导航:首页 > 化学知识 > 下列哪个光化学反应中光的量子产率

下列哪个光化学反应中光的量子产率

发布时间:2022-10-24 13:41:04

‘壹’ 一道光化学问题,算量子产率,求步骤。谢谢

量子产率=反应分子数/吸收光子数
HCl + hv ---> H. + Cl.
100个分子,吸收100个光子,只有20个分子反应,生成20个H.,
∴初级反应生成H.的量子产率为20%
H. + H. ---> H₂
2个H.自由基生成一个H₂分子
∴HCl光解生成H₂的量子产率为10%

‘贰’ 积分球的原理是什么如何用积分球测试绝对量子产率

积分球是一个内壁涂有白色漫反射材料的空腔球体,又称光度球,光通球等。 球壁上开一个或几个窗孔,用作进光孔和放置光接收器件的接收孔。积分球的内壁应是良好的球面,通常要求它相对于理想球面的偏差应不大于内径的0.2%。球内壁上涂以理想的漫反射材料,也就是漫反射系数接近于1的材料。常用的材料是氧化镁或硫酸钡,将它和胶质粘合剂混合均匀后,喷涂在内壁上。氧化镁涂层在可见光谱范围内的光谱反射比都在99%以上,这样,进入积分球的光经过内壁涂层多次反射,在内壁上形成均匀照度。为获得较高的测量准确度,积分球的开孔比应尽可能小。开孔比定义为积分球开孔处的球面积与整个球内壁面积之比。

量子产率是指光化学反应中光量子的利用率。

一个光化学反应得量子产率可以定义为每吸收一个量子所产生的反应物的分子数,这通常是对于特定的波长而言,即量子产率=(生成产物的分子数)/(吸收的量子数)

合肥星月夜光技术应用研究所专业设计制造研发

‘叁’ 光解作用的光解分类

根据Grothus—Draper定律,只有吸收辐射(以光子的形式)的那些分子才会进行光化学转化。这意味着光化学反应的先决条件应该是污染物的吸收光谱要与太阳发射光谱在水环境中可利用的部分相适应。
(1)水环境中光的吸收作用:光以具有能量的光子与物质作用,物质分子能够吸收作为光子的光,如果光子的相应能量变化允许分子间隔能量级之间的迁移,则光的吸收是可能的。因此,光子被吸收的可能性强烈地随着光的波长而变化。一般说来,在紫外—可见光范围的波长的辐射作用,可以有有效的能量给最初的光化学反应。下面首先讨论外来光强是如何到达水体表面的。
水环境中污染物光吸收作用仅来自太阳辐射可利用的能量,太阳发射几乎恒定强度的辐射和光谱分布,但是在地球表面上的气体和颗粒物通过散射和吸收作用,改变了太阳的辐射强度。阳光与大气相互作用改变了太阳辐射的谱线分布。
太阳辐射到水体表面的光强随波长而变化,特别是近紫外(290—320nm)区光强变化很大,而这部分紫外光往往使许多有机物发生光解作用。其次,光强随太阳射角高度的降低而降低。此外,由于太阳光通过大气时,有一部分被散射,因而使地面接受的光线除一部分是直射光(Id)外,还有一部分是从天空来的散射光(I­s),在近紫外区,散射光要占到50%以上。
当太阳光束射到水体表面,有一部分以与入射角z相等的角度反射回大气,从而减少光在水柱中的可利用性,一般情况下,这部分光的比例小于10%,另一部分光由于被水体中颗粒物、可溶性物质和水本身散射,因而进入水体后发生折射从而改变方向。
(2)光量子产率:虽然所有光化学反应都能吸收光子,但是并不是每一个被吸收的光子均诱发产生化学反应,还可能产生辐射跃迁等光物理过程。因此光解速率只正比于单位时间所吸收的光子数,而不是正于所吸收的总能量。
环境条件也影响光解量子产率。分子氧在一些光化学反应中的作用象是淬灭剂,减少光量子产率,在另外一些情况下,它不影响甚至可能参加反应,因此任何情况下,进行光解速率常数和光量子产率的测量时需要说明水体中分子氧的浓度。
悬浮物也影响光解速率,它不仅可以增加光的衰减作用,而且还改变吸附在他们上面的化合物的活性。化学吸附作用也能影响光解速率,一种有机酸或碱的不同存在形式可能有不同的光量子产率以及出现化合物光解速率随pH变化等。 有机毒物在水环境中所常遇见的氧化剂有单重态氧(1O2),烷基过氧自由基(RO2),烷氧自由基(RO)或羟自由基(OH)。这些自由基虽然是光化学的产物,但它们是与基态的有机物起作用的,所以把它们放在光化学反应以外,单独作为氧化反应这一类。

‘肆’ 荧光光谱中量子产率怎么算

量子产率=(生成产物的分子数)/(吸收的量子数)。

解析:量子产率作为光化学反应中光量子的利用率,定义为进行光化学反应的光子与吸收总光子数之比。符号为ψ,Y。积分量子产率为Ф进行光化学反应的光子数/吸收光子数。

对于光化学反应,ψ=反应物消耗(或产物产生)的数量/吸收光子数量。微分量子产率为φ=(d[x]/dt)/n。式中d[x]/dt为某可测量量的变率,n为单位时间内所吸收的光子数(摩尔或爱因斯坦)。ψ可用于光物理过程或光化学反应。

光子具有波粒二象性

即说光子既具有一粒一粒的粒子的特性又有像声波一样的波动性。当时间为瞬时值时,光子以粒子的形式传播;当时间为平均值时,光子以波的形式传播。光子的波动性由光子的衍射而证明,光子的粒子性是由光电效应证明。

上面有人认为光子的动质量为零是错误的,光子的静质量为零,否则的话其动质量将为无穷大。但其动质量却是存在的,计算方法是这样的:首先,由于频率为v的光子的能量为E=hv,(其中h为普朗克常数),故由质能公式可得其质量为:m=E/c2=hv/c2其中c2表示光速的平方,该方法由爱因斯坦首先提出。

‘伍’ 光的量子产率怎么比较

光的量子产率比较:荧光量子产率(YF)即荧光物质吸光后所发射的荧光的光子数与所吸收的激发光的光子数之比值。它的数值在通常情况下总是小于1。YF的数值越大则化合物的荧光越强,而无荧光的物质的荧光量子产率却等于或非常接近于零。

量子产率=反应分子数/吸收光子数。

HCl+hv——->H。+Cl。

100个分子,吸收100个光子,只有20个分子反应,生成20个H。

∴初级反应生成H。的量子产率为20%。

H.+H。——->H₂。

2个H。自由基生成一个H₂分子。

∴HCl光解生成H₂的量子产率为10%。

定义为进行光化学反应

的光子与吸收总光子数之比。符号为ψ,Y。积分量子产率为Ф进行光化学反应的光子数/吸收光子数。对于光化学反应,ψ=反应物消耗(或产物产生)的数量/吸收光子数量。微分量子产率为φ=(d[x]/dt)/n。式中d[x]/dt为某可测量量的变率,n为单位时间内所吸收的光子数(摩尔或爱因斯坦)。ψ可用于光物理过程或光化学反应。

以上内容参考:网络-量子产率

‘陆’ 光化学的内容

电磁辐射能的吸收与分子的激发态
光化学的初级过程是分子吸收光子使电子激发,分子由基态提升到激发态。分子中的电子状态、振动与转动状态都是量子化的,即相邻状态间的能量变化是不连续的。因此分子激发时的初始状态与终止状态不同时,所要求的光子能量也是不同的,而且要求二者的能量值尽可能匹配。由于光子的能量ε=hv=hc/λ(式中h为普朗克常数;v为光的频率;λ为光的波长;c为光速),所以能量匹配体现为光的波长的匹配。
分子在一般条件下处于能量较低的稳定状态,称作基态。受到光照射后,如果分子能够吸收分子,就可以提升到能量较高的状态,称作激发态。如果分子可以吸收不同波长的电磁辐射,就可以达到不同的激发态。按其能量的高低,从基态往上依次称做第一激发态、第二激发态等等;而把高于第一激发态的所有激发态统称为高激发态。激发态分子的寿命一般较短,而且激发态越高,其寿命越短,以致于来不及发生化学反应,所以光化学主要与低激发态有关。激发时分子所吸收的电磁辐射能有两条主要的耗散途径:一是和光化学反应的热效应合并;二是通过光物理过程转变成其他形式的能量。光物理过程又可分为:①辐射弛豫过程,即将全部或一部分多余的能量以辐射能的形式耗散掉,分子回到基态,如发射荧光或磷光;②非辐射弛豫过程,多余的能量全部以热的形式耗散掉,分子回到基态(见雅布隆斯基态图解)。
如果分子中的电子是一一配对的(电子自旋方向相反),这种状态在光谱学上称为单重(线)态(在分子式左上角用上标1表示,如1A,或记作S,依能量由低至高分别用S0、S1、…表示)。若分子中有两个电子的自旋平行,这种状态称为三重(线)态(用3A或T1、T2、…表示)。单重态的激发态寿命很短,一般在10-8~10-9秒的量级。当基态为单重态时,激发三重态的寿命一般较长,可达到10-3~100秒的量级。所以有机化合物的光化学大都是三重态的光化学。
分子处于激发态时,由于电子激发可引起分子中价键结合方式的改变〔如电子由成键的 π轨道跃迁到反键的π*轨道,记作(π,π*);或由非键的n轨道跃迁到反键的π*轨道,记作(n,π*)等〕,使得激发态分子的几何构型、酸度、颜色、反应活性或反应机理可能和基态时有很大的差别,因此光化学比基态(热)化学更加丰富多彩。 也叫量子效率或量子产额。是光化学重要的基本量之一。设反应为A hv→B,初级过程的量子产率定义为:
如果激发态的A分子在变成为B的同时,还平行地发生着其他光化学和光物理过程,那么这个初级过程的量子产率将受到其他竞争的平行过程的“量子产率”的影响。由于在一般光强条件下,每个分子只能吸收1个光子,所以所有初级过程的量子产率的总和应等于1。
量子效率的测定有绝对测定法与相对测定法。相对法指与一种其绝对量产率为已知的体系相比较的方法。绝对法则要求直接建立起反应的量子产率和波长、温度、光强以及各种离子(特别是氢离子)浓度间的函数关系。现在已经研究过的这类体系有气体体系(如一氧化二氮、二氧化碳、溴化氢、丙酮等);液相体系(如草酸铁(Ⅲ)钾溶液、草酸铀酰溶液、二苯酮-二苯甲醇、2-己酮、偶氮苯、苯甲酸等〕;固相体系(如硝基苯甲醛、二苯酮-二苯甲醇等)。这些方法所用的仪器统称为化学露光计。 原子从分子中的一处移向他处的反应称为分子重排反应。许多有机分子在光激发后发生的重排过程也属于次级步骤。如苯经光激发后变为亚甲基环戊二烯的反应:
第一步只是苯环中6个比较自由的共轭 π电子的激发(一般只激发1个电子),这对苯分子中的碳氢键影响不大;而在次级步骤中由于原子的重排,生成了结构完全不同的产物。
有时,初级光化学过程可用作研究次级反应的工具,光敏化反应就属于这类情况。如汞原子能有效地吸收汞灯发射的光而被激发,然后通过与其他分子的碰撞,传递所吸收的能量。例如:
Hg+hv─→Hg*
Hg*+N2O─→Hg+N2+O
氧原子可以和体系中存在的其他物质反应,从释放出来的氮气量可以计算出所产生的氧原子数量。
如果初级光化学步骤是分子光解成两个自由基(有单个或未配对电子的分子碎片),通常,其次级步骤为链反应。氢与氯的反应是已经熟知的例子,其过程为:
hv+Cl2─→2Cl
Cl+H2─→HCl+H
H+Cl2─→HCl+Cl
在链反应中,每个量子可以产生多个产物分子,因此这类反应的总量子产率不仅可能大于1,有时可以达到几百甚至几千。所以当量子产率大于1时,一般可考虑反应具有链反应的机理。
决定一个光化学反应的真正途径往往需要建立若干个对应于不同机理的假想模型,找出各模型体系与浓度、光强及其他有关参量间的动力学方程,然后考察何者与实验结果的相符合程度最高,以决定哪一个是最可能的反应途径。研究反应机理的常用实验方法,除示踪原子标记法外,在光化学中最早采用的猝灭法仍是非常有效的一种方法。这种方法是通过被激发分子所发荧光被其他分子猝灭的动力学测定来研究光化学反应机理的。它可以用来测定分子处于电子激发态时的酸性、分子双聚化的反应速率和能量的长程传递速率。猝灭是一种双分子过程,如原激发分子为A*,猝灭剂分子为Q,此过程为:
A*+Q─→A+Q*
显然猝灭过程也是一种敏化过程。Q可以看成是 A*的猝灭剂,也可以把A看成是Q的敏化剂。

‘柒’ 在光化学中量子产率与荧光分子的发光都有哪些关系

荧光的发光强度应该直接依赖于荧光的发光速率
If=kf[S1],其中kf是荧光的速率常数,[S1]是S1激发态的浓度。两边对dt积分得:Nf=kf∫[S1]dt,Nf单位体积内发射的荧光光子总数。

又因为分子吸收光子被激发后理论上有3个一级过程——荧光、内转换(IC)、系间窜跃(ISC)相互竞争,那么d[S1]/dt=Ia-kf[S1]-kic[S1]-kisc[S1]。两边同乘dt积分得0=Na-(kf+kic+kisc)∫[S1]dt,Na是单位体积内吸收光子的总数。

因此,量子产率Φf=Nf/Na=kf/(kf+kic+kisc)=kf/ks,ks是S1态消耗的速率常数。那么If=Φfks[S1],ks[S1]是S1态分子的消耗速率。也就是在每一时刻,消耗的S1态分子都有固定份额Φf发出荧光光子。这样,荧光的强度还依赖S1态分子消耗的速率,但Φf越高,If越大是显而易见的。特别地,对于固定光强激发,Ia为定值,体系形成稳态,Ia=ks[S1],那么If=ΦfIa,荧光光强除了正比于激发光强这个外部因素外,也只与量子产率这一个体系的内在性质成正比。

‘捌’ 量子产率是什么呀

量子产率是光化学反应中光量子的利用率。定义为进行光化学反应的光子与吸收总光子数之比。

积分量子产率为Ф=事件数/吸收光子数。对于光化学反应,ψ=反应物消耗(或产物产生)的数量/吸收光子数量。微分量子产率为φ=(d[x]/dt)/n。

式中d[x]/dt为某可测量量的变率,n为单位时间内所吸收的光子数(摩尔或爱因斯坦)。ψ可用于光物理过程或光化学反应。

光化学反应是什么

光化学反应在环境中主要是受阳光的照射,污染物吸收光子而使该物质分子处于某个电子激发态,而引起与其它物质发生的化学反应。

如光化学烟雾形成的起始反应是二氧化氮(NO2)在阳光照射下,吸收紫外线2900~4300A而分解为一氧化氮(NO)和原子态氧(O,三重态)的光化学反应,由此开始了链反应,导致了臭氧及与其它有机烃化合物的一系列反应而最终生成了光化学烟雾的有毒产物。

如光氧乙酰硝酸酯(PAN)等。大气污染的化学原理比较复杂,它除了与一般的化学反应规律有关外,更多的由于大气中物质吸收了来自太阳的辐射能量(光子)发生了光化学反应,使污染物成为毒性更大的物质(二次污染物)。光化学反应是由物质的分子吸收光子后所引发的反应。






‘玖’ 如何测定光催化制氢中的量子产率与量子效率

太阳能光催化分解水制氢体系能量转换效率及量子产率的实验测定与计算

张耀君

,郭烈锦,延卫,赵亮,杨鸿辉,李明涛,许云波

(西安交通大学动力工程多相流国家重点实验室,西安710049;西安建筑科技大学材料学院,西安710055)

0前言

染带来的巨大压力,国际能源署及美国能源部正在

积极部署从烃经济向氢经济转变的未来能源战[1~3]略。所以国际上有关太阳能光催化分解水制氢的研究正处于十分活跃的发展时期,但存在的主要问题之一是太阳能的能量转换效率及H2的量子产率的计算缺乏较规范的标准,计算方法不统一,文献的结果之间很难进行横向比较。此外,许多文献缺少能量转换效率的研究报道。本文参考国际能源署、美国能源部的有关资料及相关学者的研究成

果,结合本实验室的工作,提出了利用已知

量子产率的化学光量计测定模拟光源光子数绝对值的实验方法,并给出了太阳能光催化分解水制氢体系的能量转换效率及产H2的量子产率计算公式。

[1~8][9~10]

1实验测定方法

111药品及仪器

实验所用药品及试剂均为分析纯,样品的光子数绝对值测定是在U4100型紫外2可见近红外分光光度计(日本HITACHI公司)上完成。

光源为300W的准直高压汞灯(常州玉宇电器件有限公司),其物理参数如表1所示。

表1高压汞灯的物理参数功率ΠW

300

启动电流ΠA

414

工作电流ΠA

315

工作电压ΠV

220

外径Πmm<18±1

有效弧长Πmm

120±5

全长Πmm

210±5

接线方式单端引出

2+

112基本原理

4-1-1

收(ε10L?mol?cm),用分光光度计进max=1111×

将一定浓度的K3[Fe(C2O4)3]水溶液放入比色皿中,该溶液吸收一定波长的光之后,Fe被还原为Fe

2+

3+



[Fe(C2O4)3]

2+

3-

νh

[Fe(C2O4)2]

2-

+2CO2

行定量分析。波长不同,每个光子反应生成Fe的量子产率亦不同,254~436nm时,量子产率平均112。当λ>436nm,则量子产率按1111计算。113化学光量计测定光子数绝对值的实验方法将硫酸铁铵和草酸钾溶液以摩尔比为1∶2配制成300mL(V0)的溶液加入到光反应器中(图1),用

还原生成的Fe加入1,10—邻菲罗啉显色剂后,形成红色的络合物溶液,在波长为510nm处有最大吸

收稿日期:2005208230基金项目:高等学校博士学科点专项科研基金(No120050698034);

国家重点基础(973)研究发展项目(No12003CB214500)

1114太阳能学报27卷

300W准直高压汞灯照射20s。从V0中取5mL(V1)

溶液放入50mL(V2)棕色容量瓶中,加入10mL邻菲罗啉溶液,再加入10mL缓冲溶液,稀释至50mL后放置于暗处30min,每次取3个平行样,用分光光度计在波长510nm处测定其吸光度At。再取不同样品改变照射时间,重复上述实验步骤。最后取未照射的硫酸铁铵和草酸钾混合液5mL放入另一50mL(V2)棕色容量瓶中,加入10mL邻菲罗啉溶液,再加入10mL缓冲溶液,稀释至50mL后放置于暗处30min。每次取3个平行样,用分光光度计在波长510nm处测定其吸光度值A0



H2O



H2+1Π2O2E=11229V(1)

212太阳能光分解水制氢体系的阈值能或带隙能

与任何转化过程一样,太阳能光催化产氢的能量转化效率是十分重要的。但其理论效率是由转化

过程的属性所决定。太阳能光催化过程受到带隙能所限制。所有太阳能光催化过程都涉及到吸光剂的电子从一种基态到一种激发态的激发过程。吸光剂可以是一种分子也可以是一种半导体。吸光剂的特点是有一个确定的阈值能(DefiniteThresholdEnergy)或带隙能(BandgapEnergy)Ug。

λUg=hcΠg

(2)

式中,h———;c—光速;λ——吸收边g—λgλ,;λ≤g的所有,但是过剩的能量(Uexce=U-Ug)在吸光剂驰豫到Ug的能级时以热的形式损

失掉。

213太阳能转换的极限效率

ηp=

μexconvJgΔEs

(3)

λ式中,Jg———在λ≤g时吸光剂吸收的光通量;Δμex———激发态的化学势或吉布斯自由能;φconv———将光子转化为化学产物的量子产率(Quan2tumyield);Es———入射太阳光的总辐照度,W?m

图1光量子数绝对值测试装置-2



Jg可通过下式计算:

Jg=

2太阳能能量转化效率及相关概念和



λ

min

λ

g

)Es(λ

dλ(hcΠλ)

(4)

-2

理论

211太阳能光催化分解水制氢体系分类

)—式中,Es(λ——入射太阳光的波长辐照度,W?m

?nm

-1

λ—;hcΠ——波长为λ的光子能量。Bolton认为

太阳能转换的极限效率对于单光体系约为31%,对双单光体系约为42%。

214标准状态下太阳能转化成可储存的化学能的

太阳能光解水制氢体系大致可分为光化学体系、半导体体系、光生物体系、复杂体系4种类型。此外,Bolton等提出了太阳能光解水制氢的单光体

系(Singlephotosystem)及双光体系(Dualphotosys2

[1]

tem)。单光体系的定义是在单一的光体系中,一

效率

通过太阳光子的驱动将部分太阳光能以反应产物如氢的化学能形式储存起来,如太阳光辐照下的光催化分解水反应,在这样一种化学反应中,太阳能转化成化学能的效率定义为:

ΔG0HRH

ηc=

EsA

种能量的光子被吸光剂所吸收耦合成一个光转化过程。在双光体系中,两种能量不同的光子在两种光体系中同时被吸光剂所吸收耦合成2个光转化过程。将这2种光体系用于太阳能光催化分解水制氢则有5种具体的方案

[1]

(5)



ΔGH2—式中,——生成产物H2时的能量储存反应的

11期张耀君等:太阳能光催化分解水制氢体系能量转换效率及量子产率的实验测定与计算1115

标准吉布斯能;RH2———生成产物H2的反应速率,mol?s

-1

;Es———入射太阳光的总辐照度,W?m

2

-2

;

A———辐照面积,m。Bolton为了强调各种因素对

分解水制氢体系效率高低的重要指标。太阳能光分

解水制氢包含了初级反应,电子转移及氧化还原反应的复杂过程,能量转化效率及量子产率受到化学反应热力学和动力学规律的限制。但我们可根据已知光量计的量子产率,计算单位时间(s)内高压汞灯产生的光子数及输出功率,从而求出反应式(1)的能量转换效率及产氢的量子产率。311Fe络合物溶液浓度c的计算

2+

ηc的影响,又提出了下述公式:

ηc=ηgηchem<conv

(6)

式中,η——具有U≥Ug能量的光子在入射的太阳g—能辐照中的分数;Ug———光转换过程中的能量阈

值,在半导体中,Ug是带隙能;η——化学效率,chem—是激发态能量转化为可储存化学能的分数;φconv———将光子转化为化学产物的量子产率。

其中:

ηchem

JgUg

ηg=Es

ΔGHΠn==

UgUg

按照本文113描述的实验步骤,辐照样品与未辐照样品的吸光度差值A=At-A0;依据Lambert2Beer定律:A=εcL,Femol

-1

(7)(8)

邻菲罗啉红色络合物溶液,

4

在波长为510nm(ε10L?max=1111×

-12+

?),,Fe络合物溶液浓

2+

度cc=εL

[9~10]

式中,Uloss———0

能量损失,Uloss=Ug-ΔGH2/n,03ΔG2/n—014eV;——n是产物H2的数量,(1)时的光子数(假设φconv=1)。

215非标准状态下太阳能转换成可储存的化学能

H

(11)

312单位时间高压汞灯产生的光子数

单位时间(s)内汞灯产生的光子数为:

(At-A0)V2V0N??0

n=

εlV1<Fe2+t

2+

(12)

式中,N0———阿佛加德罗常数;ε———Fe的摩尔吸光系数;L———比色皿厚度;ΦFe2+=1121(高压汞灯λ——高压汞灯的照射时max=365nm的量子产率);t—间,s。

313单位时间(s)内高压汞灯的输出功率计算

W=nhv=n

的效率

在非标准状态下,如P<1atm时,太阳能转换成可储存的H2化学能的效率为:

000-1

ΔΔG0fGJ?molH=(H+ΔfGO)-ΔfGHO(l)=23712k2222

ΔGH2=ΔG0)H-RTln(2

P

λ

(13)

ηc=

ΔGHRHEsA

(9)

式中,h———普朗克常数;c———光速;n———单位时

间(s)内汞灯产生的光子数。

314单位时间(s)内产氢的量子产率计算

2nHN0

n

在光电池化学中,一般需加一偏压(Biasvoltage)

才能保证产氢反应的进行,则其电功输出(IVbias)应

从产氢反应的ΔGH2中减掉。太阳能转换成可储存的H2化学能的储存效率应表示为:

ΔG0HRH-IVbias

η=c

EsA

<H2=

×100%(14)

式中,nH2———单位时间氢气的生成量,molΠs;

(10)

N0———阿伏加德罗常数;n———单位时间(s)内汞灯

虽然ηc可通过(9)式或(10)式计算,但目前使用汞灯或氙灯作为模拟太阳光光源的研究阶段,光

源的输出功率只能通过实验获得。

产生的光子数。315能量转换效率计算

nHΔcHHη=×100%

W

(15)

3太阳能能量转换效率及产氢量子产

式中,nH2———单位时间内生成氢气的摩尔数,molΠs;ΔcHH2———HH2的燃烧焓,在标准状态下等于水的ΔG0——单位时间(s)内高压汞灯的输出功率。H;W—2

率的计算方法

能量转化效率和产氢的量子产率是衡量光催化

1116太阳能学报

H2ΠTR296.

27卷

对于准直高压汞灯作为光源,用化学光量计测定可见光区的光子数绝对值的实验方法是在测定体系中加入适量的NaNO2(1molΠL),滤掉波长小于400nm的紫外光。从高压汞灯的条状能量分布可知,λ=436,546,577~579nm波长的可见光强度较弱。所

[2].AnationalvisionofAmer2

ica’[R].2002.

[3].Nationalhydrogenroad2

map[R].2002.

[4]BoltonJR.Solarphotoproctionofhydrogen:areview

[J].SolarEnergy,1996,57(1):37—50.

[5]BoltonJR,StricklerSJ,ConnollyJS.Limitingandrealiz2

[J].Nature,1985,316:495—500.

[6]LichtS.

mentalanalysis[J].ECommunication,2002,4:790—795.

[7PengLi,etofBe

,:235—239.

]上官文峰.光解制氢材料的构筑及其性能[J].中国有

2+

以,也可改用氙灯作为光催化分解水制氢体系的模拟光源。

4结论

本文建立了一种利用已知量子产率的化学光量计测定模拟太阳光源的光子数绝对值的实验方法。利用该方法对能量转化效率及产氢量子产率进行了计算。建立了一套相对规范的能量转化效率及产氢的量子产率的实验测定标准及计算方法,在本领域内归纳总结不同研究小组的工作结果,学严谨的比较标准大有裨益。

致谢:;感谢973,感谢本课题组。

dopingTiO2on

J].ChemicalPhysicsLetters,

色金属学报,2004,14(S2):327—330.

[9]邢婵娟,延卫,张耀君,等.负载金属光催化剂及其光

分解水产氢性能研究[J].西安交通大学学报,2005,

39(5):511—513.

[10]杨鸿辉,延卫,张耀君,等.PtΠTiO22xNx光催化剂的制

[参考文献]

[1]BoltonJR.Solarphotoproctionofhydrogen,IEAagree2

[R].IEAΠ

备及其产氢活性研究[J].西安交通大学学报,2005,

39(5):514—516.ZhangYaojun

1,2

,GuoLiejin,YanWei,ZhaoLiang,YangHonghui,LiMingtao,XuYunbo

111111

(1.,Xi’anJiaotongUniversity,Xi’an710049,China;2.,Xi’,Xi’an710055,China)

Abstract:Thethresholdenergy,.,ogenproctionwerecalculated.

Keywords:efficiencyofenergyconversion;quantumyield;

‘拾’ 量子产率的介绍

量子产率是指光化学反应中光量子的利用率。

阅读全文

与下列哪个光化学反应中光的量子产率相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:663
乙酸乙酯化学式怎么算 浏览:1334
沈阳初中的数学是什么版本的 浏览:1271
华为手机家人共享如何查看地理位置 浏览:957
一氧化碳还原氧化铝化学方程式怎么配平 浏览:809
数学c什么意思是什么意思是什么 浏览:1324
中考初中地理如何补 浏览:1221
360浏览器历史在哪里下载迅雷下载 浏览:631
数学奥数卡怎么办 浏览:1301
如何回答地理是什么 浏览:953
win7如何删除电脑文件浏览历史 浏览:984
大学物理实验干什么用的到 浏览:1405
二年级上册数学框框怎么填 浏览:1615
西安瑞禧生物科技有限公司怎么样 浏览:756
武大的分析化学怎么样 浏览:1173
ige电化学发光偏高怎么办 浏览:1262
学而思初中英语和语文怎么样 浏览:1557
下列哪个水飞蓟素化学结构 浏览:1351
化学理学哪些专业好 浏览:1417
数学中的棱的意思是什么 浏览:974