① 化学中常量元素和微量元素有哪些
已被确认与人体健康和生命有关的必需微量元素有18种,即有铁、铜、锌、钴、锰、铬、硒、碘、镍、氟、钼、钒、锡、硅、锶、硼、铷、砷等。这每种微量元素都有其特殊的生理功能。
所谓微量元素,在环境地球化学中,是指仅占地球组成部分的0.01%的60余种元素,它们的含量一般在1×10-8~1×10-88之间。在医学领域,从人体的结构来看,占人体总重量万分之一以下者即为微量元素。
② 什么是微量元素,都有哪些
元素是构成世界上万物的基本要素。目前已知的元素有100多种,但人体中必不可少的仅25种。按照它们在体内的含量大致可分成两类:凡是含量超过人体体重万分之一的元素称为宏量元素,共有11种,即碳、氢、氧、氮、磷、硫、钾、钠、氯、钙、镁,它们构成了人体体重的99.95
%;另外14种元素即铁、锌、铜、碘、氟、锰、钼、钴、铬、硒、锡、硅、镍、钒,它们每一种的含量都不满体重的万分之一,故称为微量元素。
微
量元素在体内的含量很少,但它们参与体内各种酶或激素的合成,影响核酸的代谢,协助普通元素的输送,调节人体的各项生理功能,所以不能缺乏,一旦缺乏便会
影响人体的新陈代谢,从而引起各种疾病。另外,体内微量元素过多也不好,会引起中毒,如人体对硒的正常需要量和中毒量之间相差不到10倍。
除了上面所提及的14种人体必需的微量元素外,还有一些微量元素在体内的含量已基本查清楚,但它们是否为人体所必需尚在研究中,如砷、钡、锂等。还有一些元素基本上已被认为对人类是有害的,如铅、镉、铍等。
③ 什么是微量元素,都包括哪些
微量元素指人体内含量介于体重0.01%-0.005%的元素。微量元素约有70种,包括铁、碘、锌、硒、氟、铜、钴、镉、汞、铅、铝、钨、钡、钛、铌、锆、铷、锗和稀土元素等,以上诸元素在体内不能产生与合成,需由食物来提供。
随着科学的进展,人们的认识不断扩大,微量元素的数量还会增加。微量元素的来源主要有食物和饮水。随着工业化的发展,污染特别是工业污染也已成为微量元素摄入的一个重要来源,这种情况在矿区尤为严重。动物性食物中微量元素含量大于植物性食物,吸收也好于植物性食物。
④ 化学中常量元素和微量元素有哪些
已被确认与人体健康和生命有关的必需微量元素有18种,即有铁、铜、锌、钴、锰、铬、硒、碘、镍、氟、钼、钒、锡、硅、锶、硼、铷、砷等。这每种微量元素都有其特殊的生理功能。
所谓微量元素,在环境地球化学中,是指仅占地球组成部分的0.01%的60余种元素,它们的含量一般在1×10-8~1×10-88之间。在医学领域,从人体的结构来看,占人体总重量万分之一以下者即为微量元素。
⑤ 什么是微量元素,都包括哪些
微量元素是指在人体中含量低于0.01%-0.005%的元素,大约有70种,包括铁、碘、锌、硒、氟、铜、钴、镉、汞、铅、铝、钨、钡、钛、铌、锆、铷、锗等。
什么是微量元素,都包括哪些
微量元素,又叫痕量元素,是相对主量元素来划分的,虽然在人体内含量极其微小,但是具有强大的生物科学作用。
微量元素中的必需微量元素是生物体不可以缺少的元素,比如铬、锰、硒等,其中诸元素在体内不能产生与合成,需由食物来提供。
微量元素的来源主要有食物和水,一般来说,动物性食物中的微量元素含量大于植物性食物。
⑥ 地球化学微量元素包括稀土元素吗
稀有元素包括锂、铷、铯、铍、锆、铪、铌、钽8种元素,这些元素都属于地壳中丰度值较低(除锆外都低于4ppm)的亲石元素,并常在酸性岩类或碱性岩类的分异体或交代体中以多种独立矿物形式富集。
典型分散元素如锗、镓、铊、铟等
微量元素有许多同义词和近义词,如痕量元素、微迹元素、次要元素、少量元素、杂质元素、附属(副)元素、稀有元素、分散元素等。
稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的元素—钇(Y)和钪(Sc)共17种元素,称为稀土元素。
⑦ 化学中常量元素和微量元素有哪些
所谓微量元素,在环境地球化学中,是指仅占地球组成部分的0.01%的60余种元素,它们的含量一般在1×10-8~1×10-88之间。在医学领域,从人体的结构来看,占人体总重量万分之一以下者即为微量元素。 微量元素在人体内含量甚微,总量不足体重的万分之五。如铁、锌、铜、锰、铬、硒、钒、碘等。随着科学的进展,人们的认识不断扩大,这些微量元素的数目还会增加。 人体需要的元素都要通过食物与饮水来供应,但是,无论是宏量无素或微量元素,决非韩信带兵那样“多多益善”。也就是说,必须严格地控制在某一水平,多了或少了都会有不良后果,甚至会引起疾病。 对每一种必需元素人体都有对应的酶来“管制”它,使元素按人体需要控制在一定浓度。如果人体某一元素少了,酶就对摄人某元素化合物进行加工,合成人体所需的某元素化会物;反之,如果摄入某元素过量,酶就会把它“驱逐出境”,以保证它在一定浓度范围内。酶的这一工作保证元素的代谢和平衡。 由于酶在体内含量极微,所以人体调节元素代谢和平衡能力是有限的。这就要求人们应科学地摄人必需元素量,既不可太多,又不可太少,就是对宏量元素也是如此。例如人体摄入糖、脂肪等碳、氢、氧组成的化合物过量,也会得肥胖症、心血管病等;对微量元素同样如此,例如铁是微量元素,是红血球主要成分,缺少它,人体血红蛋白不易合成,导致贫血,但一旦多了,也会得多铁症,严重者会“铁中毒”死亡。 这里必须指出的是,有人对有毒无素和微量元素作用混淆不清,误称有毒无素为微量元素这是错误!同时,不可把微量元素称为有毒或有害元素。下面举二例来说明: 硒是微量元素,人体非它不可,它在人体内有抗细胞老化、抗癌等重要功能,如果缺硒就会导致心肌病变、贫血等疾病。但是,人体含硒量不可过高,过高也会引起恶心腹泻和神经中毒。如每天硒摄人量超过0.0001克,人会中毒,直至死亡。又如砷也有类似情况。尽管硒和砷的化合物剧毒,人体需要量极少,但决不可称它们为有毒元素 另外一例是,镉是有害元素,常混入铜矿.锌矿等矿物中,在冶炼过程中、进入废渣,再被雨水冲刷进入河( 湖)水,被动植物吸收,造成镉污染,当隔进入人体,会跟人体蛋白质结合成有毒的镉硫蛋白,危害造骨功能,从而造成骨质疏松、骨萎缩变形、全身酸痛等。日本神通河两岸常见的骨痛病,镐是罪魁祸首。1972年世界卫生组织宣称,人体缺乏排镉功能,每日摄入量应为零,即不可摄入镉,因此,不要因为在人体查到残留的微量镉而误称它为微量元素。一句话,镉不可称微量元素。 对微量元素,虽然人体需要很少,但不可忽视摄取,主要是要提倡科学的饮食结构,摄取必需的微量元素,目前我国独生子女多,家庭常对他们过分宠爱,以致偏食,造成某些元素的缺乏,这是必须注意的。由于饮食结构不合理,美国儿童普遍缺铁,而中国儿童不同程度的缺锌。据上海有关部门统计,有75%儿童不同程度的缺锌,这是发人深省的数字啊!因此,我们要提倡“样祥吃,身体好”,同时还应多吃些粗粮、杂粮等。此外,要告诫孩子们不可偏食,更不可造成某些营养物过剩,保持营养平衡。 微量元素在人体中的主要功能是: 1运载常量元素,把大量元素带到各组织中去。 2充当生物体内各种酶的活性中心,促进新陈代谢。酶在生物体内是许多化学反应必不可少的催化剂,而许多微量元素却是酶的组成部分或激活剂。例如锌与200多种酶的活性或结构有关。 3参与体内各种激素的作用。如锌可以促进性激素的功能,铬可促进胰岛的作用等。 铁。铁在人体中含量约为4—5克。铁在人体中的功能主要是参与血红蛋白的形成而促进造血。在血红蛋白中的含量约为72%。铁元素在菠菜、瘦肉、蛋黄、动物肝脏中含量较高。 铜。正常成人体内含铜100—200毫克。其主要功能是参与造血过程;增强抗病能力;参与色素的形成。铜在动物肝脏、肾、鱼、虾、蛤蜊中含量较高;果汁、红糖中也有一定含量。 锌。对人体多种生理功能起着重要作用。参与多种酶的合成;加速生长发育;增强创伤组织再生能力;增强抵抗力;促进性机能。锌在鱼类、肉类、动物肝肾中含量较高。 氟。是骨骼和牙齿的正常成分。可预防龋齿,防止老年人的骨质疏松。含氟量较多的食物有粮食(小麦、黑麦粉)、水果、茶叶、肉、青菜、西红柿、薯仔、鲤鱼、牛肉等。 硒。成年人每天约需0.4毫克。硒具有抗氧化,保护红细胞的功用,并发现有预防癌症的作用。硒在小麦、玉米、大白菜、南瓜、大蒜和海产品中含量较丰富。 碘。通过甲状腺素发挥生理作用,如促进蛋白质合成;活化100多种酶;调节能量转换;加速生长发育;维持中枢神经系统结构。碘海带、紫菜、海鱼、海盐等中含量丰富。 微量元素与人类健康有密切关系。它们的摄入过量、不足、或缺乏都会不同程度地引起人体生理的异常或发生疾病。微量元素最突出的作用是与生命活力密切相关,仅仅像火柴头那样大小或更少的量就能发挥巨大的生理作用。值得注意的是这些微量元素必须直接或间接由土壤供给。根据科学研究,到目前为止,已被确认与人体健康和生命有关的必需微量元素有18种,即有铁、铜、锌、钴、锰、铬、硒、碘、镍、氟、钼、钒、锡、硅、锶、硼、铷、砷等。这每种微量元素都有其特殊的生理功能。尽管它们在人体内含量极小,但它们对维持人体中的一些决定性的新陈代谢却是十分必要的。一旦缺少了这些必需的微量元素,人体就会出现疾病,甚至危及生命。国外曾有报道:机体内含铁、铜、锌总量减少,均可减弱免疫机制(抵抗疾病力量),降低抗病能力,助长细菌感染,而且感染后的死亡率亦较高。微量元素在抗病、防癌、延年益寿等方面都还起着不可忽视的作用。
⑧ 微量元素组成及其地球化学特征
1.微量元素组成
油页岩中微量元素含量受多种因素控制,元素地球化学性质复杂,矿区不同层位油页岩微量元素含量变化较大(表4-18),以Ba含量最高,微量元素均未达到工业品位。油页岩段中V、Cr、Co、Ga、Rb、Nb、Cs、Ba、Pb、Cu、Zn元素的平均含量较中-下煤层间油页岩层明显富集;Th、U、Ni、Zr元素平均含量与中-下煤层间油页岩层很相近;中-下煤层间油页岩层富集Sr元素。
2.微量元素地球化学特征
微量元素Sr、Ba化学性质十分相似,它们均可以形成可溶性重碳酸盐、氯化物和硫酸盐进入水溶液中,与锶相比,钡的化合物溶解度要低如河水所携带的Ba2+在与SO2-4相遇时很容易形成难溶硫酸钡而发生沉淀作用因而多数钡元素在近岸沉积物中富集,碳酸盐矿物对锶的捕获能力较强,因此,Sr/Ba值常用来作为区分淡水和咸水的沉积标志,咸水沉积时Sr/Ba>1;淡水沉积时Sr/Ba<1,矿区不同层位油页岩Sr/Ba值为0.20~0.89,均小于1,说明其古盐度很低,反映出湖水介质属淡水内陆湖盆环境的特征,通过分析比较,发现油页岩段中部Sr/Ba比值变化较大,表明沉积水体的盐度在一定范围内具明显的波动性,沉积环境也在不断地变化。
表4-48 达连河矿区油页岩微量元素分析结果表WB10-6
表4-19 达连河矿区油页段元素相关素数表
元素V、Cr、Co、Ni为铁族微量元素,V、Ni含量与粘土矿物、有机质含量及沉积物沉积时含氧程度关系密切,一般V/Ni比值与沉积时氧化还原电位有关,矿区油页岩V/Ni比值为1.14~6.17,总体反映的是弱氧化—弱还原的沉积环境。
3.微量元素的相关性
微量元素的相关性主要受元素的地球化学性质、沉积环境、表生作用及成岩作用的影响,这些作用使元素发生分异而相关性变差,矿区油页岩段微量元素R型聚类分析结果表明(表4-19),在相关系数检验水平是0.9时,REE与Co正相关,Al2O3与Rb、Cs、Zr、Nb、Cu、Zn相关性好,Cr与Ni正相关,而其他微量元素的相关性相对较差(图4-18),分析认为由于研究区古气候、物源区母岩风化作用、沉积环境发生了较大变化,导致了微量元素之间的相关性呈现较复杂现象。
图4-18 达连河矿区油页岩段微量元素R型聚类分析图
⑨ 微量元素概念
虽然微量元素丰度很低,只是组成我们所研究体系的很小一部分,由于以下原因,它们所提供的地球化学和地质学信息量的宏大与重要却与它们的丰度不成比例。首先,微量元素的含量变化幅度远大于主量元素,经常达到许多数量级 (图5-1)。这是由于微量元素的含量变化范围不像主量元素那样受到限制或相互制约,后者总量之和必须达到100%,因此它们的含量不是独立的,而是相互制约的。其次,微量元素涵盖的元素种类远大于主量元素。在大多数地球化学体系中,10 种或少于 10 种的主量元素构成了体系99%以上的组成,余下80 种微量元素虽然含量所占份额很低,但每个元素都有其特殊的化学性质,甚至是独特的性质,每种元素的含量变化均蕴含着独特的地球化学信息。因此微量元素所提供的信息量远大于主量元素。第三,一个元素的含量越低,它的行为越有可能具有规则,即溶液化学的理想行为,越不易受到与其绝对丰度有关因素的影响。因此微量元素可以提供控制岩石演化外部变量的信息 (White,2013;Shaw,2006)。
图5-1 西班牙中部 Pena Negar 杂岩体 83 个花岗岩类岩石的分析数据
(据Shaw,2006)
表明微量元素 Li和B的含量变化范围超过2个数量级,而主量元素SiO2 和K2 O的变化范围则很小。微量元素含量对于形成条件的变化更为敏感
微量元素的行为变化很大,且有选择性,对于主量元素不敏感的过程非常敏感。比如地幔中发生部分熔融的深度,地幔熔融形成熔体的组成与压力的关系不大,即总是形成玄武岩浆。然而一定的微量元素对于部分熔融的深度却十分敏感,这是由于微量元素的分配系数是压力的函数。在更大尺度上,地幔的组成似乎是相对均一的,或者至少在产生玄武岩浆的那部分是均一的,实际情况也确实如此,因为仅仅根据形成的岩浆中的主量元素很难证明地幔的非均一性。与此形成鲜明对比,已有充分证据证明地幔中微量元素的浓度变化范围相当大,微量元素特别是与同位素比值结合在一起,能够提供显示不同地幔储库变化的化学指纹。
什么是微量元素? 从字面意思上,是指以低丰度存在于岩石、矿物或流体中的元素。一般习惯于将各种地质体系中呈微量或痕量 (<0.1%)的元素称为微量元素。地球化学中的主量元素 (major elements)是指使得地球化学样品具有鲜明特点,即构成样品中主要矿物的元素。例如,燧石灰岩中的主量元素包括Ca、C、Si和O。对于大多数普通岩石来说,人们常将O、Si、Al、Fe、Ca、Mg、Na、K、Ti这九种组成地壳和地幔质量 99%的元素称为主量元素。
微量 (trace)元素,又可以称为痕量元素,是指那些不形成特征矿物的元素,或不构成体系中化学计量组分的元素,或对矿物/熔体组成不构成化学计量约束的元素。这一定义尚有些模糊:一方面一个元素在一个体系中是微量元素,在另一个体系中却不是。如元素 K在大洋中脊玄武岩中的丰度很少超过1500×10-6 ,从来不能以自己独立相的形式存在,应是微量元素,但在花岗岩中肯定不是一种微量元素。此外,上述定义也不适用于流体体系。如海水只有一个相——流体相,因此没有化学计量的问题。除了Cl-、
在微量元素和主量元素之间还可以划出一类称为少量元素 (minor elements),又称为副元素 (Hawkes et al.,1962;Shaw,2006)。这类元素是指构成重要副矿物的主要组成和/或在较大程度上进入主要矿物结构的元素。它们的丰度在 0.1%~1%之间,或0.1%~0.3% (Marshall et al.,1999)。如 H、C、S、K、P、Ti、Cr、Mn、F等,有时在它们构成相的化学计量组成意义上是主量元素,形成磷灰石、萤石和锆石等。少数情况下,许多微量元素也可以形成自己的独立矿物,在其中成为主要组分。例如铬铁矿(FeCr2 O4 )中的Cr和独居石 (Ce,La)PO4 中的Ce和La等。
由于微量元素在体系中的低浓度 (或活度),使得它们难以形成一种独立相,而是以次要组分存在于其他组分所形成的矿物固溶体、熔体或溶液中。
在矿物中,微量元素主要以下列形式存在:
表面吸附 (surface adsorption) 外来离子被吸附在晶体表面的扩散层内,与那些化学键不完全饱和的表面原子呈静电相互作用;
吸留 (occlusion) 在晶体的增生中吸附在晶面的杂质被后来增生的晶层所圈闭;
在固溶体中呈类质同象替代主要组分 在晶体晶格的规则位置微量元素替代主要组分;
间隙固溶体 (interstitial solid solution) 与上类似,只是微量元素占据的是晶格中的间隙位置。
目前的测定表明在很低的痕量 (ultratrace concentration levels)水平上,前两种情况可能起作用。其中第一种情况主要与具有高表面质量比的矿物有关,如胶体的情况。后两种作用是在地球化学中最为重要的过程,可以归结为热力学原因。所以大多数情况下微量元素在矿物中是呈固溶体形式存在的 (Ottonello,1997)。
⑩ 微量元素的分类
微量元素经常成组进行研究,偏离成组行为或有规律变化的行为可以作为成岩过程的标志。具有类似行为的微量元素组合也能够帮助我们简化那些难用的数据。可以根据微量元素在周期表上的位置,或者根据它们在岩浆过程中的行为以及元素的离子半径和电荷进行分类。
1.一般性分类
White (2013)把在地球中的硅酸盐部分,即总硅酸盐地球 (Bulk Silicate Earth-BSE)中,摩尔丰度超过 1%的7 种元素O、Mg、Si、Fe、Al、Ca和Na以外的元素都归为微量元素。在周期表上,元素又被分为挥发性元素 (H、N、He、Ne、Ar、Kr、Xe)、半挥发性元素 (C、As、Sb、S、Se、Te 和卤族元素)、碱性/碱土微量元素 (Li、K、Rb、Sr、Ba)、第一过渡系列金属元素、稀土元素、高场强元素、贵金属元素以及 U/Th衰变系列元素等。
Rollinson (1993)指出,周期表中上述各组元素都具有特殊的地球化学意义,其中最明显的是以下三组元素:原子序数从57~71的镧系元素或稀土元素 (REE)、原子序数为44~46和76~79号的铂族元素 (PGE)或称为贵金属元素 (包括 Au)以及原子序数为21~30的第一过渡系列元素 (包括 Fe 和 Mn)。这三组元素相应都有类似的地球化学性质,因此在地质作用过程中具有相似的地球化学行为。但情况并非完全如此,这是由于地质过程能够利用元素的显微化学差异将一种元素与该组其他元素分离。因此微量元素地球化学的任务之一就是发现究竟是哪种地质过程产生了这样的效应,并定量研究这种特殊过程的强度和广度。
2.根据分配系数进行分类
在建立微量元素的分配系数后,可以根据微量元素在内生地质作用即岩浆过程中固相和液相 (气相)之间的分配行为将微量元素分为相容元素与不相容元素两类 (图5-16)。
图5-16 一些元素的离子半径与化合价关系图
(据Marshall et al.,1999)
当地幔物质发生熔融时,微量元素将展现出对于熔体相或固相的偏爱。固相部分熔融或岩浆结晶过程中偏爱固相的微量元素被称为相容元素 (compatible element),比如那些偏爱进入像橄榄石和辉石等普通矿物的Mg 和 Fe 位置的元素;偏爱熔体相的元素被称为不相容元素 (incompatible element)或湿亲岩浆元素 (hygromagmatophile element),比如那些在硅酸盐熔体分离结晶过程中被排挤出主矿物晶格而聚集于残余熔体中的元素。根据微量元素分配系数,凡是在固相(矿物)和液相(熔体)之间分配系数
在实际地质过程中,元素的相容和不相容性有程度上的差异,在不同组成的熔体中,微量元素的行为会发生改变。如在地幔矿物中磷是不相容元素,在部分熔融过程中将很快集中于熔体相中,但是在花岗岩中,即使作为微量元素,磷也是相容元素,因为它被容纳于少量副矿物磷灰石中。
3.根据元素电荷与离子半径的比值进行的分类
根据元素离子的电荷/半径比值可以对不相容元素进行再分类。具有类似比值的元素呈现非常相似的地球化学行为。
元素的离子电位等于离子电荷与离子半径之比值。离子电位又被称为场强 (field strength),指阳离子单位表面积所带的静电荷,表征离子在化学反应中吸引价电子的能力。根据场强将微量不相容元素分为高场强元素和低场强元素 (图5-16)。
根据离子电位,进一步将大离子和/或高电价的不相容元素分为大离子亲石元素 (Large Ion Lithophile Element,LILE)和高场强元素 (High Field Strength Element,HFSE)。
高场强元素的离子电位大于 2.0,它们是离子半径小的高电荷阳离子。在地球化学上,高场强元素包括所有+3 价、+4 价的离子,还有部分+5 价和+6 价的离子,如Ti3+、Zr4+、Hf4+、Ta4+、Nb5+、Th4+、U4+、U6+、部分稀土元素、铂族元素等。虽然它们也适应于许多矿物中的阳离子位置,但是这些携带较多电荷的小离子能产生较强的静电场,很难替代普通造岩矿物中的主量元素,需要更多的补偿类质同象才能达到电荷平衡,这样的替代在能量上是不利的。Zr、Hf 是中等不相容元素,Nb、Ta 是高度不相容元素,它们的电负性略大于碱性、碱土以及 REE 元素,使得它们在成键时具有更强的共价键性,也不利于与矿物中的元素呈类质同象替代。
高场强元素一般在水溶液中特别难溶,在风化和变质过程中非常不活泼,可以用于火成岩形成构造环境的判别,与那些来自离散板块边缘的元素相比,来自会聚板块边缘的火成岩亏损高场强元素,这被认为是与消减带有关岩浆作用的鉴别特征。虽然它们的亏损原因还不十分理解,至少部分是因为这些元素的溶解度低,造成在削减洋壳搬运它们进入岩浆产生带因脱水产生的水溶液中发生亏损,可以用于研究古火成岩岩套的形成环境。
大离子亲石元素又称为低场强元素 (Low Field Strength Elements,LHSE),它们的离子电位小于 2.0 ,是离子半径大的低电荷阳离子。包括 K、Rb、Cs、Sr、Ba、REE、Th和U。目前认为,此类元素局限于具有较小离子电位的亲石元素,它们的离子半径大于Ca2+和Na+,一般是那些形成造岩矿物的最大阳离子。根据这一定义,低场强的大离子亲石元素局限于K、Rb、Cs、Sr、Ba和轻稀土元素LREE (Marshall et al.,1999)。
该组元素的离子半径和电荷制约了它们在岩浆过程中的行为。在玄武岩和超基性岩中有两类阳离子晶格位置:被Si和Al占据的小的四面体位置 (有时为 Fe3+和 Ti4+),和被Ca、Mg或Fe甚至Na占据的更大的八面体位置。碱性和碱土元素的离子半径大于八面体位置,这些元素在这些位置替代时会造成晶格的局部畸变,这在能量上不利。因此当熔融或结晶作用发生时,这些元素偏向于集中在熔体相中。从元素的活动性上,低场强元素活动性较强,属于活泼元素,在地质历史的地幔部分熔融过程中,伴随着熔体喷发或侵入进入地壳,使得地壳特别是上地壳富集这些不相容元素。
图5-17是White提出的地球化学分类周期表,分类主要依据的是元素的地球化学行为。以展开式元素周期表为基础,根据元素在地质过程中的地球化学行为,将元素分为9类:①挥发性元素,包括5个惰性气体元素和 H、N;②半挥发性元素,包括卤族元素、半挥发元素S、Se、Te、As、Sb 以及 C;③主量元素,指构成地球和地壳物质主要组成的元素,如 O、Al、Si、Na、Mg、Ca、Fe;④第一过渡系列元素;⑤高场强元素;⑥贵金属元素;⑦碱性 碱土微量元素;⑧稀土及其相关元素;⑨U/Th衰变系列元素。
图5-17 根据元素地球化学行为分类的地球化学周期表
(据 White,2013)