导航:首页 > 化学知识 > 药物化学纳米药物载体前景怎么样

药物化学纳米药物载体前景怎么样

发布时间:2022-09-13 02:47:12

‘壹’ 纳米技术简介,用途与发展前景

纳米技术是一门高新技术,它对21世纪材料科学和微行器件技术的发展具有重要影响。为了解纳米技术的发展状况,记者走访了英国牛津大学材料系纳米材料专家保尔·华伦博士。

华伦说,纳米技术是当前全球都在谈论的热门话题。所谓纳米技术,是指用数千个分子或原子制造新型材料或微型器件的科学技术。纳米技术涉及的范围很广,纳米材料只是其中的一部分,但它却是纳米技术发展的基础。牛津大学材料系目前研究的纳米技术项目有40多个,其中主要的有超细薄膜、碳纳米管、纳米陶瓷、金属纳米晶体和量子点线等。

超细薄膜的厚度通常只有1纳米-5纳米,甚至会做成1个分子或1个原子的厚度。超细薄膜可以是有机物也可以是无机物,具有广泛的用途。如沉淀在半导体上的纳米单层,可用来制造太阳能电池,对开发新型清洁能源有重要意义;将几层薄膜沉淀在不同材料上,可形成具有特殊磁特性的多层薄膜,是制造高密度磁盘的基本材料。碳纳米管是由碳60分子经加工形成的一种直径只有几纳米的微型管,是纳米材料研究的重点之一。与其它材料相比,碳纳米管具有特殊的机械、电子和化学性能,可制成具有导体、半导体或绝缘体特性的高强度纤维,在传感器、锂离子电池、场发射显示、增强复合材料等领域有广泛应用前景,因而受到工业界的普遍重视。目前,碳纳米管虽仍处于研究阶段,但许多研究成果已显示出良好的应用前景。陶瓷材料在通常情况下具有坚硬、易碎的特点,但由纳米超微颗粒压制成的纳米陶瓷材料却具有良好的韧性,有的可大幅度弯曲而不断裂,表现出金属般的柔韧性和可加工性。

纳米技术在现代科技和工业领域有着广泛的应用前景。比如,在信息技术领域,据估计,再有10年左右的时间,现在普遍使用的数据处理和存储技术将达到最终极限。为获得更强大的信息处理能力,人们正在开发DNA计算机和量子计算机,而制造这两种计算机都需要有控制单个分子和原子的技术能力。

传感器是纳米技术应用的一个重要领域。随着纳米技术的进步,造价更低、功能更强的微型传感器将广泛应用在社会生活的各个方面。比如,将微型传感器装在包装箱内,可通过全球定位系统,可对贵重物品的运输过程实施跟踪监督;将微型传感器装在汽车轮胎中,可制造出智能轮胎,这种轮胎会告诉司机轮胎何时需要更换或充气;还有些可承受恶劣环境的微型传感器可放在发动机汽缸内,对发动机的工作性能进行监视。在食品工业领域,这种微型传感器可用来监测食物是否变质,比如把它安装在酒瓶盖上就可判断酒的状况等。

在医药技术领域,纳米技术也有着广泛的应用前景。如用纳米技术制造的微型机器人,可让它安全地进入人体内对健康状况进行检测,必要时还可用它直接进行治疗;用纳米技术制造的"芯片实验室"可对血液和病毒进行检测,几分钟即可获得检测结果;科学家还可以用纳米材料开发出一种新型药物输送系统,这种输送系统是由一种内含药物的纳米球组成的,这种纳米球外面有一种保护性涂层,可在血液中循环而不会受到人体免疫系统的攻击,如果使其具备识别癌细胞的能力,它就可直接将药物送到癌变部位,而不会对健康组织造成损害。

除此之外,纳米技术在工业制造、国防建设、环境监测、光学器件和平面显示系统等领域也有广泛的用途,对21世纪的科技发展具有重要作用。

为了对纳米技术有一个较全面的印象,华伦博士带记者参观了纳米材料实验室。由于纳米材料的结构很小,在自然光下肉眼无法看到,所以需要借助显微镜来观察和操作。走进实验室,首先看到的是一台被称作"纳米刀"的仪器。参观时,研究人员正在用它在一个电子器件材料表面上切削亚微米方型小孔,以便对该器件的材料构成进行分析。在另一个室验室摆放着多台透射电子显微镜,一位研究人员正在用它研究磁性薄膜的内部结构。接下来参观的是一台原子探针场离子显微镜,利用这台仪器,可通过移动一个个原子并形成三维图像,对材料结构进行分析。在另一个实验室,研究人员正在用一台扫描探针显微镜在一个平面上观察和操作单个原子,并直接测量原子间的作用力。特别值得一提的是,牛津大学不仅科研基础雄厚,在仪器制造上也有很强的实力。这里的许多仪器,都是他们自己研制的,有些处于世界领先水平。

近年来,为实现纳米技术的产业化,牛津大学在加强基础研究的同时,还十分重视科研成果的转化工作。今年6月,他们新建了一个以材料科学为主的科学园。在科学园内,科研人员与企业界密切合作,一方面对大学的科研成果进行开发,另一方面根据企业和市场需要研发新的项目。目前,这里的研究涉及生物医学、包装、电信、发电、航空航天、汽车、计算机等许多领域,其中有些项目很有发展潜力。如材料系成立的一家公司,现在正从事纳粒子发光剂的商品化研究,这种纳粒子发光剂主要用于平面显示系统,他比传统发光剂性能先进,有很好的应用前景。

据研究到2010年,纳米技术将成为仅次于芯片制造的世界第二大产业,拥有数百亿英镑的市场份额。为此,今年7月,英国贸工部在新发表的科技与创新白皮书中,已将纳米技术列为21世纪科技发展的重点,加速该领域的发展。正如科学家预测:纳米技术这一新兴的高科技领域,将成为21世纪一颗新的科技明星.

‘贰’ 纳米材料的未来发展怎样

2003年12月16日,中科院副院长、物理化学家白春礼院士,在北大英杰交流中心作了题为“纳米科技:梦想与现实”的演讲。我国纳米技术研究领域的领军人物,向北大学子描述“纳米技术在未来5-10年将面临巨大发展,估计到2015年纳米技术和产品的市场总额每年约1.5万亿美元。”

毋庸置疑,在过去的一年里纳米科学,无论在基础研究还是在应用研究方面都取得了突破性进展。美国利用超高密度晶格和电路制作的新方法,获得直径8nm、线宽16nm、纵横比高达106、电路的纳米线结密度高达1011/cm2的铂纳米线;法国利用粉末冶金制成具有完美弹塑性的纯纳米晶体铜;中国用微波等离子体辅助化学沉积法在铁针尖端合成一种新纳米结构——管状石墨锥;日本用单层碳纳米管与有机熔盐制成高度导电的聚合物纳米管复合材料等等,铸就了纳米科技的光环。研究表明,被称为纳米管的圆柱形碳分子是已知的最强韧的材料,目前科学家们已经纺出了几乎由百分之百的纳米管组成的线,韧度比任何天然或其他人造纤维都高。随着科学技术的不断发展,这种线有望织成防弹衣,或者绕成比钢强许多倍的电缆。研究人员还发现纳米管既可以作为像铜那样的导体,也可以作为像硅那样的半导体。多年来,纳米材料的制作或生产面临的一大难题,就是各种纳米结构混杂在一起无法分开,这大大地限制了纳米材料的有效利用。

‘叁’ 药物化学专业就业前景如何

工作前景非常好,就业的形式还是比较乐观的

‘肆’ 纳米医学就业前景

纳米医学就业前景:毕业之后适合到医药等部门当中从事生物产品的技术开发、工程设计、生产管理及产品性能检测分析等工作,或是教学部门的研究与教学工作;还可以去国家医疗器械司或各级医疗器械检测所;也可以到各级医院的医学工程处、设备处、信息中心以及医学影像科工作。

纳米医学致力于在不久的将来提供一套有价值的研究工具和临床有用的设备。所述的国家纳米技术计划预计,在新的商业应用制药工业,其可以包括先进的药物递送系统、新的疗法和体内成像。



纳米医学的主要分支:

1、生物医药学:利用纳米颗粒技术设计制备具有多种响应功能或者靶向的药物(基因)递送载体,发展药物新剂型及新药物。

2、再生医学:发展引导组织再生和促进组织/材料界面融合的纳米结构材料,用于组织修复与替代的永久性植入物表面涂层、引导组织再生支架、结构性永久植入物、植入性治疗与监测用传感器等。

3、外科手术辅助:基于纳米光学和纳米电子学技术发展智能仪器设备、手术机器人等。

4、诊断工具:基于纳米流体和纳米加工技术,发展基因检验、超灵敏标记与检测技术、高通量和多重分析技术等。

5、医学影像:基于纳米颗粒技术的新型造影剂、靶向标记技术。

‘伍’ 高分子纳米微粒的应用领域有什么

高分子纳米生物材料从亚微观结构上来看,有高分子纳米微粒、纳米微囊、纳米胶束、纳米纤维、纳米孔结构生物材料等等。下面主要就高分子纳米微粒及其应用做一简单介绍。

高分子纳米微粒或称高分子纳米微球,粒径尺度在1~1000nm范围,可通过微乳液聚合等多种方法得到。这种微粒具有很大的比表面积,出现了一些普通材料所不具有的新性质和新功能。

目前,纳米高分子材料的应用已涉及免疫分析、药物控制释放载体及介人性诊疗等许多方面。免疫分析现在已作为一种常规的分析方法在对蛋白质、抗原、抗体乃至整个细胞的定量分析发挥着巨大的作用。免疫分析根据其标识物的不同可以分为荧光免疫分析、放射性免疫分析和酶联分析等。在特定的载体上以共价键结合的方式固定对应于分析对象的免疫亲和分子标识物,并将含有分析对象的溶液与载体温育,然后通过显微技术检测自由载体量,就可以精确地对分析对象进行定量分析。在免疫分析中,载体材料的选择十分关键。高分子纳米微粒,尤其是某些具有亲水性表面的粒子,对非特异性蛋白的吸附量很小,因此已被广泛地作为新型的标记物载体来使用。

在药物控制释放方面,高分子纳米微粒具有重要的应用价值。许多研究结果已经证实,某些药物只有在特定部位才能发挥其药效,同时它又易被消化液中的某些生物大分子所分解。因此,口服这类药物的药效并不理想。于是人们用某些生物可降解的高分子材料对药物进行保护并控制药物的释放速度,这些高分子材料通常以微球或微囊的形式存在。药物经载过运送后,药效损伤很小,而且药物还可以有效控制释放,延长了药物的作用时间。作为药物载体的高分子材料主要有聚乳酸、乳酸-乙醇酸共聚物、聚丙烯酸酯类等。纳米高分子材料制成的药物载体与各类药物,无沦是亲水性的、疏水性的药或者是生物大分子制剂,均能够负载或包覆多种药物,同时可以有效地控制药物的释放速度。

例如中南大学开展了让药物瞄准病变部位的“纳米导弹”的磁纳米微粒治疗肝癌研究,研究内容包括磁性阿霉素白蛋白纳米粒在正常肝的磁靶向性、在大鼠体内的分布及对大鼠移植性肝癌的治疗效果等。结果表明,磁性阿霉素白蛋白纳米粒具有高效磁靶向性,在大鼠移植肝肿瘤中的聚集明显增加,而且对移植性肿瘤有很好的疗效。

靶向技术的研究主要在物理化学导向和生物导向两个层次上进行。物理化学导向在实际应用中缺乏准确性,很难确保正常细胞不受到药物的攻击。生物导向可在更高层次:上解决靶向给药的问题。物理化学导向系利用药物载体的pH敏感、热敏感、磁敏感等特点在外部环境的作用下(如外加磁场)对肿瘤组织实行靶向给药。磁性纳米载体在生物体的靶向性是利用外加磁场,使磁性纳米粒在病变部位富集,减小正常组织的药物暴露,降低毒副作用,提高药物的疗效。磁性靶向纳米药物载体主要用于恶性肿瘤、心血管病、脑血栓、冠心病、肺气肿等疾病的治疗。生物导向系利用抗体、细胞膜表面受体或特定基因片段的专一性作用,将配位子结合在载体上,与目标细胞表面的抗原性识别器发生特异性结合,使药物能够准确送到肿瘤细胞中。药物(特别是抗癌药物)的靶向释放面临网状内皮系统(RES)对其非选择性清除的问题。再者,多数药物为疏水性,它们与纳米颗粒载体偶联时,可能产生沉淀,利用高分子聚合物凝胶成为药物载体可望解决此类问题。因凝胶可高度水合,如合成时对其尺寸达到纳米级,可用于增强对癌细胞的通透和保留效应。目前,虽然许多蛋白质类、酶类抗体能够在实验室中合成,但是更好的、特异性更强的靶向物质还有待于研究与开发。而且药物载体与靶向物质的结合方式也有待于研究。

该类技术安全、有效进入临床应用前仍需要诸如更可靠的纳米载体、更准确的靶向物质、更有效的治疗药物、更灵敏,操作性更方便的传感器以及体内载体作用机制的动态测试与分拆方法等重大问题尚待研究解决。

DNA纳米技术(DNAnanoteehnology)是指以DNA的理化特性为原理设计的纳米技术,主要应用于分子的组装。DNA复制过程中所体现的碱基的单纯性、互补法则的恒定性和专一性、遗传信息的多样性以及构象上的特殊性和拓扑靶向性,都是纳米技术所需要的设计原理。现在利用生物大分子已经可以实现纳米颗粒的自组装。将一段单链的DNA片断连接在13nm直径的纳米金颗粒A表面,再把序列互补的另一种单链DNA片断连接在纳米金颗粒B表面。将A和B混合,在DNA杂交条件下,A和B将自动连接在一起。利用DNA双链的互补特性,可以实现纳米颗粒的自组装。利用生物大分子进行自组装,有一个显着的优点:可以提供高度特异性结合。这在构造复杂体系的自组装方面是必须的。

美国波士顿大学生物医学工程所Bukanov等研制的PD环(PD-loop)(在双链线性DNA中复合嵌入一段寡义核苷酸序列)比PCR扩增技术具有更大的优越性;其引物无需保存于原封不动的生物活性状态,其产物具有高度序列特异性,不像PCR产物那样可能发生错配现象。PD环的诞生为线性DNA寡义核苷酸杂交技术开辟了一条崭新的道路,使从复杂DNA混合物中选择分离出特殊DNA片段成为可能,并可能应用于DNA纳米技术中。

基因治疗是治疗学的巨大进步。质粒DNA插入目的细胞后,可修复遗传错误或可产生治疗因子(如多肽、蛋白质、抗原等)。利用纳米技术,可使DNA通过主动靶向作用定位于细胞;将质粒DNA浓缩至50~200nm大小且带上负电荷,有助于其对细胞核的有效入侵;而最后质粒DNA能否插入细胞核DNA的准确位点则取决于纳米粒子的大小和结构:此时的纳米粒子是由DNA本身所组成,但有关它的物理化学特性尚有待进一步研究。

脂质体(1iposome)是一种定时定向药物载体,属于靶向给药系统的一种新剂型。20世纪60年代,英国A.D.Banfiham首先发现磷脂分散在水中构成由脂质双分子层组成的内部为水相的封闭囊泡,由双分子磷脂类化合物悬浮在水中形成的具有类似生物膜结构和通透性的双分子囊泡称为脂质体。20世纪70年代初,Y.E.Padlman等在生物膜研究的基础上,首次将脂质体作为细菌和某些药物的载体。纳米脂质体作为药物载体有如下优点。

(1)由磷脂双分子层包封水相囊泡构成,与各种固态微球药物载体相区别,脂质体弹性大,生物相容性好。

(2)对所载药物有广泛的适应性,水溶性药物载入内水相、脂溶性药物溶于脂膜内,两亲性药物可插于脂膜上,而且同一个脂质体中可以同时包载亲水和疏水性药物。

(3)磷脂本身是细胞膜成分,因此纳米脂质体注入体内无毒,生物利用度高,不引起免疫反应。

(4)保护所载药物,防止体液对药物的稀释,及被体内酶的分解破坏。

纳米粒子将使药物在人体内的传输更为方便,对脂质体表面进行修饰,比如将对特定细胞具有选择性或亲和性的各种配体组装于脂质体表面,以达到寻靶目的。以肝脏为例,纳米粒子-药物复合物可通过被动和主动两种方式达到靶向作用;当该复合物被Kupffer细胞捕捉吞噬,使药物在肝脏内聚集,然后再逐步降解释放人血液循环,使肝脏药物浓度增加,对其他脏器的副作用减少,此为被动靶向作用;当纳米粒子尺寸足够小约100~150nm且表面覆以特殊包被后,便可以逃过Kupffer细胞的吞噬,靠其连接的单克隆抗体等物质定位于肝实质细胞发挥作用,此为主动靶向作用。用数层纳米粒子包裹的智能药物进入人体后可主动搜索并攻击癌细胞或修补损伤组织。

纳米粒子作为输送多肽与蛋白质类药物的载体是令人鼓舞的,这不仅是因为纳米粒子可改进多肽类药物的药代动力学参数,而且在一定程度上可以有效地促进肽类药物穿透生物屏障。纳米粒子给药系统作为多肽与蛋白质类药物发展的工具有着十分广泛的应用前景。

由于纳米粒子的粒径很小,具有大量的自由表面,使得纳米粒子具有较高的胶体稳定性和优异的吸附性能,并能较快地达到吸附平衡,因此,高分子纳米微粒可以直接用于生物物质的吸附分离。将纳米颗粒压成薄片制成过滤器,由于过滤孔径为纳米量级,在医药工业中可用于血清的消毒(引起人体发病的病毒尺寸一般为几十纳米)。通过在纳米粒子表面引入羧基、羟基、磺酸基、胺基等基团,就可以利用静电作用或氢键作用使纳米粒子与蛋白质、核酸等生物大分子产生相互作用,导致共沉降而达到分离生物大分子的目的。当条件改变时,又可以使生物大分子从纳米粒子上解吸附,使生物大分子得到回收。

纳米高分子粒子还可以用于某些疑难病的介入性诊断和治疗。由于纳米粒子比红血球(6~9μm)小得多,可以在血液中自由运动,因此可以注入各种对机体无害的纳米粒子到人体的各部位,检查病变和进行治疗。据报道,动物实验结果表明,将载有地塞米松的乳酸-乙醇酸共聚物的纳米粒子,通过动脉给药的方法送人血管内,可以有效治疗动脉再狭窄,而载有抗增生药物的乳酸-乙醇酸共聚物纳米粒子经冠状动脉给药,可以有效防止冠状动脉再狭窄;除此之外,载有抗生素或抗癌制剂的纳米高分子可以用动脉输送给药的方法进入体内,用于某些特定器官的临床治疗。载有药物的纳米球还可以制成乳液进行肠外或肠内的注射;也可以制成疫苗进行皮下或肌肉注射。

‘陆’ 纳米材料的前景 谢谢

由于纳米粒子细化,晶界数量大幅度的增加,可使材料的强度、韧性和超塑性大为提高。其结构颗粒对光,机械应力和电的反应完全不同于微米或毫米级的结构颗粒,使得纳米材料在宏观上显示出许多奇妙的特性,例如:纳米相铜强度比普通铜高5倍;纳米相陶瓷是摔不碎的,这与大颗粒组成的普通陶瓷完全不一样。纳米材料从根本上改变了材料的结构,可望得到诸如高强度金属和合金、塑性陶瓷、金属间化合物以及性能特异的原子规模复合材料等新一代材料,为克服材料科学研究领域中长期未能解决的问题开拓了新的途径。
纳米技术的应用及其前景
纳米技术在陶瓷领域方面的应用
陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用。但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使其应用受到了较大的限制。随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有象金属一样的柔韧性和可加工性。英国材料学家Cahn指出纳米陶瓷是解决陶瓷脆性的战略途径。
所谓纳米陶瓷,是指显微结构中的物相具有纳米级尺度的陶瓷材料,也就是说晶粒尺寸、晶界宽度、第二相分布、缺陷尺寸等都是在纳米量级的水平上。要制备纳米陶瓷,这就需要解决:粉体尺寸形貌和粒径分布的控制,团聚体的控制和分散。块体形态、缺陷、粗糙度以及成分的控制。
Gleiter指出,如果多晶陶瓷是由大小为几个纳米的晶粒组成,则能够在低温下变为延性的,能够发生100%的范性形变。并且发现,纳米TiO2陶瓷材料在室温下具有优良的韧性,在180℃经受弯曲而不产生裂纹。许多专家认为,如能解决单相纳米陶瓷的烧结过程中抑制晶粒长大的技术问题,从而控制陶瓷晶粒尺寸在50nm以下的纳米陶瓷,则它将具有的高硬度、高韧性、低温超塑性、易加工等传统陶瓷无与伦比的优点。上海硅酸盐研究所在纳米陶瓷的制备方面起步较早,他们研究发现,纳米3Y-TZP陶瓷(100nm左右)在经室温循环拉伸试验后,在纳米3Y-TZP样品的断口区域发生了局部超塑性形变,形变量高达380%,并从断口侧面观察到了大量通常出现在金属断口的滑移线。 Tatsuki等人对制得的Al2O3-SiC纳米复相陶瓷进行拉伸蠕变实验,结果发现伴随晶界的滑移,Al2O3晶界处的纳米SiC粒子发生旋转并嵌入Al2O3晶粒之中,从而增强了晶界滑动的阻力,也即提高了Al2O3-SiC纳米复相陶瓷的蠕变能力。
虽然纳米陶瓷还有许多关键技术需要解决,但其优良的室温和高温力学性能、抗弯强度、断裂韧性,使其在切削刀具、轴承、汽车发动机部件等诸多方面都有广泛的应用,并在许多超高温、强腐蚀等苛刻的环境下起着其他材料不可替代的作用,具有广阔的应用前景。

纳米技术在微电子学上的应用
纳米电子学是纳米技术的重要组成部分,其主要思想是基于纳米粒子的量子效应来设计并制备纳米量子器件,它包括纳米有序(无序)阵列体系、纳米微粒与微孔固体组装体系、纳米超结构组装体系。纳米电子学的最终目标是将集成电路进一步减小,研制出由单原子或单分子构成的在室温能使用的各种器件。
目前,利用纳米电子学已经研制成功各种纳米器件。单电子晶体管,红、绿、蓝三基色可调谐的纳米发光二极管以及利用纳米丝、巨磁阻效应制成的超微磁场探测器已经问世。并且,具有奇特性能的碳纳米管的研制成功,为纳米电子学的发展起到了关键的作用。
碳纳米管是由石墨碳原子层卷曲而成,径向尺层控制在100nm以下。电子在碳纳米管的运动在径向上受到限制,表现出典型的量子限制效应,而在轴向上则不受任何限制。以碳纳米管为模子来制备一维半导体量子材料,并不是凭空设想,清华大学的范守善教授利用碳纳米管,将气相反应限制在纳米管内进行,从而生长出半导体纳米线。他们将Si-SiO2混合粉体置于石英管中的坩埚底部,加热并通入N2。SiO2气体与N2在碳纳米管中反应生长出Si3N4纳米线,其径向尺寸为4~40nm。另外,在1997年,他们还制备出了GaN纳米线。1998年该科研组与美国斯坦福大学合作,在国际上首次实现硅衬底上碳纳米管阵列的自组织生长,它将大大推进碳纳米管在场发射平面显示方面的应用。其独特的电学性能使碳纳米管可用于大规模集成电路,超导线材等领域。
早在1989年,IBM公司的科学家就已经利用隧道扫描显微镜上的探针,成功地移动了氙原子,并利用它拼成了IBM三个字母。日本的Hitachi公司成功研制出单个电子晶体管,它通过控制单个电子运动状态完成特定功能,即一个电子就是一个具有多功能的器件。另外,日本的NEC研究所已经拥有制作100nm以下的精细量子线结构技术,并在GaAs衬底上,成功制作了具有开关功能的量子点阵列。目前,美国已研制成功尺寸只有4nm具有开关特性的纳米器件,由激光驱动,并且开、关速度很快。
美国威斯康星大学已制造出可容纳单个电子的量子点。在一个针尖上可容纳这样的量子点几十亿个。利用量子点可制成体积小、耗能少的单电子器件,在微电子和光电子领域将获得广泛应用。此外,若能将几十亿个量子点连结起来,每个量子点的功能相当于大脑中的神经细胞,再结合MEMS(微电子机械系统)方法,它将为研制智能型微型电脑带来希望。
纳米电子学立足于最新的物理理论和最先进的工艺手段,按照全新的理念来构造电子系统,并开发物质潜在的储存和处理信息的能力,实现信息采集和处理能力的革命性突破,纳米电子学将成为对世纪信息时代的核心。

纳米技术在生物工程上的应用
众所周知,分子是保持物质化学性质不变的最小单位。生物分子是很好的信息处理材料,每一个生物大分子本身就是一个微型处理器,分子在运动过程中以可预测方式进行状态变化,其原理类似于计算机的逻辑开关,利用该特性并结合纳米技术,可以此来设计量子计算机。美国南加州大学的Adelman博士等应用基于DNA分子计算技术的生物实验方法,有效地解决了目前计算机无法解决的问题—“哈密顿路径问题”,使人们对生物材料的信息处理功能和生物分子的计算技术有了进一步的认识。
虽然分子计算机目前只是处于理想阶段,但科学家已经考虑应用几种生物分子制造计算机的组件,其中细菌视紫红质最具前景。该生物材料具有特异的热、光、化学物理特性和很好的稳定性,并且,其奇特的光学循环特性可用于储存信息,从而起到代替当今计算机信息处理和信息存储的作用。在整个光循环过程中,细菌视紫红质经历几种不同的中间体过程,伴随相应的物质结构变化。Birge等研究了细菌视紫红质分子潜在的并行处理机制和用作三维存储器的潜能。通过调谐激光束,将信息并行地写入细菌视紫红质立方体,并从立方体中读取信息,并且细菌视紫红质的三维存储器可提供比二维光学存储器大得多的存储空间。
到目前为止,还没有出现商品化的分子计算机组件。科学家们认为:要想提高集成度,制造微型计算机,关键在于寻找具有开关功能的微型器件。美国锡拉丘兹大学已经利用细菌视紫红质蛋白质制作出了光导“与”门,利用发光门制成蛋白质存储器。此外,他们还利用细菌视紫红质蛋白质研制模拟人脑联想能力的中心网络和联想式存储装置。
纳米计算机的问世,将会使当今的信息时代发生质的飞跃。它将突破传统极限,使单位体积物质的储存和信息处理的能力提高上百万倍,从而实现电子学上的又一次革命。

纳米技术在光电领域的应用
纳米技术的发展,使微电子和光电子的结合更加紧密,在光电信息传输、存贮、处理、运算和显示等方面,使光电器件的性能大大提高。将纳米技术用于现有雷达信息处理上,可使其能力提高10倍至几百倍,甚至可以将超高分辨率纳米孔径雷达放到卫星上进行高精度的对地侦察。但是要获取高分辨率图像,就必需先进的数字信息处理技术。科学家们发现,将光调制器和光探测器结合在一起的量子阱自电光效应器件,将为实现光学高速数学运算提供可能。
美国桑迪亚国家实验室的Paul等发现:纳米激光器的微小尺寸可以使光子被限制在少数几个状态上,而低音廊效应则使光子受到约束,直到所产生的光波累积起足够多的能量后透过此结构。其结果是激光器达到极高的工作效率,而能量阈则很低。纳米激光器实际上是一根弯曲成极薄面包圈的形状的光子导线,实验发现,纳米激光器的大小和形状能够有效控制它发射出的光子的量子行为,从而影响激光器的工作。研究还发现,纳米激光器工作时只需约100微安的电流。最近科学家们把光子导线缩小到只有五分之一立方微米体积内。在这一尺度上,此结构的光子状态数少于10个,接近了无能量运行所要求的条件,但是光子的数目还没有减少到这样的极限上。最近,麻省理工学院的研究人员把被激发的钡原子一个一个地送入激光器中,每个原子发射一个有用的光子,其效率之高,令人惊讶。
除了能提高效率以外,无能量阈纳米激光器的运行还可以得出速度极快的激光器。由于只需要极少的能量就可以发射激光,这类装置可以实现瞬时开关。已经有一些激光器能够以快于每秒钟200亿次的速度开关,适合用于光纤通信。由于纳米技术的迅速发展,这种无能量阈纳米激光器的实现将指日可待。

纳米技术在化工领域的应用
纳米粒子作为光催化剂,有着许多优点。首先是粒径小,比表面积大,光催化效率高。另外,纳米粒子生成的电子、空穴在到达表面之前,大部分不会重新结合。因此,电子、空穴能够到达表面的数量多,则化学反应活性高。其次,纳米粒子分散在介质中往往具有透明性,容易运用光学手段和方法来观察界面间的电荷转移、质子转移、半导体能级结构与表面态密度的影响。目前,工业上利用纳米二氧化钛-三氧化二铁作光催化剂,用于废水处理(含SO32-或 Cr2O72-体系),已经取得了很好的效果。
用沉淀溶出法制备出的粒径约30~60nm的白色球状钛酸锌粉体,比表面积大,化学活性高,用它作吸附脱硫剂,较固相烧结法制备的钛酸锌粉体效果明显提高。
纳米静电屏蔽材料,是纳米技术的另一重要应用。以往的静电屏蔽材料一般都是由树脂掺加碳黑喷涂而成,但性能并不是特别理想。为了改善静电屏蔽材料的性能,日本松下公司研制出具有良好静电屏蔽的纳米涂料。利用具有半导体特性的纳米氧化物粒子如Fe2O3、TiO2、ZnO等做成涂料,由于具有较高的导电特性,因而能起到静电屏蔽作用。另外,氧化物纳米微粒的颜色各种各样,因而可以通过复合控制静电屏蔽涂料的颜色,这种纳米静电屏蔽涂料不但有很好的静电屏蔽特性,而且也克服了碳黑静电屏蔽涂料只有单一颜色的单调性。
另外,如将纳米TiO2粉体按一定比例加入到化妆品中,则可以有效地遮蔽紫外线。一般认为,其体系中只需含纳米二氧化钛0.5~1%,即可充分屏蔽紫外线。目前,日本等国已有部分纳米二氧化钛的化妆品问世。紫外线不仅能使肉类食品自动氧化而变色,而且还会破坏食品中的维生素和芳香化合物,从而降低食品的营养价值。如用添加0.1~0.5%的纳米二氧化钛制成的透明塑料包装材料包装食品,既可以防止紫外线对食品的破坏作用,还可以使食品保持新鲜。将金属纳米粒子掺杂到化纤制或纸张中,可以大大降低静电作用。利用纳米微粒构成的海绵体状的轻烧结体,可用于气体同位素、混合稀有气体及有机化合物等的分离和浓缩,用于电池电极、化学成分探测器及作为高效率的热交换隔板材料等。纳米微粒还可用作导电涂料,用作印刷油墨,制作固体润滑剂等。
用化学共沉淀法得到ZnCO3包覆Ti(OH)4粒子,在一定温度下预焙解后,溶去绝大部分包覆的ZnO粉体,利用体系中少量的ZnTiO3(ZnTiO3与TiO2(R)的晶体结构类似)促进了TiO2从锐钛型向金红石型的转化,制得粒径约20~60nm的金红石型二氧化钛粉体。用紫外分光光度计进行了光学性能测试,结果发现此粉体对240~400nm的紫外线有较强的吸收,吸收率高达92%以上,其吸收性能远远高于普通TiO2粉体。另外,由于纳米粉体的量子尺寸效应和体积效应,导致纳米粒子的光谱特性出现“兰移”或“红移”现象。在制备超细铝酸盐基长余辉发光材料时,用软化学法合成出的超细发光粉体的发射光谱的主峰位置,较固相机械混合烧结法制备的发光粉体兰移了12nm。余辉衰减曲线表明,该法合成出的发光粉体,其余辉衰减速度相对固相法合成出的发光粉体要快得多,这些都是由于粉体粒子大幅度减小所致。
研究人员还发现,可以利用纳米碳管其独特的孔状结构,大的比表面(每克纳米碳管的表面积高达几百平方米)、较高的机械强度做成纳米反应器,该反应器能够使化学反应局限于一个很小的范围内进行。在纳米反应器中,反应物在分子水平上有一定的取向和有序排列,但同时限制了反应物分子和反应中间体的运动。这种取向、排列和限制作用将影响和决定反应的方向和速度。科学家们利用纳米尺度的分子筛作反应器,在烯烃的光敏氧化作用中,将底物分子置于反应器的孔腔中,敏化剂在溶液中,这样就只生成单重态的氧化产物。用金属醇化合物和羧酸反应,可合成具有一定孔径的大环化合物。利用嵌段和接技共聚物会形成微相分离,可形成不同的“纳米结构”作为纳米反应器。

纳米技术在医学上的应用
随着纳米技术的发展,在医学上该技术也开始崭露头脚。研究人员发现,生物体内的RNA蛋白质复合体,其线度在15~20nm之间,并且生物体内的多种病毒,也是纳米粒子。10nm以下的粒子比血液中的红血球还要小,因而可以在血管中自由流动。如果将超微粒子注入到血液中,输送到人体的各个部位,作为监测和诊断疾病的手段。科研人员已经成功利用纳米SiO2微粒进行了细胞分离,用金的纳米粒子进行定位病变治疗,以减少副作用等。另外,利用纳米颗粒作为载体的病毒诱导物已经取得了突破性进展,现在已用于临床动物实验,估计不久的将来即可服务于人类。
研究纳米技术在生命医学上的应用,可以在纳米尺度上了解生物大分子的精细结构及其与功能的关系,获取生命信息。科学家们设想利用纳米技术制造出分子机器人,在血液中循环,对身体各部位进行检测、诊断,并实施特殊治疗,疏通脑血管中的血栓,清除心脏动脉脂肪沉积物,甚至可以用其吞噬病毒,杀死癌细胞。这样,在不久的将来,被视为当今疑难病症的爱滋病、高血压、癌症等都将迎刃而解,从而将使医学研究发生一次革命。

纳米技术在分子组装方面的应用
纳米技术的发展,大致经历了以下几个发展阶段:在实验室探索用各种手段制备各种纳米微粒,合成块体。研究评估表征的方法,并探索纳米材料不同于常规材料的特殊性能。利用纳米材料已挖掘出来的奇特的物理、化学和力学性能,设计纳米复合材料。目前主要是进行纳米组装体系、人工组装合成纳米结构材料的研究。虽然已经取得了许多重要成果,但纳米级微粒的尺寸大小及均匀程度的控制仍然是一大难关。如何合成具有特定尺寸,并且粒度均匀分布无团聚的纳米材料,一直是科研工作者努力解决的问题。目前,纳米技术深入到了对单原子的操纵,通过利用软化学与主客体模板化学,超分子化学相结合的技术,正在成为组装与剪裁,实现分子手术的主要手段。科学家们设想能够设计出一种在纳米量级上尺寸一定的模型,使纳米颗粒能在该模型内生成并稳定存在,则可以控制纳米粒子的尺寸大小并防止团聚的发生。
1992年,Kresge等首次采用介孔氧化硅材料为基,利用液晶模板技术,在纳米尺度上实现有机/无机离子的自组装反应。其特点是孔道大小均匀,孔径可以在5~10nm内连续可调,具有很高的比表面积和较好的热稳定性。使其在分子催化、吸附与分离等过程,展示了广阔的应用前景。同时,这类材料在较大范围内可连续调节其纳米孔道结构,可以作为纳米粒子的微型反应容器。
Wagner等利用四硫富瓦烯的独特的氧化还原能力,通过自组装方式合成了具有电荷传递功能的配合物分子梭,具有开关功能。Attard等利用液晶作为稳定的预组织模板,利用表面活性剂对水解缩聚反应过程和溶胶表面进行控制,合成了六角液晶状微孔SiO2材料。Schmid等利用特定的配位体,成功地制备出均匀分布的由55个Au原子组成的金纳米粒子。据理论预测,如果以这种金纳米粒子做成分子器件,其分子开关的密度将会比一般半导体提高105~106倍。
1996年,IBM公司利用分子组装技术,研制出了世界上最小的“纳米算盘”,该算盘的算珠由球状的C60分子构成。美国佐治亚理工学院的研究人员利用纳米碳管制成了一种崭新的“纳米秤”,能够称出一个石墨微粒的重量,并预言该秤可以用来称取病毒的重量。
李彦等以六方液晶为模板合成了CdS纳米线,该纳米线生长在表面活性剂分子形成的六方堆积的空隙水相内,呈平行排列,直径约1~5nm。利用有机表面活性剂作为几何构型模板剂,通过有机/无机离子间的静电作用,在分子水平上进行自组装合成,并形成规则的纳米异质复合结构,是实现对材料进行裁减的有效途径。

纳米技术在其它方面的应用
利用先进的纳米技术,在不久的将来,可制成含有纳米电脑的可人—机对话并具有自我复制能力的纳米装置,它能在几秒钟内完成数十亿个操作动作。在军事方面,利用昆虫作平台,把分子机器人植入昆虫的神经系统中控制昆虫飞向敌方收集情报,使目标丧失功能。
利用纳米技术还可制成各种分子传感器和探测器。利用纳米羟基磷酸钙为原料,可制作人的牙齿、关节等仿生纳米材料。将药物储存在碳纳米管中,并通过一定的机制来激发药剂的释放,则可控药剂有希望变为现实。另外,还可利用碳纳米管来制作储氢材料,用作燃料汽车的燃料“储备箱”。利用纳米颗粒膜的巨磁阻效应研制高灵敏度的磁传感器;利用具有强红外吸收能力的纳米复合体系来制备红外隐身材料,都是很具有应用前景的技术开发领域。

纳米技术在国内的研究情况及取得的成果
纳米技术作为一种最具有市场应用潜力的新兴科学技术,其潜在的重要性毋庸置疑,一些发达国家都投入大量的资金进行研究工作。如美国最早成立了纳米研究中心,日本文教科部把纳米技术,列为材料科学的四大重点研究开发项目之一。在德国,以汉堡大学和美因茨大学为纳米技术研究中心,政府每年出资6500万美元支持微系统的研究。在国内,许多科研院所、高等院校也组织科研力量,开展纳米技术的研究工作,并取得了一定的研究成果,主要如下:
定向纳米碳管阵列的合成,由中国科学院物理研究所解思深研究员等完成。他们利用化学气相法高效制备出孔径约20纳米,长度约100微米的碳纳米管。并由此制备出纳米管阵列,其面积达3毫米×3毫米,碳纳米管之间间距为100微米。
氮化镓纳米棒的制备,由清华大学范守善教授等完成。他们首次利用碳纳米管制备出直径3~40纳米、长度达微米量级的半导体氮化镓一维纳米棒,并提出碳纳米管限制反应的概念。并与美国斯坦福大学戴宏杰教授合作,在国际上首次实现硅衬底上碳纳米管阵列的自组织生长。
准一维纳米丝和纳米电缆,由中国科学院固体物理研究所张立德研究员等完成。他们利用碳热还原、溶胶—凝胶软化学法并结合纳米液滴外延等新技术,首次合成了碳化钽纳米丝外包绝缘体SiO2纳米电缆。
用催化热解法制成纳米金刚石,由中国科学技术大学的钱逸泰等完成。他们用催化热解法使四氯化碳和钠反应,以此制备出了金刚石纳米粉。
但是,同国外发达国家的先进技术相比,我们还有很大的差距。德国科学技术部曾经对纳米技术未来市场潜力作过预测:他们认为到2000年,纳米结构器件市场容量将达到6375亿美元,纳米粉体、纳米复合陶瓷以及其它纳米复合材料市场容量将达到5457亿美元,纳米加工技术市场容量将达到442亿美元,纳米材料的评价技术市场容量将达到27.2亿美元。并预测市场的突破口可能在信息、通讯、环境和医药等领域。
总之,纳米技术正成为各国科技界所关注的焦点,正如钱学森院士所预言的那样:“纳米左右和纳米以下的结构将是下一阶段科技发展的特点,会是一次技术革命,从而将是21世纪的又一次产业革命。”

‘柒’ 纳米材料与纳米技术的现状、应用、发展趋势及存在问题是什么

现在纳米材料研究的基本特征是以实际应用为导向,一纳米材料与相关科学的交叉融合为手段,重点解决纳米材料应用的关键技术问题。纳米材料属于上游产品,一方面用于传统产品的升级,两一方面用于纳米科技新产品的开发,而要在下游产品中体现纳米材料的优越性能就必须以纳米制造技术作为支撑。

‘捌’ 生物医用材料的应用与发展前景

迄今为止 ,被详细研究过的生物材料已有一千多种,医学临床上广泛使用的也有几十种,涉及到材料学的各个领域。生物医用材料得以迅猛发展的主要动力来自人口老龄化、中青年创伤的增多、疑难疾病患者的增加和高新技术的发展。人口老龄化进程的加速和人类对健康与长寿的追求,激发了对生物医用材料的需求。目前生物医用材料研究的重点是在保证安全性的前提下寻找组织相容性更好、可降解、耐腐蚀、持久、多用途的生物医用材料。
当代生物材料的发展不仅强调材料自身理化性能和生物安全性、可靠性的改善,而且更强调赋予其生物结构和生物功能,以使其在体内调动并发挥机体自我修复和完善的能力,重建或康复受损的人体组织或器官。结合南开大学俞耀庭教授的观点和2004年中国新材料发展报告,可以将目前国际上生物医用材料学科的最新进展和发展趋势概括如下: 组织工程是指应用生命科学与工程的原理和方法,构建一个生物装置,来维护、增进人体细胞和组织的生长,以恢复受损组织或器官的功能。它的主要任务是实现受损组织或器官的修复和再建,延长寿命和提高健康水乎。其方法是,将特定组织细胞种植于一种生物相容性良好、可被人体逐步降解吸收的生物医用材料(组织工程材料)上,形成细胞-生物医用材料复合物;生物医用材料为细胞的增长繁殖提供三维空间和营养代谢环境;随着材料的降解和细胞的繁殖,形成新的具有与自身功能和形态相应的组织或器官;这种具有生命力的活体组织或器官能对病损组织或器宫进行结构、形态和功能的重建,并达到永久替代。近10 年来,组织工程学发展成为集生物工程、细胞生物学、分子生物学、生物医用材料、生物技术、生物化学、生物力学以及临床医学于一体的一门交叉学科。
生物医用材料在组织工程中占据非常重要的地位,同时组织工程也为生物医用材料提出问题和指明发展方向。由于传统的人工器官(如人工肾、肝)不具备生物功能(代谢、合成),只能作为辅助治疗装置使用,研究具有生物功能的组织工程人工器官已在全世界引起广泛重视。构建组织工程人工器官需要三个要素,即种子细胞、支架材料、细胞生长因子。最近,由于干细胞具有分化能力强的特点,将其用作种子细胞进行构建人工器官成为热点。组织工程学已经在人工皮肤、人工软骨、人工神经、人工肝等方面取得了一些突破性成果,展现出美好的应用前景。
当前软组织工程材料的研究和发展主要集中在研究新型可降解生物医用材料,用物理、化学和生物方法以及基因工程手段改造和修饰原有材料,材料与细胞之间的反应和信号传导机制以及促进细胞再生的规律和原理,细胞机制的作用和原理等,以及研制具有选择通透性和表面改性的膜材,发展对细胞和组织具有诱导作用的智能高分子材料等方面。
当前硬组织工程材料的研究和应用发展主要集中在碳纤维/高分子材料、无机材料(生物陶瓷、生物活性玻璃)、高分子材料的复合研究。 纳米生物材料,在医学上主要用作药物控释材料和药物载体。从物质性质上可以将纳米生物材料分为金属纳米颗粒、无机非金属纳米颗粒和生物降解性高分子纳米颗粒;从形态上可以将纳米生物材料分为纳米脂质体、固体脂质纳米粒、纳米囊(纳米球)和聚合物胶束。
纳米技术在90 年代获得了突破性进展,在生物医学领域的应用研究也不断得到扩展。目前的研究热点主要是药物控释材料及基因治疗载体材料。药物控释是指药物通过生物材料以恒定速度、靶向定位或智能释放的过程。具有上述性能的生物材料是实现药物控释的关键,可以提高药物的治疗效果和减少其用量和毒副作用。由于人类基因组计划的完成及基因诊断与治疗不断取得进展,科学家对使用基因疗法治疗肿瘤充满信心。基因治疗是导人正常基因于特定的细胞(癌细胞)中,对缺损的或致病的基因进行修复;或者导人能够表达出具有治疗癌症功能的蛋白质基因,或导人能阻止体内致病基因合成蛋白质的基因片断来阻止致病基因发生作用,从而达到治疗的目的。这是治疗学的一个巨大进步。基因疗法的关键是导人基因的载体,只有借助于载体,正常基因才能进人细胞核内。目前,高分子纳米材料和脂质体是基因治疗的理想载体,它具有承载容量大,安全性高的特点。近来新合成的一种树枝状高分子材料作为基因导人的载体值得关注。
此外,生物医用纳米材料在分析与检测技术、纳米复合医用材料、与生物大分子进行组装、用于输送抗原或疫苗等方面也有良好的应用前景。纳米碳材料可显着提高人工器官及组织的强度、韧度等多方面性能;纳米高分子材料粒子可以用于某些疑难病的介入诊断和治疗;人工合成的纳米级类骨磷灰石晶体已成为制备纳米类骨生物复合活性材料的基础。该领域未来的发展趋势是,纳米生物医用材料“部件”与纳米医用无机材料及晶体结构“部件”的结合发展,如由纳米微电子控制的纳米机器人、药物的器官靶向化;通过纳米技术使介入性诊断和治疗向微型、微量、微创或无创、快速、功能性和智能性的方向发展;模拟人体组织成分、结构与力学性能的纳米生物活性仿生医用复合材料等。 组织反应是指局部组织对生物医用材料所发生的反应。组织反应是机体对异物入侵产生的防御性反应,可以减轻异物对组织的损伤,促进组织的修复和再生。然而,组织反应本身也可能对机体造成危害。根据病理变化不同,可以分成以下两种反应:
1、以渗出为主的组织反应
多见于植入初期和植入材料的性质稳定等情况。以中性粒细胞、浆液、纤维蛋白原渗出为主。如植入物周围组织出现中性粒细胞聚集;长期植入的、稳定的材料周围,可由于纤维蛋白原的渗出而出现纤维囊。
2、以增生为主的组织反应
多见于植入物长期存在并损伤机体的情况。以巨噬细胞为主,也可见淋巴细胞、浆细胞和嗜酸性粒细胞,并伴有明显的组织增生,可逐渐发展为肉芽肿或肿瘤。
在使用生物医用材料的过程中,由组织反应引起的两种严重的并发症是炎症和肿瘤。炎症包括感染性炎症和无菌性炎症。感染性炎症可能是由于材料植入的过程中损伤组织,使病原体趁虚而入;也可能是由于植入物本身未经严格的消毒灭菌处理,成为了病原体的载体。无菌性炎症不是由于病原体侵入引起,而是由于影响机体内的炎症和抗炎系统的调节而引发的炎症反应。生物材料植入引起肿瘤是一个缓慢的过程,可能是由于材料本身释放毒性物质,也可能是由于材料的外形和表面性能所致。因此,在应用长期植入物之前,进行植入物的慢性毒性、致突变和致癌的生物学试验是十分必要的。 生物医用材料血液相容性包含不引起血液凝聚和不破坏血液成分两个方面。在一定限度内即使在材料表面张力的剪切作用下,对血液中的红细胞等有一定的破坏(即发生溶血),由于血液具有很强的再生能力,随时间的推移其不利影响并不显着;而如果在材料表面有血栓形成,由于有累计效应,随着时间的推移,凝血程度越来越高,对人体造成严重的影响。因此,材料在血液中最受关注的是其抗凝血性能。材料与血液接触导致凝血及血栓形成的途径如图1所示。正常人体心血管系统内的血液保持液体状态,环流不息,并不发生凝固。当医用材料与血液接触时会引起血液一系列变化。首先是血浆蛋白在材料表面的吸附,依材料表面结构性能不同,在1分钟甚至几秒钟,在材料表面就会产生白蛋白和球蛋白以及各种蛋白质的竞争吸附,在生物材料表面形成复杂的蛋白质吸附层。当材料表面吸附球蛋白、纤维蛋白原时易于使血小板粘附表面,进而导致血小板变形聚集,引发凝血。蛋白表面也可引起红细胞的粘附。虽然红细胞在凝血中的作用仍然不十分清楚,但是如若红细胞发生细胞膜破裂,即出现溶血,红细胞释放的血红蛋白和二磷酸腺苷简称ADP(促血小板聚集物质)。它们可以引起血小板的粘附、变形和聚集,进而导致凝血。
`
图1 凝血机制
抗凝系统包括抗凝和纤溶作用。抗凝作用主要是通过一些抗凝因子(如抗凝血酶Ⅲ、肝素)来实现。纤溶过程包括纤溶酶原转化为纤溶酶,纤溶酶降解纤维蛋白。血栓形成是常见的生物医用材料植入引发的局部血液循环障碍。内皮细胞的损伤、血流动力学的改变和血液的高凝状态,其中任何一个因素都可以导致血栓形成。完整的内皮细胞可以通过表达肝素样分子与抗凝血酶Ⅲ结合使IIa、Xa、IXa 失活,合成 PGI2、NO 、ADP 酶抑制血小板聚集及合成tPA 使纤维蛋白降解等作用抑制血栓形成。血流动力学的改变可以诱发血栓形成。正常血流是分层流动的,当血流减慢或层流被破坏时,血小板与内膜接触并激活,凝血因子也可以在局部聚集。当处于创伤、手术等情况时,血液的凝血系统亢进和(或)抗凝系统减弱也可导致血栓形成。 免疫系统是人体的“军队”和“警察”,它可以识别自己和非己。免疫系统的主要功能包括针对病原微异原分子免疫防御功能、针对自体衰老和病变细胞的免疫自稳功能和针对肿瘤细胞的免疫监视功能。免疫系统由天然免疫系统和获得性免疫系统组成。天然免疫系统包括肥大细胞、巨噬细胞、自然杀伤细胞、中性粒细胞和补体等。天然免疫系统可以早期识别、清除病原体,然而它对于病原体的识别不具有特异性。在受到病原体刺激后,再次接触病原体时能够针对性地做出反应的免疫系统成为获得性的免疫系统。获得性免疫系统又可分为由B 细胞介导的体液免疫和由T 细胞介导的细胞免疫。由于生物医用材料造成免疫系统的功能(包括免疫识别和反应程度)紊乱,可以发生以下免疫反应:
1、免疫抑制
由于有些生物医用材料造成免疫防御功能不足,使得机体抵抗病原微生物的能力降
低。
2、变态反应
由于有些生物医用材料造成免疫防御功能亢进,免疫反应过于强烈损伤人体。如残留乳胶、双酚A、丙烯酸添加剂等低分子量有机分子或单体。
3、自身免疫
由于有些生物医用材料造成免疫自稳功能亢进,免疫系统不能和识别自己和非己,对自体正常组织产生免疫反应。如聚四氟乙烯、聚酯等。 界面是一个有一定厚度(通常小于0.1μm)的区域,物质的能量可以通过这个区域从一个相连续地变化到另一个相。根据植入材料的不同,与生物体组织作用的界面可分为:惰性材料与生物体组织作用的界面和活性材料与生物体组织作用的界面。
1、惰性生物医用材料与生物体组织作用的界面惰性生物医用材料的特点是在生物体内保持稳定,几乎不参加生物体的化学反应。长期植入惰性材料,植入物与机体发生渗出性组织反应,其中以纤维蛋白原渗出为主,形成纤维包囊。如果材料无毒性物质渗出,包囊将逐渐变薄,淋巴细胞消失,钙盐沉积。这一类的材料有氧化铝、碳纤维、钛合金等。如果材料持续释放金属离子或有机单体等毒性离子,会促使局部组织反应迁延不愈,转变为慢性炎症。纤维薄膜逐渐变厚,淋巴细胞增多,钙盐沉积,可发展为肉芽肿,甚至肿瘤。
2、活性生物医用材料与生物体组织作用的界面活性生物医用材料可以与机体发生化学反应,与组织之间形成化学键。这里我们主要介绍表面活性生物医用材料与生物体组织作用的界面、可降解生物陶瓷与生物体组织作用的界面和杂化生物医用材料与生物体组织作用的界面。
(1)表面活性生物医用材料与生物体组织作用的界面:表面活性生物医用材料其表面成分与组织成分相近,能与组织结合形成稳定的结合界面。这种材料与组织亲和性好。如表面含羟基磷灰石的生物材料。
(2)可降解生物陶瓷与生物体组织作用的界面:陶瓷可在组织内释放组织所需的成分,加速组织的生长,并逐渐为新生的组织所取代。如β-磷酸三钙陶瓷可在体液中释放Ca2+、PO4
3+离子,促进骨组织的生长,并逐渐为之取代。
(3)杂化生物医用材料与生物体组织作用的界面:杂化材料由活体组织和非活体组
织复合而成。由于活体组织的存在是使材料的免疫反应减轻,使材料具有很好的相容性。
这类材料有各种人工材料与生物高分子的复合物,合成材料与细胞的复合物等。
3、界面理论及其研究方法
(1)界面润湿理论;主要研究液体对固体表面的亲和状况。材料植入首先是与由血浆、组织液组成的液体环境接触,所以材料与机体组织亲和性与液体与材料表面的润湿作用密切相关。一般通过研究固体表面润湿临界张力和液体在固体上的润湿角测定界面能。
(2)界面吸附理论;通过研究界面对水分子、各种细胞、氨基酸、蛋白质和各种离子的吸附作用,为材料界面改性提供参考。可以运用生物流变学的原理和方法,了解材料的形态表面对细胞吸附作用的影响。
(3)界面化学键合理论;理论上讲,植入物与人体组织同处于人体的内环境中,存在形成各种化学键的可能性。主要采用电子探针、电子能谱、质谱、核磁共振、拉曼光谱等分析界面元素及化合态。
(4)界面分子结合理论 植入材料由于的表面极性、表面电荷及活性基团不同,对人体组织的作用也存在差异。通过测量生物压电材料所产生的微电流,评价其对于细胞界面形成的影响。
(5)界面酸碱理论;由于界面细胞的生长与界面局部的酸碱度直接相关,所以可以通过研究界面酸碱度,了解并改善生物医用材料与组织的亲和性。在离体实验中,通常采取常规的pH 值测定法和纳米级超微电极测定界面pH 值。
(6)界面物理结合理论;植入体与人体组织的结合首先是物理结合,组织细胞通过微孔长入植入体以增加其结合强度。微孔的大小关系着组织细胞能否长入植入体,微孔的比率决定着植入体的强度。主要采用各种传感技术及光弹应力分析法、有限元计算分析法等测定界面结合强度与应力。
另外,界面研究方法还包括界面的形态学研究。主要通过透射电镜、扫描电镜及各种立体成像技术观察界面处的形态。 一般来讲,生物医用材料在体内首先与体液接触,通过水解作用,某些材料可能由高分子物质转变为水溶性的小分子物质。这些小分子物质经由血液循环,运输到呼吸系统、消化、泌尿系统,经呼吸、粪、尿的方式排出体外。在代谢的过程中,可能有酶参与其中。生物医用材料经过一系列的反应,可能完全降解由体内排出,也可能会有部分材料或其降解产物长期存在于人体内。生物医用材料在体内代谢的中间产物和终产物可能对人体有利也可能有害,因此对于材料在生物体内的代谢产物和途径的研究具有十分重要的意义。材料在体内的代谢受很多方面因素的影响,如材料本身的因素、植入环境的因素等。目前,材料在体内代谢的研究方法主要分为体外试验和体内试验。体外降解试验主要是在体外模拟体内的环境条件,从外形、力学性能、质量等方面进行评价。这种试验主要用于研究固体生物医用材料。体内试验主要是在动物体内进行。体内试验是将生物医用材料植入动物体内观察材料的改变。具体可以通过解剖、X 线、放射性标记示踪等方法。这种试验方法的优点是可以获得更接近人体的试验结果。

‘玖’ 药物化学专业就业前景

不太好,工资不给力毒性还高污染重,好多公司不让干了,生物制药还好些

‘拾’ 纳米的好处在那里

纳米技术包含下列四个主要方面:

第一方面是纳米材料,包括制备和表征。纳米材料是纳米科技发展的重要基础。纳米材料是指材料的几何尺寸达到纳米级尺度,并且具有特殊性能的材料。其主要类型为:纳米颗粒与粉体、纳米碳管和一维纳米材料、纳米薄膜、纳米块材。在纳米尺度下,物质中电子的放性(量子力学性质)和原子的相互作用将受到尺度大小的影响,如能得到纳米尺度的结构,就可能控制材料的基本性质如熔点、磁性、电容甚至颜色,而不改变物质的化学成份。

对于纳米材料的研究包括两个方面:一是系统地研究纳米材料的性能、微结构和谱学特征,通过和常规材料对比,找出纳米材料特殊的规律,建立描述和表征纳米材料的新概念和新理论;二是发展新型纳米材料。目前纳米材料应用的关键技术问题是在大规模制备的质量控制中,如何做到均匀化、分散化、稳定化。

第二方面是纳米动力学,主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等。MEMS用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。

第三方面是纳米生物学和纳米药物学。利用纳米技术,人们已经可以操纵单个的生物大分子。操纵生物大分子,被认为是有可能引发第二次生物学革命的重要技术之一。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。

纳米生物学和纳米药物学最有发展前景的几个方面,包括:

1. 纳米技术在生物医药基础研究中的应用。纳米尺度的一些高精度单分子观测操纵技术,在生物医药基础研究中意义重大。

2. 纳米生物传感器。目前还处于研究前期,但长远发展意义明显。

3. 纳米生物医用材料,特别是组织工程材料的研究。

4. 纳米药物,这将是纳米生物医药领域最强的生长点。其中还可以细分为两个方面:1)纳米药物载体和给药系统,这方面的研究除材料外,还必须加强与药物作用机理的有机结合,以及具体药效的验证;2)纳米药物粒子,如中药纳米颗粒、重组蛋白、DNA导入粒子等等,这方面的研究需要加强。

第四方面是纳米电子学,包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。如现有的硅和砷化镓器件的响应速度最高只能达到10~12秒,功耗最低只能降至1微瓦。而量子器件在响应速度和功耗方面可以比这个数据优化1000~10000倍。当前电子技术的趋势要求器件和系统更小、更快、更冷。“更小”是指集成电路的几何结构要小,"更快"是指响应速度要快。"更冷"是指单个器件的功耗要小。但是"更小"并非没有限度。在纳米尺度下,现有的电子器件把电子视为粒子的前提不复存在,因而会出现种种新的现象,产生新的效应,如量子效应。利用量子效应而工作的电子器件称为量子器件,像共振隧道二级管、量子阱激光器和量子干涉部件等。与电子器件相比,量子器件具有高速(速度可提高1000倍)、低耗(能耗降低1000倍)、高效、高集成度、经济可靠等优点。因此,纳米电子学的发展,可能会在电子学领域中引起一次新的电子技术革命,从而把电子工业技术推向更高的发展阶段。

阅读全文

与药物化学纳米药物载体前景怎么样相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:743
乙酸乙酯化学式怎么算 浏览:1408
沈阳初中的数学是什么版本的 浏览:1355
华为手机家人共享如何查看地理位置 浏览:1047
一氧化碳还原氧化铝化学方程式怎么配平 浏览:889
数学c什么意思是什么意思是什么 浏览:1413
中考初中地理如何补 浏览:1305
360浏览器历史在哪里下载迅雷下载 浏览:705
数学奥数卡怎么办 浏览:1393
如何回答地理是什么 浏览:1028
win7如何删除电脑文件浏览历史 浏览:1060
大学物理实验干什么用的到 浏览:1489
二年级上册数学框框怎么填 浏览:1704
西安瑞禧生物科技有限公司怎么样 浏览:986
武大的分析化学怎么样 浏览:1252
ige电化学发光偏高怎么办 浏览:1341
学而思初中英语和语文怎么样 浏览:1656
下列哪个水飞蓟素化学结构 浏览:1427
化学理学哪些专业好 浏览:1490
数学中的棱的意思是什么 浏览:1062