导航:首页 > 化学知识 > 土壤污染中的无机化学物有哪些

土壤污染中的无机化学物有哪些

发布时间:2022-09-21 08:45:25

❶ 环境污染有哪些

一、空气污染:日常生活释放的污染大气的主要成分:

二氧化碳(CO2)主要来自煤、石油和天然气的燃烧。最大的排放者是火力发电厂、汽车等交通工具。 

氯氟烃(CFCS)主要来自使用氟利昂的空调和制冷设备、含氯氟烃的喷雾剂(如摩丝)、甲基氯仿或四氯化碳干洗剂等。

一氧化碳(CO)主要来自汽车尾气、烧煤和露天烧垃圾等。

氮氧化物(NOX,包括NO、NO2、NO3)主要来自汽车尾气和燃煤发电厂。

二氧化硫(SO2)主要来自燃煤发电厂和民用烧煤等。煤灰、煤烟和油烟主要来自在马路旁架煤炉子的餐饮摊点、烤羊肉串摊、呛锅炒菜等。

粉尘主要来自清扫路面和机动车辆的行驶从地上扬起的尘土。

铅粒主要来自使用含铅汽油的汽车尾气。

臭氧(O3 ,又称作光化学氧化剂)主要来自汽车释放出的氮氧化物在太阳光照射下与氧气反应生成。

碳氢化合物主要来自汽车尾气、油箱泄漏和汽油挥发。

二、水污染:日常生活造成水污染的主要物质的来源:

病原体(病菌和病毒)来源粪便、宰杀鸡、鱼、鸭、肉的污水等。

死亡有机体来源生活污水和生活垃圾等。

有机和无机化学品来源浴室和厕所化学清洁剂、室内装修溶剂、杀虫剂、地板窗户和家具清洗上光剂以及其它药物等。

磷来源含磷洗衣粉和洗涤剂等。

石油化工洗涤剂来源家庭和餐饮业大量使用的石油化工合成的餐具洗涤灵等。

重金属(汞、铅、镉、铬、砷等)来源生活垃圾中的装修废弃物、电池、油漆、颜料、鼠药、电子产品和化妆品等。

三、生活垃圾污染:现代生活垃圾中主要的污染物有:

1、塑料来源于商场、市场上大量使用的塑料袋,商品的塑料包装,一次性聚苯乙烯快餐饭盒,塑料餐具和杯盘,电器包装发泡填塞物,塑料瓶,冷饮皮,餐馆用的一次性塑料桌布等等。塑料垃圾难以分解,它的降解时间需要一至两百年。

它的长期堆放给鼠类、蚊蝇提供了繁殖的场所,既威胁人类的健康,又影响市容面貌;焚烧处理塑料垃圾会释放出多种有害的化学物质。其中二恶英(Dioxin)对动物毒性极大,即便在很小量的情况下,二恶英也能使鸟和鱼类出现畸型和死亡,二恶英对人体的伤害表现为:使人消瘦、肝功紊乱、神经损伤、发生癌症等。

2、电池

电池含钮扣电池、普通锌锰电池、充电电池、普通碱性电池和汽车铅电池等。钮扣电池、普通锌锰干电池和碱性电池含有汞。当其废弃在自然界里,汞就会慢慢从电池中溢出来,进入土壤或水源,再通过农作物进入人体,损伤人的肾脏。另外,汽车废电池中的酸和重金属铅泄漏到自然界可引起土壤和水源污染。

3、剩餐

剩餐主要来源于餐饮业,吃盒饭的流动人口和上班族。剩餐提供的营养还促使垃圾中的细菌大量繁殖,产生对人畜有毒的氨气和硫化氢气体,也可促进垃圾中沼气的产生,埋下发生垃圾爆炸的隐患。

4、油漆、粘合剂、颜料

来源于建筑、家庭装修后的废弃物。含有有机溶剂的油漆和粘合剂类垃圾具有危险的毒性。它因挥发性高,易被人体吸入。可引起头痛、过敏甚至昏迷,或致癌。较为常见的会使人的神经、消化、血液循环和泌尿系统受伤害。

5、废纸张、易拉罐和玻璃瓶来源于办公室、学校、写字楼、商场、冷饮处、家庭等。

6、医疗垃圾

医院产生的医疗垃圾除无机垃圾外,还有一次性输液器、注射器、手术器具、人体组织等,以及治疗用的纱布、脱脂棉等。这些垃圾含有大量的病原微生物、寄生虫等有害物质,容易腐烂发霉,孳生蚊蝇,造成疾病的传播,还可能存在传染性的病菌、病毒、化学污染物及放射性物质等,具有极大的危险性,被视为“顶级危险”和“致命杀手”。

(1)土壤污染中的无机化学物有哪些扩展阅读

按环境要素分

大气污染、水体污染、土壤污染、噪(音)声污染、农药污染、辐射污染、热污染。

按属性分

显性污染,隐性

污染。

按人类活动分

工业环境污染、城市环境污染、农业环境污染。

按造成环境污染的性质来源分

化学污染、生物污染、物理污染(噪声污染、放射性污染、电磁波污染等)固体废物污染、液体废物污染、能源污染。

陆地污染:垃圾的清理成了各大城市的重要问题,每天千万吨的垃圾中,很多是不能焚化或腐化的,如塑料、橡胶、玻璃等人类的第一号敌人。

海洋污染:主要是从油船与油井漏出来的原油,农田用的杀虫剂和化肥,工厂排出的污水,矿场流出的酸性溶液;它们使得大部分的海洋湖泊都受到污染,结果不但海洋生物受害,就是鸟类和人类也可能因吃了这些生物而中毒。

空气污染::是指空气中污染物的浓度达到或超过了有害程度,导致破坏生态系统和人类的正常生存和发展,对人和生物造成危害。这是最为直接与严重的了,主要来自工厂、汽车、发电厂等放出的一氧化碳和硫化氢等,每天都有人因接触了这些污浊空气而染上呼吸器官或视觉器官的疾病。

水污染:是指水体因某种物质的介入,而导致其化学、物理、生物或者放射性污染等方面特性的改变,从而影响水的有效利用,危害人体健康或者破坏生态环境,造成水质恶化的现象。

噪音污染是指所产生的环境噪声超过国家规定的环境噪声排放标准,并干扰他人正常工作、学习、生活的现象。

放射线污染是指由于人类活动造成物料、人体、场所、环境介质表面或者内部出现超过国家标准的放射性物质或者射线。

❷ 生活污水主要有哪些污染物

污水中的主要污染物可分为三大类:物理性污染、化学性污染和生物性污染。
(1)物理性污染可分为以下几个方面:
① 热污染
污水的水温是污水水质的重要物理性质之一。就污水处理本身而言,水温多低(如低于5℃)或过高(如高于40℃)都会影响污水的生物处理效果。温度较高的污水主要来自热电厂及各种发热工厂过程中的冷却水。未经处理的冷却水排入水体后,造成受纳水体的水温升高,水中有毒物质毒性加剧,溶解氧降低,危害水生生物的生长甚至导致死亡。
② 悬浮物质污染
悬浮物是指水中含有的不溶性物质,包括固体物质、浮游生物及呈乳化状态的油类(泡沫)。它们主要来自生活污水、垃圾和采矿、建材、食品、造纸等工业产生的污水,或者是由于地面径流所引起的水土流失进入水中的。悬浮物质的存在造成水质混浊、外观恶化,改变水的颜色。
③ 放射性污染
污水中的放射性物质主要来自铀、镭等放射性金属的生产和使用过程,如放射性矿藏、核试验、核电站以及医院的同位素实验室等。放射性物质的衰变释放出放射性核亲(α、β、r射线)构成一种特殊的污染,即放射性污染,对人体进行慢性辐射并可以长期蓄积,引起潜在效应,诱发贫血、癌症等。
](2)化学性污染可分为以下几个方面:
①无机无毒物污染
无机无毒物主要指无机酸、无机碱、一般无机盐以及氮、磷等植物营养物质。酸性、碱性污水要来自矿山排水、化工、金属酸洗、电镀、制碱、碱法造纸、化纤、制革、炼油等多种工业污水。酸碱污水排入水体后会改变受纳水体的pH值,从而抑制或杀灭细菌或其他微生物的生长,削弱水体的自净能力,破坏生态平衡。此外,酸、碱污染还能逐步地腐蚀管道、船舶和地下构筑物等设施。
一般无机盐类是由于酸性污水与碱性污水相互中和以及它们与地表物质之间相互反应产生的。无机盐量的增多导致水的硬度增加,给工业用水和生活用水带来许多不利因素。
污水中的氮、磷是植物和微生物的主要营养物质。氮主要来源于氮肥厂、洗毛厂、制革厂、造纸厂等;磷的主要来源是磷肥厂和含磷洗涤剂。施用氮肥和磷肥的农田排水也会有残余的氮和磷。
当水体中氮、磷等植物营养物质增多时,可导致水体,特别是湖泊、水库、港湾、内海等水流缓慢的水域中的藻类等浮游植物及水草大量繁殖。这种现象称之为水体的“富营养化”。“富营养化”污染可导致水中溶解氧减少,鱼类的生活空间减少,且有些藻类还带有毒性,危害鱼类及水生动物的生存。更有甚者,过多的藻类残体可使湖泊变浅,最后形成水体老化和沼泽化。
②无机有毒物污染
无机化学毒物包括金属和非金属两类。金属毒物主要为汞、铬、镉、铅、锌、镍、铜、钴、锰、钛、钒、铂和铋等,特别是前几种危害更大。如汞进入人体后被转化为甲基汞,在脑组织内积累,破坏神经功能,无法用药物医治,严重时造成死亡。镉中毒时引起全身疼痛,其中的镉取代了骨质中的钙,使骨骼软化自然折断所致,腰关节受损、骨节变形,有时还会引起心血管病。
金属毒物具有以下特点:
a.不能被微生物降解,只能在各种形态间相互转化、分散。
b.其毒性以离子态存在时最严重,金属离子在水中容易被带负电荷的胶体吸附,吸附金属离子的胶体可随水流迁移,但大多数会迅速沉降,因此重金属―般都富集在排污口下游一定范围内的底泥中。
c.能被生物富集于体内,即危害生物,又通过食物链危害人体。
d.重金属进入人体后,能够和生理高分子物质,如蛋白质和菌等发生作用而使这些生理高分子物质失去活性,也可能在人体的某些器官积累,造成慢性中毒,其危害有时需10―20年才能显露出来。
重要的非金属毒物有砷、硒、氰、氟、亚硝酸根等。如砷中毒时能引起中枢神经紊乱,诱发皮肤癌等。亚硝酸盐在人体内还能与仲胺生成亚硝胺,具有强烈的致病作用。
③有机无毒物污染(需氧有机物污染)
有机无毒污染物主要包括生活污水、牲畜污水和某些工业污水中所含的碳水化合物、蛋白质、脂肪等有机物。这类合机物是不稳定的,它们在微生物作用下,借助于微生物的新陈代谢进行分解,向稳定的无机物质转化。在分解过程中需要消耗氧气,故又称之为需氧污染物或耗氧有机物。在有氧条件下,经好氧微生物作用进行转化,从而消耗大量的溶解氧,产生CO2、H2O等稳定物质;水中溶解氧耗尽后,则在厌氧微生物作用下进行转化,产生H2O、CH4、CO等稳定物质,同时放出硫化氢、硫醇等难闻气体。使水质变黑变臭,造成环境质量进一步恶化。这一类污染物质是目前水体中最大量、最经常和最普遍的一种污染物。
④有机有毒物污染
污染水体中的有机有毒物质种类很多,这类污染物质多属于人工合成的有机物质,(如DDT、六六六)、多环芳烃、芳香胺等污染物;这类污染物质的主要特征是化学性质稳定,很难被微生物分解,其另一特征是它们以不同的方式和程度都有害于人类健康致畸、致突变物质,有些还被认为是致癌物质。。
⑤油类物质污染
有机油类污染物质包括“石油类”和“动植物油类”两项。它们进人水体后漂浮在水面上,形成油膜,隔绝阳光、大气与水体的联系,破坏水体的复氧条件,从而影响水生物、植物的生长。
(3)生物性污染可分为以下几个方面:
生物污染物主要是指废水中的致病性微生物,它包括致病细菌、病虫卵和病毒。未污染的天然水小细菌含量很低,当城市污水、垃圾淋溶水、医院污水等排入后将带入各种病原微生物。如生活污水中可能含有能引起肝炎、伤寒、霍乱、痢疾、脑炎的病毒和细菌以及蛔虫卵和钩虫卵等。生物污染物污染的特点是数量大,分布广,存活时间长、繁殖速度快。

❸ 有机物有哪些无机物有哪些

有机物和无机物的具体区别:

一、两者含义不同:

1、有机物:狭义上的有机化合物主要是指由碳元素、氢元素组成,一定是含碳的化合物,但是不包括碳的氧化物和硫化物、碳酸、碳酸盐、氰化物、硫氰化物、氰酸盐、碳化物、碳硼烷、羰基金属、不含M-C键的金属有机配体配合物,部分金属有机化合物(含M-C键的物质)等主要在无机化学中研究的含碳物质。

2、无机物:与机体无关的化合物(少数与机体有关的化合物也是无机化合物,如水),与有机化合物对应,通常指不含碳元素的化合物,但包括碳的氧化物、硫化物、碳酸盐、氰化物、碳硼烷、羰基金属等在无机化学中研究的含碳化合物,简称无机物。

❹ 水和氮磷等无机无毒污染物称为什么

导读
红外光谱是我们实验猿们最常见的分子光谱之一,本文是小析姐搜罗教科书和网络资料吐血整理而成,内容极度舒适,强烈建议收藏并转发。
一、啥是光谱呢?
1、什么是光谱呢?
光谱分析是一种根据物质的光谱来鉴别物质及确定它的化学组成、结构或者相对含量的方法。 按照分析原理,光谱技术主要分为吸收光谱,发射光谱和散射光谱三种 ;按照被测位置的形态来分类,光谱技术主要有原子光谱和分子光谱两种。 红外光谱属于分子光谱,有红外发射和红外吸收光谱两种,常用的一般为红外吸收光谱。
光谱成因电子跃迁
2、光谱的分类(按测量形态分)
二. 红外吸收光谱的基本原理是什么?
分子运动有平动,转动,振动和电子运动四种,其中后三种为量子运动。分子从较低的能级E1,吸收一个能量为hv的光子,可以跃迁到较高的能级E2,整个运动过程满足能量守恒定律E2-E1=hv。能级之间相差越小,分子所吸收的光的频率越低,波长越长。
1、红外吸收光谱的成因
红外吸收光谱是由分子 振动和转动能级跃迁 所引起的, 组成化学键或官能团的原子处于不断振动(或转动)的状态,其振动频率与红外光的振动频率相当。所以,用红外光照射分子时,分子中的化学键或官能团可发生振动(或转动)吸收,不同的化学键或官能团吸收频率不同,在红外光谱上将处于不同位置,从而可获得分子中含有何种化学键或官能团的信息。
分子的转动能级差比较小,所吸收的光频率低,波长很长,所以分子的纯转动能谱出现在远红外区。振动能级差比转动能级差要大很多,分子振动能级跃迁所吸收的光频率要高一些,分子的纯振动能谱一般出现在中红外区。(注:分子的电子能级跃迁所吸收的光在可见以及紫外区,属于紫外可见吸收光谱的范畴)
值得注意的是,只有当振动发生时伴随有分子的偶极矩发生变化,该振动才具有红外活性(注:如果振动时,分子的极化率发生变化,则该振动具有拉曼活性)。
换言之,红外吸收光谱产生的条件:
应满足如下两条
(1)辐射应具有能满足物质产生振动跃迁所需的能量。
(2)辐射与物质间有相互偶合作用。
对称分子 :
没有偶极矩,辐射不能引起共振,无红外活性,如,N2、O2、Cl2等。
非对称分子 :
有偶极矩,红外活性。
2、分子的主要振动类型
双原子分子的振动
双原子分子中的原子以平衡点未中心,以非常小的真服(与原子核之间的距离相比)做周期性的振动,可以近似的看做简谐振动。
多原子分子的振动
伸缩振动原子沿键轴方向伸缩,键长发生变化而键角不变的振动,可分为对称伸缩和不对称伸缩,变形振动(又称弯曲振动或变角振动)基团键角发生周期变化而键长不变的振动成为变形振动,分为面内弯曲和面外弯曲振动
3、红外光谱和红外谱图的分区
通常将红外光谱分为三个区域:近红外区、中红外区和远红外区。一般说来,近红外光谱是由分子的倍频、合频产生的;中红外光谱属于分子的基频振动光谱;远红外光谱则属于分子的转动光谱和某些基团的振动光谱。
来个直观的列表瞅瞅
区域
λ/μm
/cm-1
能级跃迁类型
近红外区(泛频区)
0.78-2.5
12800-4000
OH、NH及CH键的倍频吸收
中红外区(基本振动区)
2.5-50
4000-200
分子振动,伴随转动
远红外区(转动区)
50-1000
200-10
分子转动,晶格振动
(注:由于绝大多数有机物和无机物的基频吸收带都出现在中红外区,因此中近红外光谱仪红外区是研究和应用最多的区域,积累的资料也最多,仪器技术最为成熟。通常所说的红外光谱即指中红外光谱)
按吸收峰的来源,可以将中红外光谱图大体上分为特征频率区(2.5~7.7 μm,即4000-1330 cm-1)以及指纹区(7.7~16.7μm,即1330-400 cm-1)两个区域。其中特征频率区中的吸收峰基本是由基团的伸缩振动产生,数目不是很多,但具有很强的特征性,因此在基团鉴定工作上很有价值,主要用于鉴定官能团。
如羰基,不论是在酮、酸、酯或酰胺等类化合物中,其伸缩振动总是在5.9μm左右出现一个强吸收峰,指纹区的情况不同,该区峰多而复杂,没有强的特征性,主要是由一些单键C-O、C-N和C-X(卤素原子)等的伸缩振动及C-H、O-H等含氢基团的弯曲振动以及C-C骨架振动产生。当分子结构稍有不同时,该区的吸收就有细微的差异。这种情况就像每个人都有不同的指纹一样,因而称为指纹区。指纹区对于区别结构类似的化合物很有帮助。
典型有机化合物的重要基团频率
4、红外光谱是定性分析手段还是定量分析手段?有何应用?
红外吸收光谱主要用于定性分析分子中的官能团,也可以用于定量分析(较少使用,特别是多组分时定量分析存在困难)。红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。
常见的,对于未知产物进行分析时,红外能够给出官能团信息,结合质谱,核磁,单晶衍射等其他手段有助于确认产物的结构(应用最广泛);在催化反应中,红外,特别是原位红外有着重要的作用,可以用于确定反应的中间产物,反应过程中催化剂表面物种的吸附反应情况等;通过特定物质的吸附还可以知道材料的性质,比如吡啶吸附红外可以测试材料的酸种类和酸量等,CO吸附的红外可以根据其出峰的情况判断材料上CO的吸附状态,进而知道催化剂中金属原子是否是以单原子形式存在等。
5. 红外光谱的解析一般通过什么方法?有哪些重要的数据库?
光谱的解析一般首先通过特征频率确定主要官能团信息。单纯的红外光谱法鉴定物质通常采用比较法,即与标准物质对照和查阅标准谱的方法,但是该方法对于样品的要求较高并且依赖于谱图库的大小。如果在谱图库中无法检索到一致的谱图,则可以用人工解谱的方法进行分析,这就需要有大量的红外知识及经验积累。大多数化合物的红外谱图是复杂的,即便是有经验的专家,也不能保证从一张孤立的红外谱图上得到全部分子结构信息,如果需要确定分子结构信息,就要借助其他的分析测试手段,如核磁、质谱、紫外光谱等。
重要的红外谱图数据库主要有:
Sadtler红外光谱数据库:http://www.bio-rad.com/zh-cn/proct/ir-spectral-databases
日本NIMC有机物谱图库:http://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi
上海有机所红外谱图数据库:http://chemdb.sgst.cn/scdb/main/irs_introce.asp
ChemExper化学品目录CDD:http://www.chemexper.com/
FTIRsearch:http://www.ftirsearch.com/
NIST Chemistry WebBook:http://webbook.nist.gov/chemistry
6、影响振动频率的因素
在正式讨论特征基团的振动频率之前,先简单了解下影响振动频率的主要因素,这对于确认特征基团的归属有重要的帮助。
影响红外振动频率的因素可以分为内部因素和外在条件两种,其中外在条件主要指样品的物态(气,液,固),溶剂种类,测试温度,测试仪器等。内部因素主要是分子结构方面的影响, 包括诱导效应,共轭效应,空间效应,振动耦合,Fermi共振,分子对称性,氢键作用等。
(1)诱导效应:基团附近有不同电负性的取代基时,由于诱导效应引起分子中电子云分布的变化,从而引起键力常数的变化,使基团吸收频率变化。
吸电子基使邻近基团吸收波数升高,给电子基则使邻近基团吸收波数下降。吸电子能力越强,升高的越多,给电子能力越强,下降越明显。
举例:CH3CHO (1713), CH3COCH3 (1715), CH3COCl (1806).
Cl的吸电子能力>甲基>H,因此对于C=O的振动频率而言,酰氯>酮>醛
注:1). 这种诱导效应的存在对于判别C=O的归属有很重要的意义,后面还会提到。
2). 诱导效应存在递减率:诱导效应是一种静电诱导作用,其作用随所经距离的增大而迅速减弱
(2)共轭效应:在共轭体系中由于原子间的相互影响而使体系内的π电子 (或p电子)分布发生变化的一种电子效应。共轭效应使共轭体系的电子云密度以及键长平均化,双键略有伸长,单键略有缩短。
主要的共轭体系包括π-π共轭和p-π共轭(σ-π超共轭等其他共轭形式影响相对较小)。
基团与吸电子基共轭,振动频率增加;基团与给电子基团共轭,振动频率下降。
注:共轭效应沿共轭体系传递不受距离的限制,因而可以显着地影响基团的振动频率。
举例:CH3COCH3 (1715), CH3-CH=CH-COCH3 (1677), Ph-CO-Ph (1665).
C=O与双键形成π-π共轭,双键为给电子基团,因此C=O的振动频率下降;而当C=O与苯环形成共轭体系时,C=O的振动频率下降得更多。
(3)氢键:形成氢键(特别是分子内氢键)往往使吸收频率向低波数移动,吸收强度增加并变宽。
7、常见基团的特征振动频率
各种基团在红外谱图的特定区域会出现对应的吸收带,其位置大致固定。常见基团的特征振动频率可以大致分为四个区域:
A. 4000-2500 cm-1为X-H的伸缩振动区(O-H, N-H, C-H,S-H等)
B. 2500-2000 cm-1为三键和累积双键伸缩振动区(C≡C,C≡N,C=C=C, N=C=S等);
C. 2000-1550 cm-1为双键的伸缩振动区(主要是C=C和C=O等);
D. 1550- 600 cm-1主要由弯曲振动,C-C, C-O,C-N单键的伸缩振动。
具体而言:
(1) O-H (3650 ~ 3200 cm-1): 确定醇、酚、酸. 其中,自由的醇和酚振动频率为3650-3600 cm-1(伯:3640,仲:3630,叔:3620,酚:3610. why? 考虑诱导和共轭效应), 存在分子间氢键时,振动频率向低波数移动,大致范围为3500-3200 cm-1. 羧酸的吸收频率在3400 ~ 2500 cm-1(缔合)
(2) N-H(3500-3100):胺和酰胺
(3) C-H (3300-2700 cm-1) : C-H的振动频率存在明显的分界线,3000 cm-1以上为不饱和C上的C-H,3000以下为饱和C上的C-H. 醛基C-H较为特殊,在2900-2700 cm-1.
(4) 不饱和键的伸缩振动吸收 :非常有价值的一个区域
三键和累积双键:2500-2000 cm-1.
C=O双键(1850-1630 cm-1)在很多化合物中都有出现,而根据诱导效应,可以明显看到差异:酸酐>酰氯>酮,酸>醛,酯>酰胺. (思考:如果是羧酸盐,C=O应该在哪呢?)
C=C双键中苯环由于存在共轭效应(1600-1450,一般为多峰),其振动频率一般比烯烃(1650-1640 cm-1)要低
注:红外振动吸收峰的强度和键的极性相关,极性越强,强度越大。因此C=O的峰一般比C=C双键要大。
(5) C-O伸缩振动(醇,酚,酸,酯,酸酐 ):1300-1000 cm-1
这类振动产生的吸收带常常是该区中的最强峰。
醇的C—O在1260~1000 cm-1;酚的C—O在1350~1200 cm-1;醚的C—O在1250~1100 cm-1(饱和醚常在1125 cm-1出现;芳香醚多靠近1250 cm-1)。
(6) C-H弯曲振动:
烷基:-CH3(1460, 1380 cm-1),-CH2-(1465 cm-1), -CH-(1340 cm-1)
烯烃:1000-650 cm-1
三、无机化合物的特征红外频率
1. 为什么无机物不经常做红外光谱?
多数情况下,人们主要采用红外光谱来分析有机官能团,而采用红外对无机物进行分析就要少得多了,很多教材上也没有特别地讨论无机物的红外吸收。实际上,对于无机材料而言,采用XRD来定性分析要比红外光谱更加直接,而一些细节的分析采用拉曼光谱要更方便一些,因为拉曼光谱可以测量的范围更广(4000-40 cm-(1),而很多无机物,特别是氧化物的谱峰信息都是在800 cm-1以下的这个范围。此外,拉曼制样简单,不受水等干扰,分辨率也高一些。
番外篇:这里只是相对目前的研究而言哈,实际上早期人们对于无机物的红外谱图也进行了大量的研究,这里推荐感兴趣的朋友看看《无机和配位化合物的红外和拉曼光谱》一书,作者:中本一雄(黄德如 汪仁庆译)。书中从群论出发,对不同结构特征的无机化学物进行了非常全面的讨论(从双原子分子到四原子分子,八面体分子,X2Y10分子等)
2、一般用红外光谱来分析无机物中的什么信息?
红外光谱是分子振动光谱,所以万变不离其宗,红外光谱测试无机物和有机物是一样的,都是研究在振动中伴随有偶极矩变化的基团。常见的所研究的无机物主要包括H2O, CO, 氧化物,无机盐中的阴离子,配位化合物等。
对于无机盐而言,阳离子类型不同会影响到其阴离子的振动频率。例如,对于无水碱性氢氧化物而言,OH-的伸缩振动频率都在3550—3720 cm-1范围内。其中,KOH为3678 cm-1,NaOH在3637 cm-1, Mg(OH)2为3698 cm-1,Ca(OH)2为3644 cm-1。
在实际应用中,无机物的红外光谱可以用来干什么呢?举个简单的离子,对于氧化物而言,其表面的结构羟基和许多应用都有密切关系(比如催化,生物医用等)。而这些表面羟基采用XRD肯定是定不出来的,这个时候采用红外进行表征就具有优势了,特别是原位红外,可以研究在不同温度下表面羟基的变化情况,进而跟其性能联系起来。
另外,红外光谱和XRD相结合对于样品的定性分析也是非常有帮助的,因为XRD并不是万能的,有很多物质实际上是没有标准谱图的,而红外谱图能够提供一些结构上的佐证,对于确定物质组成是很有帮助的。
3、常见无机物中阴离子在红外区的吸收频率如下表所示
如果大家对于常见阴离子的峰位置有什么不确定的话,可以看看上面这个表。如果想了解得更加全面,或者想从群论等理论的角度进行了解,还是推荐大家看《无机和配位化合物的红外和拉曼光谱》。
4、磷,硫相关的红外特征频率范围
四、红外光谱样品制备
1、固体样品的制备
(1) 溴化钾压片法。
将光谱级KBr磨细干燥,置于干燥器备用,取1~2mg的干燥样品,并以1:(100~200)比例的干燥KBr粉末,一起在玛瑙研钵中于红外灯下研磨,直到完全研细混匀(粉末粒径2um左右)。将研好的粉末均匀放入压膜器内,抽真空后,加压至50~100Mpa,得到透明或半透明的薄片。
(2)糊状法。
所谓糊状法指把样品的粉末与糊剂如液体石蜡一起研磨成糊状再进行测定的方法。
(3)溶液法。
对于不易研成细末的固体样品,如果能溶于溶剂,可制成溶液,按照液体样品测试的方法进行测试
(4) 薄膜法。
一些高聚物样品,一般难于研成细末,可制成薄膜直接进行红外光谱测试。
(5) 显微切片。
将高聚物用显微切片的方法制备薄膜来进行红外光谱测量。
2、液体样品的制备
不易挥发、无毒且具有一定黏度的液体样品,可直接涂于NaCl或KBr晶片上进行测试;
易挥发的液体样品可以灌注于液体池中进行测量。
3、气体样品的制备
气体样品通常灌注于气体样槽中测定。
五、红外光谱图的解析
1、谱图解析的一般步骤
(1)根据分子式,计算未知物的不饱和度f;
(2)根据未知物的红外光谱图找出主要的强吸收峰;习惯上把中红外区分成如下五个区域来分析:
4000~2500cm-1:这是X-H(X包括C、N、O、S等)伸缩振动区。主要的吸收基团有羟基、胺基、烃基等。
2500~2000cm-1:这是叁键和累积双键的伸缩振动区。
2000~1500cm-1:这是双键伸缩振动区,也是红外谱图中很主要的区域。在这个区域中有重要的羰基吸收、碳-碳双键吸收、苯环的骨架振动及C=N、N=O等基团的吸收。
1500~1300cm-1:该区主要提供C-H弯曲振动的信息。
1300~400cm-1:这个区域中有单键的伸缩振动频率、分子的骨架振动频率及反映取代类型的苯环和烯烃面外的碳氢弯曲振动频率等的吸收。
(3)通过标准图谱验证解析结果的正确性。
下图是一个未知的化合物红外光谱图
2、红外光谱解析要点及注意事项
(1)解析时应兼顾红外光谱的三要素,即峰位、强度和峰形;
(2)注意同一基团的几种振动吸收峰的相互映证;
(3)判断化合物是饱和还是不饱和;
(4)注意区别和排除非样品谱带的干扰。
处理红外谱图时,一般使用origin软件。而origin软件的具体使用,请参阅材料人分享的关于origin的学术干货。红外一般都是对化合物进行定性分析,其定量分析较少,一般采用朗伯比尔定律。红外谱图的分析需要大量经验,如果大家平时在科研上使用得较多,笔者建议多积累分析经验。篇幅有限,不做过多介绍,如有需要红外分析软件,及具体操作问题,欢迎读者留言。
六、红外光谱联用技术
气相色谱-傅里叶变换红外联用(GC-FTIR)
液相色谱-傅里叶变换红外联用(HPLC-FTIR)
热分析-傅里叶变换红外联用(TGA-FTIR)
超临界流体色谱-傅里叶变换红外联用(SFC-FTIR)
流动注射分析-傅里叶变换红外联用(FIA-FTIR)
七、红外光谱仪基本结构及维护
1、红外光谱仪结构
红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。
2、红外光谱仪仪器在日常中使用中保养的注意事项

(1)测定时实验室的温度应在15-30℃,相对湿度应在65%以下,所用电源应配备有稳压装置和接地线。因要严格控制室内的相对湿度,因此红外实验室的面积不要太大,能放得下必须的仪器设备即可,但室内一定要有除湿装置。
(2)如,所用的是单光朿型傅里叶红外分光光度计(目前,应用最多),实验室里的CO2含量不能太高,因此实验室里的人数应尽量少,无关人员最好不要进入,还要注意适当通风换气。
(3)如供试品为盐酸盐,因考虑到在压片过程中可能出现的离子交换现象,标准规定用氯化钾(也同溴化钾一样预处理后使用)代替溴化钾进行压片,但也可比较氯化钾压片和溴化钾压片后测得的光谱,如二者没有区别,则可使用溴化钾进行压片。
(4)为防止仪器受潮而影响使用寿命,红外实验室应经常保持干燥,即使仪器不用,也应每周开机至少两次,每次半天,同时开除湿机除湿。特别是霉雨季节,最好是能每天开除湿机。
(5)红外光谱测定最常用的试样制备方法是溴化钾(KBr)压片法(药典收载品种90%以上用此法),因此为减少对测定的影响,所用KBr最好应为光学试剂级,至少也要分析纯级。使用前应适当研细(200目以下),并在120℃以上烘4小时以上后置干燥器中备用。如发现结块,则应重新干燥。制备好的空KBr片应透明,与空气相比,透光率应在75%以上。
(6)压片法时取用的供试品量一般为1-2mg,因不可能用天平称量后加入,并且每种样品的对红外光的吸收程度不一致,故常凭经验取用。一般要求所没得的光谱图中绝大多数吸收峰处于10%-80%透光率范围在内。最强吸收峰的透光率如太大(如,大于30%),则说明取样量太少;相反,如最强吸收峰为接近透光率为0%,且为平头峰,则说明取样量太多,此时均应调整取样量后重新测定。
(7)测定用样品应干燥,否则应在研细后置红外灯下烘几分钟使干燥。试样研好并具在模具中装好后,应与真空泵相连后抽真空至少2分钟,以使试样中的水分进一步被抽走,然后再加压到0.8-1GPa(8-10T/cm2)后维持2-5min。不抽真空将影响片子的透明度。
(8)压片时KBr的取用量一般为200mg左右(也是凭经验),应根据制片后的片子厚度来控制KBr的量,一般片子厚度应在0.5mm以下,厚度大于0.5mm时,常可在光谱上观察到干涉条纹,对供试品光谱产生干扰。
(9)压片时,应先取供试品研细后再加入KBr再次研细研匀,这样比较容易混匀。研磨所用的应为玛瑙研钵,因玻璃研钵内表面比较粗糙,易粘附样品。研磨时应按同一方向(顺时针或逆时针)均匀用力,如不按同一方向研磨,有可能在研磨过程中使供试品产生转晶,从而影响测定结果。
研磨力度不用太大,研磨到试样中不再有肉眼可见的小粒子即可。试样研好后,应通过一小的漏斗倒入到压片模具中(因模具口较小,直接倒入较难),并尽量把试样铺均匀,否则压片后试样少的地方的透明度要比试样多的地方的低,并因此对测定产生影响。另外,如压好的片子上出现不透明的小白点,则说明研好的试样中有未研细的小粒子,应重新压片。

(10)压片用模具用后应立即把各部分擦干净,必要时用水清洗干净并擦干,置干燥器中保存,以兔锈蚀。
傅里叶变换红外光谱(Fourier Transform infrared spectros)简写为FTIR。傅里叶红外光谱法是通过测量干涉图和对干涉图进行傅里叶变化的方法来测定红外光谱。红外光谱的强度h(δ)与形成该光的两束相干光的光程差δ之间有傅里叶变换的函数关系。傅立叶变换测定红外光谱用于控制两相干光光程差的干涉仪测量得到下式表示的光强随光程差变化的干涉图其中v为波数,将包含各种光谱信息的干涉图进行傅立叶变换得实际的吸收光,傅立叶变换红光谱具有高检测灵敏度、高测量精度、高分辨率、测量速度快、散光低以及波段宽等特点。随着计算机技术的不断进步,FTIR也在不断发展。该方法现已广泛地应用于有机化学、金属有机,无机化学、催化、石油化工、材料科学、生物、医药和环境等领域。
附录一 异常谱带的介绍
波数
化合物结构
来源
668
CO2
大气中CO2 吸收,正或负
697
聚苯乙烯
磨损的聚苯乙烯瓶子或其他机械处理样品过程中
719
聚乙烯
实验室中常使用聚乙烯产品,有时候作为污染物出现
730
聚乙烯
同上
787
CCl4
使用CCl4后没有处理干净
794
CCl4
CCl4气体,同上
823
KNO3
无机硝酸盐与溴化钾反应物
837
NaNO3
氧化氮与窗片上的水汽生成,光源点燃有时候出现
980
K2SO4
无机硫酸盐与溴化钾离子交换的反应物
1110-1053
Si-O
使用玻璃研钵,由玻璃粉末引起的谱带,宽峰
1110
Me-O
研钵或其它物品的灰尘造成的污染,宽
1265
Si-CH3
使用硅树脂有此污染
1365
NaNO3
同837
2800~2900
(CH2)n
烃类物质
1378
NO3-
溴化钾的杂质,与CH3位置相近
1428
CO32-
溴化钾的碳酸盐,及其它杂质
1613-1515
COO-
碱金属卤代盐,溴化钾与羧酸反应生成的羧酸阴离子引起,压片时能产生
1639
H2O
少量夹带水的吸收
1764-1696
>C=O
药品的瓶盖,涂层,增塑剂等等的污染
1810
COCl2
氯仿暴露在空气中或日光氧化生成少量光qi的谱带
1996
BO3-
碱金属卤代盐,NaCl中的偏硼酸离子引起
2326
CO2
CO2吸收
2347
CO2
正或负的大气中CO2吸收
3450
H2O
压片中KBr含的微量水的谱带,宽,常见
3650
H2O
石英管出现附着水引起的锐谱带
3704
H2O
近红外区厚吸收池使用四氯化碳或烃类溶剂中非缔合水的-OH吸收,谱带锐
附录二、红外透光材料介绍
选择红外透光材料要根据测定波长,机械强度,稳定性和经济性来考虑,文献报导的透光材料很多,但是实际应用的并不太多 :
材质
特点
溴化钾 KBr :
易潮解,透过波长7800~400cm-1,(25μm以下)透过率大于92%,不易低温;
氯化钠 NaCl :
易潮解,透过波长500~625cm-1,(2~16μm) 不易低温;
氟化钙 CaF 2:
不易潮解,透过波长7800~1100cm-1 (1~9μm),透过率大于90%,不耐机械冲击;
氟化镁 MgF2 :
不易潮解,透过波长0.11~8.5μm,透过率大于90%;
氟化钡 BaF2:
不易潮解,透过波长7800~800cm-1(1~12μm)透过率大于90%;
金刚石 :
碳的一种,有Ⅰ型和Ⅱ型两种,透光波长10cm-1,(1000μm)。它们在4~6μm(2300~1660cm-1)有吸收,Ⅰ型还在19~22μm和7~11μm有两个吸收带,据此可以鉴别金刚石的类型;
锗 Ge :
纯度越高透光越好,透光性受纯度和厚度的影响,23μm和40μm以外可以使用,在120℃时不透明;
硅 Si :
耐机械和热冲击,可达15μm,但是,在9μm(1110cm-1)时有一吸收带;
热压块 :
用红外晶体的粉末加压成型,有MgF2,ZnS,CaF2,ZnSe,MgO等,混合热压块的机械性能超过晶体;
塑料 :
高密度聚乙烯在20~1000μm的远红外区可以使用,还有聚乙烯,聚四氟乙烯等薄片也可以使用;
氯化银 AgCl :
软,不易破裂,435cm-1(23μm以下),易变黑,贵;
溴化银 AgBr :
软,不易破裂,285cm-1(35μm以下),作为全反射材料;
硫化锌 ZnS :
不易潮解,透过波长7800~700cm-1,(1~14μm)透过率大于85%;
溴(碘)化铊 :
TiI 58%和TiBr 42%混晶,不易裂,透过波长7800~200cm-1,(1~50μm),透
过率大于92%,折射率高,全反射材料,贵,有毒;
硒化锌 ZnSe :
不易潮解,透过波长7800~440cm-1,(1~23μm),透过率大于68%;
石英 SiO2 :
不易潮解,透过波长190nm~4.5μm,透过率大于92%;
氟化锂 LiF :
120~7000cm-1,易潮解变形;
砷化镓 GaAs :
2~14μm,耐擦拭,可代替硒化锌。

(内容来源:仪器分析教材 由小析姐整理编辑)

❺ 污染物有哪几类

室内环境中的化学性污染物主要有:甲醛、苯、甲苯、二甲苯、氨气、二氧化硫、二氧化氮、一氧化碳、二氧化碳、总挥发性有机物 TVOC和可吸入颗粒物。

挥发性有机污染物分为四类:极易挥发性有机物 (VVOCs)、挥发性有机物(VOCs)、半挥发性有机物(SVOCs)和与颗粒物或颗粒有机物有关的有机物(POM),而在对室内有机污染物的检测方面基本上以VOCs代表有机物的污染状况。1989年美国环境保护局层检测到900多中存在室内的VOCs。

室内环境中 VOCs的来源主要是由建筑材料、清洁剂、油漆、含水涂料、粘合剂、化妆品和洗涤剂等释放出来的,此外吸烟和烹饪过程中也会产生。

1984年世界卫生组织《就对室内空气污染物的关注所达成的共识》报告中列出了室内常见的VOCs见下表:

污染物
来源

甲醛
杀虫剂、压板制成品、尿素-甲醛泡沫绝缘材料 (UFFI)、硬木夹板、粘合剂、粒子板、层压制品、油漆、塑料、地毯、软塑家具套、石膏板、接合化合物、天花瓦及壁板、非乳胶嵌缝化合物、酸固化木涂层、木制壁板、塑料/三聚氰烯酰胺壁板、乙烯基(塑料)地砖、镶木地板


室内燃烧烟草的烟雾、溶剂、油漆、染色剂、清漆、图文传真机、电脑终端机及打印机、接合化合物、乳胶嵌缝剂、水基粘合剂、木制壁板、地毯、地砖粘合剂、污点 /纺织品清洗剂、聚苯乙烯泡沫塑料、塑料、合成纤维

四氯化碳
溶剂、制冷剂、喷雾剂、灭火器、油脂溶剂

三氯乙烯
溶剂、经干洗布料、软塑家具套、油墨、油漆、亮漆、清漆、粘合剂、图文传真机、电脑终端机及打印机、打字机改错液、油漆清除剂、污点清除剂

四氯乙烯
经干洗布料、软塑家具套、污点 /纺织品清洗剂、图文传真机、电脑终端机及打印机

氯仿
溶剂、染料、除害剂、图文传真机、电脑终端机及打印机、软塑家具垫子、氯仿水

1,2-二氯苯
干洗附加剂、去油污剂、杀虫剂、地毯

1.3-二氯苯
杀虫剂

1,4-二氯苯
除臭剂、防霉剂、空气清新剂 /除臭剂、抽水马桶及废物箱除臭剂、除虫丸及除虫片

乙苯
与苯乙烯相关的制成品、合成聚合物、溶剂、图文传真机、电脑终端机及打印机、聚氨脂、家具抛光剂、接合化合物、乳胶及非乳胶嵌缝化合物、地砖粘合剂、地毯粘合剂、亮漆硬木镶木地板

甲苯
溶剂、香水、洗涤剂、染料、水基粘合剂、封边剂、模塑胶带、墙纸、接合化合物、硅酸盐薄板、乙烯基 (塑料)涂层墙纸、嵌缝化合物、油漆、地毯、压木装饰、乙烯基(塑料)地砖、油漆(乳胶及溶剂基)、地毯粘合剂、油脂溶剂

二甲苯
溶剂、染料、杀虫剂、聚酯纤维、粘合剂、接合化合物、墙纸、嵌缝化合物、清漆、树脂及陶瓷漆、地毯、湿处理影印机、压板制成品、石膏板、水基粘合剂、油脂溶剂、油漆、地毯粘合剂、乙烯基 (塑料)地砖、聚氨脂涂层

❻ 水体主要污染物分为几大类

水中主要污染物质有 10 大类,其特征概述如下:
①无机无毒物污染:主要指酸、碱、盐污染、酸雨、硬度升高等,此类污染对人体无毒,但对环境有害。
②需氧有机物:也称耗氧有机物,其特征是分解过程中消耗水中的溶解氧(O2) ,使水质恶化。表示方法和指标有:COD、BOD5、TOD、TDC 等。
③毒污染:主要指有毒物质的污染,该类污染物质主要有非金属无机毒物、重金属与类金属无机毒物、易分解有机毒物、难分解有机毒物等。
④富营养性污染:主要指 N、P 等营养特质对水的污染,大多数情况下是生活污水所致,该类污染是造成“赤潮”、“水华”的根源。
⑤病源微生物:主要是细菌、病毒、病虫卵等的污染,其特点是数量大、分布广、存活时间长。通常用细菌总数和大肠杆菌作为病原微生物污染的间接指标。
⑥油污染:主要是石油污染,其特点是大部分漂浮在水面,少量溶于水中或呈吸附状态。污染对象主要是河口、码头地带。
⑦放射性污染:放射性核素造成的污染,其特点是难于处理和消除,主要靠自然衰变降低放射性强度。
⑧固体性污染:主要指悬浮物和泥沙。通常用悬浮物和浊度两个指标表示,地面径流中的主要组分是固体污染物。
⑨感官性污染:包括异色、异味、浑浊、泡沫、恶臭等,这类污染物一般属物理性污染,其中恶臭是一种普遍的污染危害,它损坏水的功能,危害水环境。
⑩热污染:是一种能量污染,其危害主要是使水中生物死亡,溶解氧减少。
节选自《养殖水化学》王宪。

❼ 环境污染物影响健康因素主要包括哪些方面

一、物理因素

三、生物学因素

在正常条件下,大气、水和土壤中存在有大量微生物,对维持生态平衡具有重要意义。但当环境中生物种群发生变异,以及环境水源被医院排出的污水和污物污染。同时.由于变质食品腐烂生成的各种细菌等对环境的污染。这些生物学因素,例如细菌、病毒和寄生虫等也可以通过饮用水、上壤和食物等途径进人人体,引起肠道传染病霍乱、痢疾和病毒性肝炎等严重疾病的流行,直接威胁人民群众的健康。

❽ 生物界的有机物是什么有哪些无机物是什么又有哪些它们之间的区别是什么

摘要 有机化合物主要是指由碳元素、氢元素组成,一定是含碳的化合物,但是不包括碳的氧化物和硫化物、碳酸、碳酸盐、氰化物、硫氰化物、氰酸盐、碳化物、碳硼烷、羰基金属、不含M-C键的金属有机配体配合物,部分金属有机化合物(含M-C键的物质)等主要在无机化学中研究的含碳物质。

阅读全文

与土壤污染中的无机化学物有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:740
乙酸乙酯化学式怎么算 浏览:1406
沈阳初中的数学是什么版本的 浏览:1353
华为手机家人共享如何查看地理位置 浏览:1045
一氧化碳还原氧化铝化学方程式怎么配平 浏览:886
数学c什么意思是什么意思是什么 浏览:1411
中考初中地理如何补 浏览:1301
360浏览器历史在哪里下载迅雷下载 浏览:703
数学奥数卡怎么办 浏览:1388
如何回答地理是什么 浏览:1026
win7如何删除电脑文件浏览历史 浏览:1058
大学物理实验干什么用的到 浏览:1487
二年级上册数学框框怎么填 浏览:1701
西安瑞禧生物科技有限公司怎么样 浏览:979
武大的分析化学怎么样 浏览:1250
ige电化学发光偏高怎么办 浏览:1339
学而思初中英语和语文怎么样 浏览:1653
下列哪个水飞蓟素化学结构 浏览:1425
化学理学哪些专业好 浏览:1488
数学中的棱的意思是什么 浏览:1060