存完好的克列奥帕特拉花岗岩尖柱塔,搬移到空气污染严重的纽约城中心公园之后,仅过了75年就已面目全非。
地势的高度影响到气候:中低纬度的高山区山麓与山顶的温度、气候差别很大,其生物界面貌显着不同。因而风化作用也存在显着的差别。地势的起伏程度对于风化作用也具普遍意义:地势起伏大的山区,风化产物易被外力剥蚀而使基岩裸露,加速风化。山坡的方向涉及到气候和日照强度,如山体的向阳坡日照强,雨水多,而山体的背阳坡可能常年冰雪不化,显然岩石的风化特点差别较大。
剥蚀与风化作用在大自然中相辅相成,只有当岩石被风化后,才易被剥蚀。而当岩石被剥蚀后,才能露出新鲜的岩石,使之继续风化。风化产物的搬运是剥蚀作用的主要体现。当岩屑随着搬运介质,如风或水等流动时,会对地表、河床及湖岸带产生侵蚀。这样也就产生更多的碎屑,为沉积作用提供了物质条件。
‘伍’ 地质是强风化硬还是微风化硬呀
地质是强风化硬。
未风化:岩质新鲜偶见风化痕迹。
微风化:结构基本未变,仅节理面有渲染或略有变色,有少量风化裂隙。
中风化:结构部分破坏,沿节理面有次生矿物,有风化裂隙发育,岩体被切割成岩块。用镐难挖,干钻不易钻进。
强风化:结构大部分破坏,矿物成分显着变化,风化裂隙发育,岩体破碎,用镐可挖,干钻不易钻进。
风化过程
风化过程十分复杂,通常是几种作用同时发生,造成岩石的崩解或分解。为方便起见,可把风化作用分为物理(或机械)风化、化学风化和生物风化。
1、物理(或机械)风化
热胀冷缩是岩石,尤其是热带荒漠地区岩石崩解的一个原因。许多不同类型的风化作用,包括粒状崩解、球形风化、剥离风化及层裂构造,都可用热胀冷缩的原理来解释。但是,目前大部分野外证据却显示出相反的结论。
粒状崩解、球形风化、剥离风化和层裂构造都已在远远超过太阳热力影响的地下深处发现。
实验表明,仅仅依靠受热和冷却,风化的效果很小,进程缓慢,而当有水分存在时,则几乎立即产生影响。虽然一度认为层裂构造是日照作用的产物,但多年来业已承认它们是卸载,即压力释放的结果。不过,大量证据表明,卸载假说也并不处处适用。
地壳内的断层作用和侧向挤压,似乎可以作为层裂的另一种解释。在副极地地区,频繁波动于冰点上下的气温对地表岩石的影响很大。在这些地区对岩层的详细观察,证实了冻融机制的有效性。
2、化学风化
某些盐类,诸如氯化钠(NaCl)和石膏(Ca[SO4].2H2O)的结晶作用,也被引证来作为岩石,尤其是干旱地区岩石崩解的原因之一。树根的生长无疑能把大量岩块推开,并扩大原有的节理。甚至地衣的菌丝也能穿透矿物晶体的界面和解理,完成一定的机械崩解。
许多矿物在相当程度上溶解于水。某些矿物,例如食盐(NaCl)和石膏(Ca[SO4].2H2O)等,能与水发生强烈反应,并溶解于水或形成可溶产物。甚至石英(SiO2),在某种程度上也溶解于水。许多矿物在盐水中比在淡水中更易溶解。
在许多情况下,溶解作用可能是化学风化的第一阶段。由于溶解的矿物质(以及固体微粒)在风化剖面中的位移,形成了富含氧化铁、灰质、硅质或石膏的不同的层或盘。在世界各地都有大片砖红土、钙壳和硅壳的堆积。水及其所含的根和气体与各种矿物结合形成新的矿物。这些过程称为水化和水解。
例如,铁很容易与水和氧结合,形成各种氧化铁的水化物,许多风化剖面呈黄色或红色的原因即在于此。所有常见的造岩矿物,除石英以外,由于化学风化(主要是水化和水解)都会转变为黏土矿物。氧化作用发生于土壤的包气带,氧化物是表土中的常见成分。
碳化作用是像长石这类矿物发生风化的中间步骤。碳酸虽是弱酸,但它是自然界的一种有效的溶剂。硅化和脱硅能使一种黏土转变为另一种黏土。因此,热带地区云母经脱硅化可产生高岭土和氧化铁,如果条件有利,还可能进而形成铝土矿(三水铝石)。[2]
3、生物风化
穴居动物为其他营力尤其是水分开辟了通道。如同物理风化的情况一样,化学风化往往也得到生物作用的助力。腐殖酸通常能促进风化。腐殖质往往有助于保持土壤中的水分,从而以各种方式加速风化作用。
‘陆’ 哪个地区的岩石化学风化相对比较强
地表和近地表的岩石在日光、空气、水和生物等外力作用下所发生的物理或
化学
相关信息
氢氧化钠的水溶液使石蕊溶液变成什么色
K元素和AL元素所组成的一种水合物可用于......
400吨四氧化三铁中含铁多少吨
K元素和AL元素所组成的一种水化物可用于......
宫腔分离2mm
血清骨型碱性磷酸酶
氮化镁与水反应
氧化铁红颜料
小分子活性水
变化。被风化了的岩石圈疏松表层称为风化壳。风化作用使岩石(层)发生崩解和分解,所能达到的深度为风化壳的厚度,可以从几十厘米至几百米。在寒冷地 区风化壳 的厚度较小,在湿热的 热带地区可 以达到100~200米,在断裂带发育区风化壳可以达到更大深度。风化作用通常分为物理风化作用和化学风化作用两类。
物理风化作用 又称崩解作用,指岩石在外力作用下所发生的物理疏松、结构崩解的机械破坏过程,一般不引起化学成分的变化。引起物理风化的原因,有压力释放、温度变化、冰冻、新晶体生长和生物活动等方面。
开裂作用是由地壳内压力释放引起岩石的崩解现象。胀缩作用是温度变化使岩石发生表里胀缩差异而发生的崩解破碎现象,亦称温差风化。挤压作用是岩石裂隙水冻结或析出新晶体挤压岩石形成的崩解现象。生物物理风化作用是指生物活动引起的物理风化。
化学风化作用 又称分解作用。在水、水溶液、空气和生物等影响下岩石发生化学成分变化的过程。在化学风化中各种岩石经历的破坏过程可分为 3 个阶段:①早期阶段:岩石中易溶盐类首先溶解流失;同时矿物中的K+、Na+、Ca2+ 、Mg2+等离子与溶液中的 Cl-、OH-、CO32-、SO42- 等离子结合,形成易溶于水的化合物,大部分随水迁移,而较难溶的碳酸盐大部分保留。本阶段可称为富钙阶段。②中期阶段:岩石中碳酸盐类大量迁移,部分SiO2析离,形成硅酸的真溶液或胶体溶液流失,或凝聚成蛋白石堆积。这时,岩石中的铝硅酸盐矿物经化学风化后,形成各种粘土矿物残留原地,可富集成粘土矿。本阶段可称为富硅阶段。③晚期阶段:在湿热气候条件下,高岭石继续风化,SiO2不断析出,一部分随水流失,一部分形成蛋白石堆积于原地。高岭石彻底分解,最后形成难溶于水的氢氧化铝,其中大部分凝聚沉淀形成各种含水的氧化铝矿物,可富集成铝土矿。本阶段可称为富铝阶段。化学风化的主要方式有水化、水解、溶解、碳酸化、氧化和生物化学风化等作用。
水化作用是指水分与一些不含水的矿物相化合,形成新矿物的过程。水解作用是指矿物与水发生反应而分解的过程,它是水与矿物发生化学反应的另一种途径。溶解作用是指水对矿物的直接溶解。绝大部分矿物都能溶解于水中,但有难易之分。碳酸化作用是指含有 CO2 的水溶液对矿物的离解过程。氧化作用是指大气和水中的游离氧与矿物的化合过程。在高温湿润的条件下,氧化作用尤其强烈。生物化学风化作用是指生物作用引起的化学风化。生物在新陈代谢过程中,一方面从土壤和岩石中吸取某些元素为营养,同时分泌有机酸腐蚀岩石
望采纳
‘柒’ 物理风化与化学风化的差别 要求完整答案,并按点整理好的!
岩石在太阳辐射、大气、水和生物作用下出现破碎、疏松及矿物成分次生变化的现象。导致上述现象的作用称风化作用。 外能是地球外部来源的能量,主要有太阳辐射能、日月引力能、重力能。外动力地质作用的范围只限于地表表层几米至几公里深度以内。包括风化作用、水流、冰川等外表的地质作用。 矿物、岩石形成时有一定的物理、化学条件,通常是地下高温高压条件。当它们露出地表后,改变了物理、化学条件时,岩石、矿物稳定性将要受到破坏。岩石可以破碎,也可以化学分解,或形成新的矿物。 风化作用:由于温度的变化、大气(氧气)、水溶液以及生物的作用,使地表岩石或矿物在原地发生物理、化学变化的过程叫风化作用。它发生以后,原来高温高压下形成的矿物被破坏,形成一些在常温常压下较稳定的新矿物,构成陆壳表层风化层,风化层之下的完整的岩石称为基岩,露出地表的基岩称为露头。 第一节 风化作用的类型 一、机械风化作用 岩石和矿物发生机械破碎而不改变其化学成分的风化作用,称为机械风化作用,它是由于温度变化及岩石空隙中水和盐分的物态变化引起的,作用方式主要有: 1. 岩石的热胀冷缩 温度昼夜变化、季节变化。日变化影响最大,内陆干旱沙漠地区,昼夜温差变化、物理风化最强烈。如西北沙漠地区,白天47℃,晚上-3 ℃,相差50 ℃. (1)不同矿物胀缩系数不一,相互脱落。 (2)表里不一。白天,表面受晒膨胀,晚上,表面冷缩,内部受热开始胀。 2. 岩石空隙中水和盐分的物态的变化 结冰体积膨胀,对周围岩石产生挤压力,扩大孔隙,冰劈作用。盐结晶时体积膨胀。 机械风化作用可以形成倒石锥地貌。 二、化学风化作用 氧、水溶液不仅使地表附近的岩石发生破碎,而且使它们的化学成分发生改变,这就是化学风化作用。通过化学反应,使那些在地表条件下不稳定的矿物变成另一种新的矿物(它适应地表环境)。 进行方式: 1. 氧化作用 空气中1/5氧 黄铁矿FeS2(++)氧化成褐铁矿Fe2O3.H2O(3+),由铜黄色变为褐红色,颜色变深,结构变疏松。在地表称铁帽,地下连着矿床。 2. 溶解作用 任何矿物都溶于水,只是溶解度有大有小。 CaCO3+CO2+H2O-->Ca(HCO3)2 方解石 (重碳酸钙) 3. 水解作用 水和矿物相结合的一种化学反应。正长石+H2O-->高岭石+。. 4. 水合作用 有些矿物吸引一定数量的水。石膏+H2O-->硬石膏 经过彻底的化学风化作用,一切活泼的元素均从矿物中风化出来并随水流失,只有性质稳定的元素舅Fe,Mn,Al,Ni等才残留原地,如果这些元素富集到具有工业价值时,就成为残余矿床。 三、生物风化作用 生物的生命活动过程和尸体腐烂分解过程对岩石的破坏作用有机械和化学两种方式: 1. 生物的机械风化作用 植物根对岩石的破坏,蚯蚓等钻洞,人类活动如挖洞、采矿等对岩石进行破碎。 2. 生物的化学风化作用 生物死亡后,腐烂分解形成一种腐植质(胶状的物质),是一种有机酸,对岩石起腐蚀作用. 地壳表层岩石经机械破碎,化学风化后形成的松散物,再经过生物的化学风化作用,增加了有机物质---腐殖质,这种具有腐殖质、矿物质、水和空气的松散物质叫做土壤。 第二节 影响风化作用的因素 风化作用的速度主要取决于自然地理条件和组成岩石的矿物性质。 一、气候条件 气候寒冷或干燥地区,生物稀少,寒冷地区降水以固态形式为主,干旱区降水很少。以物理风化作用为主,化学和生物风化为次。岩石破碎,但很少有化学风化形成的粘土矿物,以生物风化为主形成的土壤也很薄。 气候潮湿炎热地区,降水量大,生物繁茂,生物的新陈代谢和尸体分解过程产生的大量有机酸,具有较强的腐蚀能力,故化学风化和生物风化都十分强烈,形成大量粘土,在有利的条件下可形成残积矿床。可形成较厚的土壤层。 二、地形条件 地形影响气候,间接影响风化作用;另一方面,陡坡上,地下水位低,生物较少,以物理风化为主. 地势平坦,受生物影响较大,化学风化作用为主。 三、岩石性质 1. 成分 (1)岩浆岩比变质岩和沉积岩易于风化。岩浆形成于高温高压,矿物质种类多(内部矿物抗风化能力差异大). (2) 岩浆岩中基性岩比酸性岩易于风化,基性岩中暗色矿物较多,颜色深,易于吸热、散热. (3) 沉积岩易溶岩石(如石膏、碳酸盐类等岩石)比其它沉积岩易于风化. 差异风化:在相同的条件下,不同矿物组成的岩块由于风化速度不等,岩石表面凹凸不平; 或由不同岩性组成的岩层,抗风化能力弱的岩层形成相互平行的沟槽,砂岩、页岩互层,页岩呈沟槽。通过差异风化,我们可以确定岩层产状。 2. 岩石的结构构造 (1) 岩石结构较疏松的易于风化; (2) 不等粒易于风化,粒度粗者较细者易于风化; (3) 构造破碎带易于风化,往往形成洼地或沟谷。 球形风化: 在节理发育的厚层砂岩或块状岩浆岩中,岩石常被风化成球形或椭圆形,这种现象叫做球形风化,它是物理风化为和化学风化联合作用的结果。 球形风化的主要条件有:(1)岩石具厚层或块状构造;(2) 发育几组交叉裂隙;(3)岩石难于溶解;(4)岩石主要为等粒结构。 被三组以上裂隙切割出来的岩块,外部棱角明显,在风化作用过程中,棱角首先被风化,最后成球状。 第三节 风化壳及其研究意义 1. 岩石经风化后部分易熔物质被水带走流失,余下的碎屑岩和化学风化中形成的一些新矿物便残留原地,这些残留在原地的风化产物称残积物. 残积物的矿物组成、化学成分、颜色与下伏地层(原岩)有一定的关系,它们常具有棱角,无分选性,无层理,向下逐渐过渡到基岩,在存在生物活动物的地区,残积物顶部发育成土壤. 风化壳: 残积物和土壤在大陆地壳表层构成一层不连续的薄壳,称之为风化壳. 2. 风化壳可由一层残积物组成,也可由几层风化分解程度不同的残积物组成,而且层与层之间常逐渐过渡而无明显分界线。由于风化作用以地表最强烈,并向深处减弱, 故具垂直分带。一个完整的风化壳在剖面上,从下往上可分为以下几层: 层1: 未经风化的基岩. 层2: 半风化层,岩石机械破碎成碎块. 层3: 残积层,物理和化学风化,由下而上,风化程度由浅至深,碎屑颗粒由大变小. 层4: 土壤层,经受长期物理风化、化学风化和生物风化作用,形成土壤。在没有生物风化作用的地区土壤层缺失. 3. 风化壳的厚度和成分因地而异,一般潮湿炎热气候区,风化壳厚度大,并有可能形成Fe,Mn,Al,Ni等残积矿床(风化壳型矿床),干旱地区风化壳薄,常仅数十厘米且结构简单。 古风化壳:风化壳若为后来沉积物所覆盖,则称为古风化壳。 4. 风化壳的研究意义 (1) 地壳运动与古地理:长期稳定或隆起,风化壳得以充分发育,古风化壳代表古代沉积间断,发育构造运动. (2) 古地理:陆地,不同气候条件,风壳物征不一. (3) 矿产: 残余型矿床,残积砂矿床(金、金刚石). (4) 工程建设:对近代埋藏的风化壳应慎重对待。某水库工程对风化壳厚度估计不够,蓄水后坝下渗漏严重。 再谈风化作用 岩石在太阳辐射、大气、水和生物作用下出现破碎、疏松及矿物成分次生变化的现象。导致上述现象的作用称风化作用。 大约在200年前,人们可能认为高山、湖泊和沙漠都是地球上永恒不变的特征。可现在我们已经知道高山最终将被风化和剥蚀为平地,湖泊终将被沉积物和植被填满,沙漠会随着气候的变化而行踪不定。地球上的物质永无止境地运动着。暴露在地壳表面的大部分岩石都处在与其形成时不同的物理化学条件下,而且地表富含氧气、二氧化碳和水,因而岩石极易发生变化和破坏。表现为整块的岩石变为碎块,或其成分发生变化,最终使坚硬的岩石变成松散的碎屑和土壤。矿物和岩石在地表条件下发生的机械碎裂和化学分解过程称为风化。由于风、水流及冰川等动力将风化作用的产物搬离原地的作用过程叫做剥蚀 地表岩石在原地发生机械破碎而不改变其化学成分也不新矿物的作用称物理风化作用。如矿物岩石的热胀冷缩、冰劈作用、层裂和盐分结晶等作用均可使岩石由大块变成小块以至完全碎裂。化学风化作用是指地表岩石受到水、氧气和二氧化碳的作用而发生化学成分和矿物成分变化,并产生新矿物的作用。主要通过溶解作用水化作用水解作用碳酸化作用和氧化作用等式进行。 虽然所有的岩石都会风化,但并不是都按同一条路径或同一个速率发生变化。经过长年累月对不同条件下风化岩石的观察,我们知道岩石特征、气候和地形条件是控制岩石风化的主要因素。不同的岩石具有不同的矿物组成和结构构造,不同矿物的溶解性差异很大。节理、层理和孔隙的分布状况和矿物的粒度,又决定了岩石的易碎性和表面积。风化速率的差异,可以从不同岩石类型的石碑上表现出来。如花岗岩石碑,其成分主要是硅酸盐矿物。这种石碑就能很好地抵御化学风化。而大理岩石碑则明显地容易遭受风化。 气候因素主要是通过气温、降雨量以及生物的繁殖状况而表现的。在温暖和潮湿的环境下,气温高,降雨量大,植物茂密,微生物活跃,化学风化作用速度快而充分,岩石的分解向纵深发展可形成巨厚的风化层。在极地和沙漠地区,由于气候干冷,化学风化的作用不大,岩石易破碎为棱角状的碎屑。最典型的例子,是将矗立于干燥的埃及已35个世纪并保存完好的克列奥帕特拉花岗岩尖柱塔,搬移到空气污染严重的纽约城中心公园之后,仅过了75年就已面目全非。 地势的高度影响到气候:中低纬度的高山区山麓与山顶的温度、气候差别很大,其生物界面貌显着不同。因而风化作用也存在显着的差别。地势的起伏程度对于风化作用也具普遍意义:地势起伏大的山区,风化产物易被外力剥蚀而使基岩裸露,加速风化。山坡的方向涉及到气候和日照强度,如山体的向阳坡日照强,雨水多,而山体的背阳坡可能常年冰雪不化,显然岩石的风化特点差别较大。 剥蚀与风化作用在大自然中相辅相成,只有当岩石被风化后,才易被剥蚀。而当岩石被剥蚀后,才能露出新鲜的岩石,使之继续风化。风化产物的搬运是剥蚀作用的主要体现。当岩屑随着搬运介质,如风或水等流动时,会对地表、河床及湖岸带产生侵蚀。这样也就产生更多的碎屑,为沉积作用提供了物质条件。 ......
‘捌’ 风化区是什么
岩石风化rock weathering岩石在太阳辐射、大气、水和生物作用下出现破碎、疏松及矿物成分次生变化的现象。导致上述现象的作用称风化作用。\大约在200年前,人们可能认为高山、湖泊和沙漠都是地球上永恒不变的特征。可现在我们已经知道高山最终将被风化和剥蚀为平地,湖泊终将被沉积物和植被填满,沙漠会随着气候的变化而行踪不定。地球上的物质永无止境地运动着。暴露在地壳表面的大部分岩石都处在与其形成时不同的物理化学条件下,而且地表富含氧气、二氧化碳和水,因而岩石极易发生变化和破坏。表现为整块的岩石变为碎块,或其成分发生变化,最终使坚硬的岩石变成松散的碎屑和土壤。矿物和岩石在地表条件下发生的机械碎裂和化学分解过程称为风化。由于风、水流及冰川等动力将风化作用的产物搬离原地的作用过程叫做剥蚀 地表岩石在原地发生机械破碎而不改变其化学成分也不新矿物的作用称物理风化作用。如矿物岩石的热胀冷缩、冰劈作用、层裂和盐分结晶等作用均可使岩石由大块变成小块以至完全碎裂。化学风化作用是指地表岩石受到水、氧气和二氧化碳的作用而发生化学成分和矿物成分变化,并产生新矿物的作用。主要通过溶解作用水化作用水解作用碳酸化作用和氧化作用等式进行。 虽然所有的岩石都会风化,但并不是都按同一条路径或同一个速率发生变化。经过长年累月对不同条件下风化岩石的观察,我们知道岩石特征、气候和地形条件是控制岩石风化的主要因素。不同的岩石具有不同的矿物组成和结构构造,不同矿物的溶解性差异很大。节理、层理和孔隙的分布状况和矿物的粒度,又决定了岩石的易碎性和表面积。风化速率的差异,可以从不同岩石类型的石碑上表现出来。如花岗岩石碑,其成分主要是硅酸盐矿物。这种石碑就能很好地抵御化学风化。而大理岩石碑则明显地容易遭受风化。 气候因素主要是通过气温、降雨量以及生物的繁殖状况而表现的。在温暖和潮湿的环境下,气温高,降雨量大,植物茂密,微生物活跃,化学风化作用速度快而充分,岩石的分解向纵深发展可形成巨厚的风化层。在极地和沙漠地区,由于气候干冷,化学风化的作用不大,岩石易破碎为棱角状的碎屑。最典型的例子,是将矗立于干燥的埃及已35个世纪并保存完好的克列奥帕特拉花岗岩尖柱塔,搬移到空气污染严重的纽约城中心公园之后,仅过了75年就已面目全非。 地势的高度影响到气候:中低纬度的高山区山麓与山顶的温度、气候差别很大,其生物界面貌显着不同。因而风化作用也存在显着的差别。地势的起伏程度对于风化作用也具普遍意义:地势起伏大的山区,风化产物易被外力剥蚀而使基岩裸露,加速风化。山坡的方向涉及到气候和日照强度,如山体的向阳坡日照强,雨水多,而山体的背阳坡可能常年冰雪不化,显然岩石的风化特点差别较大。 剥蚀与风化作用在大自然中相辅相成,只有当岩石被风化后,才易被剥蚀。而当岩石被剥蚀后,才能露出新鲜的岩石,使之继续风化。风化产物的搬运是剥蚀作用的主要体现。当岩屑随着搬运介质,如风或水等流动时,会对地表、河床及湖岸带产生侵蚀。这样也就产生更多的碎屑,为沉积作用提供了物质条件。
‘玖’ 简述风化作用的类型及其对岩石的影响
风化作用的速度主要取决于自然地理条件和组成岩石的矿物性质。
一、气候条件
气候寒冷或干燥地区,生物稀少,寒冷地区降水以固态形式为主,干旱区降水很少。以物理风化作用为主,化学和生物风化为次。岩石破碎,但很少有化学风化形成的粘土矿物,以生物风化为主形成的土壤也很薄。
气候潮湿炎热地区,降水量大,生物繁茂,生物的新陈代谢和尸体分解过程产生的大量有机酸,具有较强的腐蚀能力,故化学风化和生物风化都十分强烈,形成大量粘土,在有利的条件下可形成残积矿床。可形成较厚的土壤层。
二、地形条件
地形影响气候,间接影响风化作用;另一方面,陡坡上,地下水位低,生物较少,以物理风化为主. 地势平坦,受生物影响较大,化学风化作用为主。
三、岩石性质
1. 成分
(1)岩浆岩比变质岩和沉积岩易于风化。岩浆形成于高温高压,矿物质种类多(内部矿物抗风化能力差异大).
(2) 岩浆岩中基性岩比酸性岩易于风化,基性岩中暗色矿物较多,颜色深,易于吸热、散热.
(3) 沉积岩易溶岩石(如石膏、碳酸盐类等岩石)比其它沉积岩易于风化.
差异风化:在相同的条件下,不同矿物组成的岩块由于风化速度不等,岩石表面凹凸不平; 或由不同岩性组成的岩层,抗风化能力弱的岩层形成相互平行的沟槽,砂岩、页岩互层,页岩呈沟槽。通过差异风化,我们可以确定岩层产状。
2. 岩石的结构构造
(1) 岩石结构较疏松的易于风化; (2) 不等粒易于风化,粒度粗者较细者易于风化; (3) 构造破碎带易于风化,往往形成洼地或沟谷。
球形风化: 在节理发育的厚层砂岩或块状岩浆岩中,岩石常被风化成球形或椭圆形,这种现象叫做球形风化,它是物理风化为和化学风化联合作用的结果。
球形风化的主要条件有:(1)岩石具厚层或块状构造;(2) 发育几组交叉裂隙;(3)岩石难于溶解;(4)岩石主要为等粒结构。 被三组以上裂隙切割出来的岩块,外部棱角明显,在风化作用过程中,棱角首先被风化,最后成球状。
影响岩石硬度的因素也可分为自然因素和工艺因素两大类:
(1)岩石中石英及其他坚硬矿物或碎屑含量愈多,胶结物的硬度越大,岩石的颗粒越细,结构越致密,则岩石的硬度越大。而孔隙度高,密度低,裂隙发育的岩石硬度将会降低。
(2)岩石的硬度具有明显的各向异性。但层理对岩石硬度的影响正好与对岩石强度的影响相反。垂直于层理方向的硬度值最小,平行于层理的硬度最大,两者之间可相差1.05~1.8倍。岩石硬度的各向异性可以很好地解释钻孔弯曲的原因和规律,并可利用这一现象来实施定向钻进。
(3)在各向均匀压缩的条件下,岩石的硬度增加。在常压下硬度越低的岩石,随着围压增大,其硬度值增长越快。
(4)一般而言,随着加载速度增加,将导致岩石的塑性系数降低,硬度增加。但当冲击速度小于10m/s时,硬度变化不大。加载速度对低强度、高塑性及多孔隙岩石硬度的影响更显着。
在测量岩石硬度的过程中,应注意区分造岩矿物颗粒的硬度和岩石的组合硬度。前者主要影响钻掘工具的寿命,而后者则对钻进中的机械钻速起重大影响。
三、影响风化作用的因素
影响风化作用的因素主要有气候、植被、地形和岩石特征等方面。
(一)气候和植被
气候因素包括温度、降雨量和湿度,它们是控制风化作用的重要因素。
温度一方面通过控制化学反应速度来控制化学风化作用的进行,另一方面又直接影响物理风化作用,如温差风化、冰劈作用。降雨量和湿度则是通过介质的温度变化、水溶液成分的变化、植被的生长来影响物理、化学和生物的风化作用。
在地表的不同气候带,气候条件相差很大。在两极及高寒地区,气温低,植被稀少,地表水以固态的形式存在为主,所以在该地区以物理风化作用为主,尤以冰劈作用盛行为特征,而化学风化作用和生物风化作用很弱。在干旱的沙漠地带,植被稀少,气温日、月变化大,降雨量少,空气干燥,所以化学风化作用和生物风化作用非常之弱,而以物理风化作用为主,如温差风化、盐类的结晶和潮解作用是这些地区风化作用的主要形式。在低纬度的炎热潮湿气候区,雨量充沛,植被茂盛,温度高,空气潮湿,所以化学反应的速度较快,故化学风化作用和生物风化作用显着,风化作用的深度往往达数米。如果这些地区气候在较长时间内保持稳定,岩石的分解作用便能向纵深方向发展,形成巨厚的风化产物。这种气候条件也是形成风化矿产——铝土矿最有利的条件。
植被对风化作用的影响表现在两个方面:一方面直接影响生物的风化作用,埴被茂盛生物风化作用强烈,而植被稀少的地方生物风化作用就弱;另一方面又间接地影响物理风化作用和化学风化作用过程。岩石表面长满植物,减少了岩石与空气的直接接触,降低了岩石表面的温差变化,消弱了物理风化作用。但植被的茂盛却带来了更多的有机酸和腐殖质,使周围环境中水溶液更具有腐蚀能力,从而又加速了化学风化作用的进程。实际上植被对风化作用的影响与气候条件是分不开的,气候潮湿炎热,植被茂盛;而干旱、寒冷,植被稀少。
气候和植被对土壤的影响最为显着,不同的气候带都有其典型的土壤类型,当气候条件发生改变时,土壤类型也随之发生改变,因此有人把土壤称为“气候的函数”。如在寒冷潮湿的苔原气候带常形成冰沼土,在热带和温带的荒漠地区形成荒漠土,在温带落叶阔叶森地区形成棕壤和褐土。
(二)地形
地形条件包括三个方面:一是地势的高度,二是地势起伏,三是山坡的方向。
地势的高度影响气候的局部变化,中低纬度的高山区具有明显的气候垂直分带,山脚气候炎热,而山顶气候寒冷,植被特征也不一样,因而影响风化作用的类型和速度。在我国云南的大部分地区这种现象很明显。
地势的陡缓影响到地下水位、植被发育及风化产物的保存,因而也影响风化作用的进行。地势较陡的地区,地下水位低、植被较少,风化产物不易保存,使基岩不断裸露,从而加速了风化作用的进行。
阳坡、阴坡的风化作用类型和强度也不一样。阳坡日照时间长,湿度较高,植被较多,所以风化作用较强烈。如喜马拉雅山南坡面临印度洋,气候炎热、潮湿,化学和生物风化作用很强烈,而北坡干、冷,主要发育物理风化作用。
(三)岩石特征
岩石特征对风化作用的影响包括岩石的成分、结构、构造和裂隙。
岩石成分 不同的矿物具有不同的抗风化能力,那么由不同矿物组成的岩石其抗风化能力也就不同。如由橄榄石、辉石、长石等组成的岩浆岩容易风化,而由石英砂颗组成的沉积岩抗风化能力就很强。因此,抗风化能力较弱的矿物组成的岩石被风化后而形成凹坑,而抗风化能力强的组分相对凸出,在岩石表面就出现凹凸不平的现象,这称差异风化作用。
岩石的结构、构造 组成岩石的矿物粒径、分布特征、胶结程度及层理对风化作用的速度和强度都有明显的影响。在其它条件相同的情况下,由细粒、等粒矿物组成及胶结好的岩石抗风化能力较强,风化速度较慢。
裂隙 岩石的裂隙发育使岩石与水溶液、空气的接触面积增大,增强水溶液的流通性,从而促进风化作用的进行。如果一些岩石的矿物分布均匀,如砂岩、花岗岩、玄武岩等,并发育有三组近于互相垂直的裂隙,把岩石切成许多大小不等的立方形岩块,在岩块的棱和角处自由表面积大,易受温度、水溶液、气体等因素的作用而风化破坏掉,经一段时间风化后,岩块的棱、角消失,在岩石的表面形成大大小小的球体或椭球体,这种现象称球形风化作用。
研究风化作用具有很重要的意义。在风化作用过程中,一些难溶的元素或物质在原地及其附近堆积起来可富集成有用的矿产,如铁矿、铝土矿、镍矿等。据目前的资料统计,与风化作用有关的铝土矿占世界总储量的85%;风化作用还可形成一些找矿志如“铁帽”等。研究古风化壳对了解一个区域的地壳发展历史很重要,因古风化壳代表了较长时间的陆上环境,反映了地壳的一次上升运动。土壤是气候的函数,研究古土壤(主要是第三纪及第四纪的古土壤,更老的古土壤难于辨认)有助于恢复古气候、古地理环境。由于风化的岩石强度减弱、透水性增加,对工程建筑极为不利,所以在修建大型工程时要了解风化壳的分布和厚度以及被风化岩石的强度等,以便采取相应的措施以保证工程的质量。此外,风化壳及风化作用研究对于农林业种植及国土利用也具有现实意义。
‘拾’ 以下地区中化学风化和生物风化比较强的是哪一项
化学了,化学反应是很快的