1. 光化学反应类型有哪些
光化学反应类型有哪些
化学上说的四大基本反应类型是:置换反应,化合反应,复分解反应,分解反应.置换反应是一种单质和一种化合物反应生成一种新单质和新化合物的反应,它一定是氧化还原反应.化合反应是几种物质反应生成一种化合物的反应,化合反应中的一部分是氧化还原反应.复分解反应是两种化合物交换成分生成一种新化合物的反应,它一定不是氧化还原反应.分解反应是一种化合物分解生成多种物质的反应,分解反应中的一部分是氧化还原反应.化学反应的四种基本反应类型并未包括所有的化学反应,因此又出现了其他的反应分类,如氧化还原反应和非氧化还原反应,这就包括了所有的反应,因此,高中经常研究氧化还原反应,这是高中的重点和难点.
2. 光化学反应类型有哪些
化学上说的四大基本反应类型是:置换反应,化合反应,复分解反应,分解反应.置换反应是一种单质和一种化合物反应生成一种新单质和新化合物的反应,它一定是氧化还原反应.化合反应是几种物质反应生成一种化合物的反应,化合反应中的一部分是氧化还原反应.复分解反应是两种化合物交换成分生成一种新化合物的反应,它一定不是氧化还原反应.分解反应是一种化合物分解生成多种物质的反应,分解反应中的一部分是氧化还原反应.化学反应的四种基本反应类型并未包括所有的化学反应,因此又出现了其他的反应分类,如氧化还原反应和非氧化还原反应,这就包括了所有的反应,因此,高中经常研究氧化还原反应,这是高中的重点和难点.
3. 农药的降解方法都有哪些
一、光解
施于植物及土壤表面的除草剂,在日光照射下会进行光化学分解,这种光解作用是由紫外线引起的,光解速度决定于除草剂的类型、品种和分子结构。紫外线的强度、除草剂分子对光的吸收能力及温度等因素都是影响光解作用的因素。
大多数除草剂溶液都能进行光解作用,其吸收的是220-400nm的光谱;不同类型除草剂的光解速度差别很大,二硝基苯胺除草剂,特别是氟乐灵最易光解,其他各类除草剂光解速度稍慢。为防止光解,喷药后应将药剂混拌于土壤中。
二、挥发
挥发是除草剂特别是土壤处理除草剂消失的重要途径之一,挥发性强弱与化合物的物理特性、饱和蒸汽压密切相关,同时也受环境因素制约;饱和蒸气压高的除草剂,挥发性强;二硝基苯胺类除草剂品种就属于饱和蒸气压较高的一类,其次是硫代氨基甲酸脂类除草剂,这些除草剂喷洒于土表后,就会迅速挥发,丧失活性。其中挥发的气体更容易伤害敏感作物。
在环境因素中,温度与土壤湿度对除草剂挥发的影响最大:温度上升,饱和蒸气压增大,挥发性越强;土壤湿度大,有利于解吸附作用,使除草剂易于释放在土壤溶液中成游离态,故易汽化挥。
三、土壤吸附
吸附作用与除草剂的生物活性及其在土壤中残留与持效期有密切关系。除草剂在土壤中主要被土壤胶体吸附,包含物理吸附与化学吸附。
土壤对除草剂的吸附一方面决定于除草剂的分子结构,另一方面决定于土壤有机质与黏粒含量,脲类、均三氮苯类、硫代氨基酸酯类等许多类型除草剂在土壤中易被吸附,而磺酰脲类与咪唑啉酮类除草剂不易被吸附;土壤有机质与黏粒含量高的土壤对除草剂吸附作用强。
四、淋溶
淋溶是除草剂在土壤中随水分移动在土壤剖面的分布,除草剂在土壤中的淋溶决定于其特性和水溶度,土壤结构组成、有机质含量、PH值、透性以及水流量等。水溶度高的品种易淋溶,同时化合物的盐类比酯类淋溶性强;土壤不同,导致其表面积差异很大,黏粒与有机质含量高的土壤对除草剂的吸附作用强,使其不易淋溶。
淋溶性强的除草剂易渗入土壤剖面下层,不仅降低除草剂效果,而且易在土壤下层积累或污染地下水。
五、化学分解
化学分解是除草剂在土壤中消失的重要途径之一,其中包括氧化、还原、水解以及形成非溶性盐类与络合物。磺酰脲类除草剂在酸性土壤中就是通过水解作用而逐步消失的。当土壤中高价金属离子Ca2+、Mg2+、Fe2+等含量高时,一些除草剂能够与这些离子反应,形成非溶性盐类;有的除草剂则与土壤中的钴、铜、铁、镁、镍形成稳定的络合物而残留于土壤中。
六、生物降解
除草剂的生物降解包括土壤微生物降解与植物吸收后在其体内的降解。微生物降解是大多数除草剂在土壤中消失的最主要途径。真菌、细菌与放线菌参与降解。在微生物作用下,除草剂分子结构进行脱卤、脱烷基、水解、氧化、环羟基化与裂解、硝基还原、缩合以及形成轭合物,通过这些反应使除草剂活性丧失。
土壤湿度、温度、PH值有机质含量等显着影响除草剂的微生物降解,适宜的高温与土壤湿度促进降解。
4. 光解 有哪些化学反应
光化作用的一种,物质由于光的作用而分解的过程。光解作用是有机污染物真正的分解过程,因为它不可逆地改变了反应分子,强烈地影响水环境中某些污染物的归趋。一个有毒化合物的光化学分解的产物可能还是有毒的。
光解过程可分为三类:第一类称为直接光解,这是化合物本身直接吸收了太阳能而进行分解反应;第二类称为
敏化光解,水体中存在的天然物质(如腐殖质等)被阳光激发,又将其激发态的能量转移给化合物而导致的分解反应;第三类是氧化反应,天然物质被辐照而产生自由基或纯态氧(又称单一氧)等中间体,这些中间体又与化合物作用而生成转化的产物。
直接光解:根据Grothus—Draper定律,只有吸收辐射(以光子的形式)的那些分子才会进行光化学转化。
敏化光解:又称间接光解。一个光吸收分子可能将它的过剩能量转移到一个接受体分子,导致接受体反应,这种
反应就是光敏化作用。
氧化反应:有机毒物在水环境中所常遇见的氧化剂有单重态氧(1O2),烷基过氧自由基(RO2·),烷氧自由基
(RO·)或羟自由基(OH·)。这些自由基虽然是光化学的产物,但它们是与基态的有机物起作用的,所以把它们
放在光化学反应以外,单独作为氧化反应这一类。
5. 农药在土壤中如何降解
农药的降解可分为生物降解和非生物降解两种方式。在光、热及化学因子作用下发生的降解现象为非生物降解,而在动植物体内或微生物体内外的降解作用属生物降解。
1、非生物降解:
一般非持久性物质,因其化学性质不稳定,经过光解、水解或挥发等理化作用而在环境中转化为其他物质。主要有光解、水解等。
2、生物降解:
生物陶瓷在生理环境中产生的结构或物质衰变,其产物被机体吸收利用或通过循环系统排出体外,称为陶瓷的生物降解。生物可降解或生物可吸收陶瓷材料植入骨组织后,材料通过体液溶解吸收或被代谢系统排出体外,最终使缺损的部位完全被新生的骨组织所取代。
(5)农药的光化学反应有哪些扩展阅读
生物降解在农药降解中占据了主导地位,影响降解的主要因素如下:
1、环境因子。农药进入环境后,会受到一些环境因子的作用,如:温度、湿度、有机质含量等。
2、农药本身的因素。农药的分子结构、农药的使用浓度及农药的用药历史等也影响农药的降解性能。农药因其在分子结构及理化性质方面不同,对生物降解的敏感性差别很大。
3、微生物的影响。由于农药降解的主要方式是在微生物的作用下进行,因此微生物对于农药的降解具有重大的影响。微生物的种类多样、数量繁多,有利于农药的降解。
6. 光化学反应
光化学反应是自然科学的一种反应名称。光化学反应又称光化学反应或光化作用。物质一般在可见光或紫外线的照射下而产生的化学反应,是由物质的分子吸收光子后所引发的反应。
原理
光化学反应在环境中主要是受阳光的照射,污染物吸收光子而使该物质分子处于某个电子激发态,而引起与其它物质发生的化学反应。如光化学烟雾形成的起始反应是二氧化氮(NO2)在阳光照射下,吸收紫外线(波长2900~4300A)而分解为一氧化氮(NO)和原子态氧(O,三重态)的光化学反应,由此开始了链反应,导致了臭氧及与其它有机烃化合物的一系列反应而最终生成了光化学烟雾的有毒产物,如过氧乙酰硝酸酯(PAN)等。
大气污染的化学原理比较复杂,它除了与一般的化学反应规律有关外,更多的由于大气中物质吸收了来自太阳的辐射能量(光子)发生了光化学反应,使污染物成为毒性更大的物质(叫做二次污染物)。光化学反应是由物质的分子吸收光子后所引发的反应。分子吸收光子后,内部的电子发生能级跃迁,形成不稳定的激发态,然后进一步发生离解或其它反应。一般的光化学过程如下:
(1)引发反应产生激发态分子(A*)
A(分子)+hv→A*
(2)A*离解产生新物质(C1,C2…)
A*→C1+C2+…
(3)A*与其它分子(B)反应产生新物质(D1,D2…)
A*+B→D1+D2+…
(4)A*失去能量回到基态而发光(荧光或磷光)
A*→A+hv
(5)A* 与其它化学惰性分子(M)碰撞而失去活性
A*+M→A+M′
反应(1)是引发反应,是分子或原子吸收光子形成激发态A*的反应。引发反应(1)所吸收的光子能量需与分子或原子的电子能级差的能量相适应。物质分子的电子能级差值较大,只有远紫外光、紫外光和可见光中高能部分才能使价电子激发到高能态。即波长小于700 nm才有可能引发光化学反应。产生的激发态分子活性大,可能产生上述(2)~(4)一系列复杂反应。反应(2)和(3)是激发态分子引起的两种化学反应形式,其中反应(2)于大气中光化学反应中最重要的一种,激发分子离解为两个以上的分子、原子或自由基,使大气中的污染物发生了转化或迁移。反应(4)和(5)是激发态分子失去能量的两种形式,结果是回到原来的状态。
大气中的N2,O2和O3能选择性吸收太阳辐射中的高能量光子(短波辐射)而引起分子离解:
N2+hv→N+N λ<120 nm
O2+hv→O+O λ<240 nm
O3+hv→O2+O λ=220~290 nm
显然,太阳辐射高能量部分波长小于 290 nm的光子因被O2,O3,N2的吸收而不能到达地面。大于800 nm长波辐射(红外线部分)几乎完全被大气中的水蒸气和CO2所吸收。因此只有波长 300~800 nm的可见光波不被吸收,透过大气到达地面。
大气的低层污染物NO2、SO2、烷基亚硝酸(RONO)、醛、酮和烷基过氧化物(ROOR′)等也可发生光化学反应:
NO2+bv→NO·+O
HNO2(HONO)+hv→NO+HO·
RONO+hv→NO·+RO·
CH2O+hv→H·+HCO
ROOR′+hv→RO·+R′O·
上述光化学反应光吸收一般在 300~400 nm。这些反应与反应物光吸收特性,吸收光的波长等因素有关。应该指出,光化学反应大多比较复杂,往往包含着一系列过程。
3作用
光化学反应可引起化合、分解、电离、氧化还原等过程。主要可分为两类:一类是光合作用,如绿色植物使二氧化碳和水在日光照射下,借植物叶绿素的帮助,吸收光能,合成碳水化合物。另一类是光分解作用[1] ,如高层大气中分子氧吸收紫外线分解为原子氧;染料在空气中的褪色,胶片的感光作用等。
4基本定律
光化学第一定律
只有被体系内分子吸收的光,才能有效地引起该体系的分子发生光化学反应,此定律虽然是定性的,但却是近代光化学的重要基础。该定律在1818年由Grotthus和Draper提出,故又称为Grotthus-Draper定律.
光化学第二定律
在初级过程中,一个被吸收的光子只活化一个分子.该定律在1908~1912年由Einstein和Stark提出,故又称为 Einstein-Stark定律.
Beer-Lambert定律
平行的单色光通过浓度为c,长度为d的均匀介质时,未被吸收的透射光强度It与入射光强度I0之间的关系为(e为摩尔消光系数)