‘壹’ 如何建立化学平衡思想
高中阶段的学生对可逆反应的相关问题存在认识障碍,如,判断平衡状态的依据是哪些、平衡的移动方向以及平衡移动后相关物质的定量计算,学生感到困难重重。由于这块知识的抽象性,学生无法构建相关的知识网络结构,也难以构建解决平衡的思维方法。面对新的问题情境,学生不能还原已学过的知识,也不会对问题进行分析和解决。因此,对这一模块的教学,教师不能简单传授知识和操练习题,关键是在教学过程中要帮助学生建立化学平衡思想。我们可以从以下几个方面帮助学生建立化学平衡思想。
一、化学平衡状态的建立和判断
化学平衡的研究对象主要是可逆反应,当外界条件一定时,在反应物生成产物的一瞬间,逆反应也就开始了。由于起初生成物浓度很小,逆反应速率也很小,反应物浓度很大,正反应速率开始时最大。随着反应的进行,产物不断生成,反应物不断被消耗,正反应速率随着反应物浓度的下降而渐渐变小,逆反应速率随生成物浓度的上升而不断增大。最终,正反应和逆反应的速率相等,各组分的浓度不再发生变化,达到了化学平衡状态。因此,化学平衡状态具有“动、定、等、变”的特点。可逆反应是否达到平衡状态可以从正逆反应速率相等和组分的浓度不变这两方面判断。
1.平衡状态判断方法之一:正逆反应速率相等
正逆反应速率相等是指反应中同一物质的生成速率和消耗速率相等。根据反应速率理论,同一反应在同一时间用不同物质来表示反应速率,速率比等于系数比。因此,正反应和逆反应可以用不同物质来表示,如果不同物质表示的速率比等于系数比,那么这个反应也就达到了平衡。
如:可逆反应aA(g)+bB(g)?葑cC(g)+dD(g)在一定条件下,如果v(正,A)=v(逆,A)或者v(正,A):v(逆,C)=a:c,则表示此反应达到了平衡。
例1.在一定温度下的固定体积的容器中反应,反应N2(g)+3H2(g)?葑2NH3(g)达到平衡的标志是( )
A.3v(N2)正=v(H2)正
B.2v(H2)正=3v(NH3)逆
C.单位时间内生成1mol氮气,同时生成2mol氨气
D.三个H-H键断裂的同时有两个H-N键形成
解析:运用等速来判断平衡,必须要有正、逆两个方向的速率,而且正逆反应速率相等。选项A、C、D只有一个方向的速率,选项B符合速率相等,因此,答案为B。
2.平衡状态判断方法之二:各组分的浓度不再变化
可逆反应由于正逆反应的速率相等达到平衡,因此,各物质的净变化为零。各组分的质量、物质的量、物质的量浓度都不发生变化。
例2.H2(g)+I2(g)?葑2HI(g)已经达到平衡状态的标志是( )
①c(H2)=c(I2)=c(HI)
②c(H2)∶c(I2)∶c(HI)=1∶1∶2
③c(H2)、c(I2)、c(HI)不再随时间而改变
解析:反应达到平衡时,各物质的浓度或物质的量不再变化,各物质间的浓度或物质的量之比没有确定的定量关系。平衡时各物质的浓度或物质的量随着起始浓度的变化而变化。因此,答案为③。
3.平衡状态判断方法之三:其他物理量的间接判断
平衡状态的判断除了上述两种基本依据外,还可以根据气体的总物质的量、气体的压强、气体的密度和气体的相对分子质量等物理量来判断,如果这些物理量不再随时间变化而变化,也可以作为平衡状态的判断依据。运用这些物理量来判断平衡状态,要注意反应的类型。对于气体参加或气体生成的反应,如果反应前后气体分子总数不变的反应(即等体反应),如,H2(g)+I2(g)?葑2HI(g),在一定温度下的固定体积的容器中反应,如果气体的总物质的量不变、在一定条件下压强不变、密度不变、混合气体的密度不变不能作为平衡状态的依据。同样道理,一定温度下,可逆反应A(g)+2B(g)?葑C(g)在容积固定的密闭容器中进行,如果混合气体的总物质的量不再变化、混合气体的压强不再变化、混合气体的密度不再变化,不能作为平衡状态的依据。但仅是混合气体的密度不变能作为平衡状态的依据。因此,同样是等体反应,要分清是哪一类等体反应。对于反应前后气体分子总数有变的反应(即非等体反应),如,N2(g)+3H2(g)?葑2NH3(g)在一定温度下的固定体积的容器中反应,如果混合气体的总物质的量不再变化、混合气体的压强不再变化、混合气体的平均相对分子质量不再变化均可作为平衡状态的依据,只有混合气体的密度不再变化,不能作为平衡状态的依据。
二、化学平衡常数与平衡思想
为了定量描述可逆反应的平衡状态,引入了化学平衡常数。对于一般的可逆反应aA+bB?葑cC+dD;各物质的平衡浓度之间存在一个关系式,即K=■,叫做化学平衡常数表达式。这个常数的大小可以表示反应进行程度的大小,也可以判断反应是否达到化学平衡状态。常数的大小主要由反应物的性质决定,如果一个化学反应的平衡常数的数值在105左右,通常认为,反应可以进行得比较完全;相反,如果一个化学反应的平衡常数的数值在5~10左右,则认为这个反应很难进行。其次,K受外界因素温度的影响,同一个反应,温度不同,反应进行的程度不同,K发生变化,因此,根据K随温度的变化可推测一个反应的热效应。
1.利用化学平衡常数判断反应进行的状态
如,某温度下,可逆反应aA(g)+bB(g)?葑cC(g)+dD(g)
平衡常数为K,若某时刻时,反应物和生成物的浓度关系如下:Qc=■。 如果Qc=K,反应处于平衡状态;如果QcK,反应向逆反应进行。
2.利用化学平衡常数判断反应的热效应
可逆反应aA(g)+bB(g)?葑cC(g)+dD(g)(ΔH>0),如果升高温度,平衡向吸热反应方向(即正反应方向)移动,K值变大;如果降低温度,平衡向放热反应方向(即逆反应方向)移动,K值变小。因此,如果一个可逆反应的K随温度升高而变大,则正反应为吸热反应。反之,K随温度升高而减小,则正反应为放热反应。
例3.已知反应2CH3OH(g)?葑CH3OCH3(g)+H2O(g)在某温度下的平衡常数为400。此温度下,在密闭容器中加入CH3OH,反应到某时刻测得各组分的浓度如下:
■
(1)比较此时正、逆反应速率的大小:v正 v逆(填“>”、“<”或“=”)
(2)K300℃>K400℃,则该反应是 热反应。
解析:此时的浓度商Q=■=1.86<400,反应未达到平衡状态,向正反应方向移动,故v正>v逆;温度降低时,K值变大,说明平衡向正反应方向移动,正反应为放热反应。
三、教学活动中平衡思想的应用
平衡思想不仅仅存在于可逆反应中,也存在于弱电解的电离平衡、盐类水解平衡和沉淀溶解平衡中。平衡状态的特点和平衡时的定量关系同样存在于各类平衡体系,勒沙特列原理可以分析任何平衡体系。教师在日常的教学活动中不断渗透和应用平衡思想,让学生在学习化学的过程中体会和领悟平衡思想,以达到会应用。
1.化学平衡思想的应用
情境一:氯气能溶于水,但氯气在饱和食盐水溶解度很小,可用排饱和食盐水收集氯气。氯气中混有的氯化氢气体也可通过饱和食盐水的方式提纯氯气。
解析:将氯气通入水中存在的平衡体系Cl2+H2O?葑H++Cl-+HClO。饱和食盐水中氯离子浓度很大,使上述平衡左移,所以氯气在饱和食盐水中溶解度很小,可用排饱和食盐水法收集氯气。同样,由于HCl极易溶于水,使溶液中Cl-浓度增大,平衡左移,抑制氯气溶于水,因此除去HCl杂质。
2.化学平衡和电离平衡相结合分析反应的本质
情境二:在常温下铝很难与水反应,但铝与氢氧化钠溶液很快反应,产生气泡。
在高一讲课时,教师经常这样分析:在碱的作用下,铝首先会与水反应生成氢氧化铝和氢气,生成的氢氧化铝与碱反应生成了偏铝酸钠和水,因此,铝与碱液反应生成了氢气。对这种解释方式,学生还是难以理解。在这个体系中存在两个平衡体系:(1)H2O?葑H++OH-,(2)2Al+6H2O?葑2Al(OH)3+3H2↑(这个反应的K很小)。金属Al由于金属性较弱,就必须有高浓度的H+,但水是一种很弱的电解质,其中的C(H+)很小,反应无法发生,假如提高了H+的浓度,则反应就能发生,譬如,把上述水换为盐酸溶液即可。加入盐酸,我们也可以这样说,由于盐酸的加入,破坏了2Al+6H2O?葑2Al(OH)3+3H2↑这个化学平衡,盐酸和2Al(OH)3作用生成了AlCl3,平衡(2)往正反应方向移动。
同样道理,由于Al(OH)3是两性氢氧化物,若在上述体系中加入NaOH溶液,能和Al(OH)3反应生成NaAlO2,也破坏了(2)化学平衡,于是反应发生了。
3.水解平衡思想的应用
盐溶液的配制和一些胶体的制取,应用了盐类的水解平衡思想。如,为什么配制氯化铁溶液时要加入盐酸,加热饱和氯化铁溶液可以制得氢氧化铁胶体?解析:氯化铁溶液中存在平衡体系为Fe3++3H2O?葑Fe(OH)3+3H+(ΔH>0),Fe(OH)3(s)?葑Fe33+(aq)+3OH-(aq)(ΔH>0)。由于K(Fe(OH)3)很小,氯化铁溶液中不加盐酸,铁离子不断水解,会产生Fe(OH)3沉淀。加入盐酸,增大了H+浓度,第一个平衡左移而第二个平衡右移,因此,抑制Fe3+的水解。当加热时,水解平衡正移,沉淀溶解平衡逆移,就得到了胶体。
四、反思
化学平衡思想的建立过程不是简单的过程,在教学过程中,教师选择具体的化学问题让学生来分析探讨,从感性上体会到平衡思想。也可以选择经典的化学题,从理性思维上运用平衡思想。总之,化学平衡思想贯穿在整个高中化学的教学中,让学生逐渐领悟,从而学会运用平衡思想定性和定量分析化学反应,理解反应的本质。
‘贰’ 化学平衡题
答案是B。根据等效平衡,对于同一可逆反应,在一定条件下(恒温恒容或恒温恒压)下以不同的投料方式进行反应,只要达到平衡时相同物质在混合物中的百分比(体积分数,物质的量分数,质量分数)相等即可。这道题属于第一种情况恒温恒容,在这种情况下如果按照方程式的化学计量关系转化为方程式同一边的物质其物质的量与对应组分的起始加入量相同者建立的化学平衡是等效平衡。 所以说只有按照化学计量数之间的关系转化才是等效平衡。
‘叁’ 化学平衡
:①平均反应速率的计算;②外因对化学反应速率及化学平衡的影响;③化学平衡状态的标志;④相同平衡状态的建立;⑤化学平衡移动图象的处理;⑥有关化学平衡的简单计算。
一、平均反应速率的计算
同一化学反应在同一段时间内的平均反应速率用不同的物质表示时数值往往不同,但存在如下关系:各物质的平均反应速率之比 = 化学方程式中各物质的系数之比 = 各物质的变化浓度之比 = 各物质的变化的物质的量之比。
例⒈反应N2(g)+3H2(g)2NH3(g)在密闭容器中进行,分别用N2、H2、NH3三种物质在单位时间内浓度的变化表示该反应的速率V(N2)、V(H2)、V(NH3),则三者之间的关系正确的是(答案)
(A)V(N2)=V(NH3) (B)3V(H2)=2V(NH3) (C)V(NH3)=2V(H2)/3 (D)V(H2)=3V(N2)
例⒉ 反应2A(g)+B(g)3C(g)+4D(g)在不同条件下反应速率如下,其中最快的是(答案)
(A)V(A)=3mol/(L·min) (B)V(B)=0.3mol/(L·s)
(C)V(C)=4.8mol/(L·min) (D)V(D)=1mol/(L·s)
二、外因对化学反应速率及化学平衡的影响
对于同一反应,其它条件不变,只改变下列条件之一:
⒈浓度
(鼠标移至图象显示答案)
增大反应物浓度 减小反应物浓度 增大生成物浓度 减小生成物浓度
规律:⑴浓度对反应速率的影响(参阅速率-时间图象)
⑵增大反应物浓度或减小生成物浓度,平衡向正反应方向移动;减小反应物浓度或增大生成物浓度,平衡向逆反应方向移动。
⑶改变固体或纯液体的物质的量不影响反应速率,不会引起化学平衡的移动。
例⒊对于平衡体系FeCl3+3KSCNFe(SCN)3+3KCl, 下列情况下平衡如何移动?
⑴加入FeCl3固体,平衡 移动;答案
⑵加入NH4SCN固体,平衡 移动;答案
⑶加入少量KCl固体,平衡 移动;答案
⑷加入少量AgNO3固体,平衡 移动;答案
⑸加水,平衡 移动;答案
⑹加入少量KSCN溶液,平衡 移动。答案
例⒋ 一定条件下,在体积不变的密闭容器中加入2molA和1molB发生如下反应:2A(s)+B(g)C(g),达到平衡时C的浓度为Wmol/L,在相同条件下,若按下列原料配比,用“>”、“=”、“<”填写下表:
起始状态
平衡时C的浓度
A
B
已知
2mol
1mol
c(C) = Wmol/L
①
2mol
2mol
c(C) Wmol/L
②
3mol
1mol
c(C) Wmol/L
③
1mol
1mol
c(C) Wmol/L
答案
(鼠标移至图象显示答案)
升高温度 降低温度
规律:⑴升温,正逆反应速率均增大;降温,正逆反应速率均减小。其中吸热反应方向速率(V吸)改变程度大。
⑵升温,平衡向吸热反应方向移动;降温,平衡向放热反应方向移动。
例⒌ 20℃时将0.1mol/LNa2S2O3溶液10mL和0.1mol/L的硫酸溶液混合,2min后溶液中出现混浊,已知温度每升高10℃,化学反应速率增大到原来的2倍,那么50℃时,同样的反应出现混浊需要的时间是(答案)
(A)40s (B)15s (C)48s (D)20s
⒊压强:对于气体反应,有:
(鼠标移至图象显示答案)
增大压强 减小压强
规律:⑴增大压强,正逆反应速率均增大;减小压强,正逆反应速率均减小。其中气体体积减小方向速率(V减)改变程度大。
⑵增大压强,平衡向气体体积减小方向移动;减小压强,平衡向气体体积增大方向移动。
【注意】⑴改变压强的实质是改变参加反应气体物质的浓度,故压强与参加反应的固体或液体物质的反应速率无关。
⑵对于化学方程式中反应前后气体的系数和相等的反应以及平衡混合物都是固体或液体的反应,改变压强,平衡不移动。
【思考】在一定条件下的密闭容器中2HI(g)H2(g)+I2(g)达到平衡状态,若增大压强,正逆反应速率如何变化(用速率-时间图象表示)?若反应为CaCO3(s)CaO(s)+CO2(g),情况又如何?
⑶在已达平衡状态的气体反应中加入稀有气体或与反应无关的气体:①等温等容,压强虽增大,但反应物浓度不变,故V正、V逆不变,平衡不移动;②等温等压,则容器体积增大,导致参加反应气体物质浓度均同等程度减小,但V正、V逆不同程度减小,平衡向气体体积增大方向移动。
【思考】一定条件下,在容积不变的密闭容器中,反应N2(g)+3H2(g)2NH3(g)达到平衡状态,若把N2、H2及NH3的浓度同时增大一倍,平衡如何移动?(相当于增大压强)
(鼠标移至图象显示答案)
规律:催化剂同等程度地改变正逆反应速率,故平衡不移动。
【注意】⑴催化剂可成千上万倍地改变反应速率,故85%以上化学反应都需催化剂
⑵催化剂在一定温度范围内才能充分发挥其催化作用,同时,工业生产中应防止催化剂中毒。
除浓度、温度、催化剂等能改变化学反应速率外,如果改变有气体参加反应的压强,就是改变单位体积内气体反应物的浓度,因此也会影响化学反应速率。此外,电磁波、超声波、反应物颗粒大小、溶剂的性质等,也会对化学反应速率产生影响。
勒沙特列原理(平衡移动原理):如果改变影响平衡的一个条件(如浓度、压强或温度等),平衡就向能够减弱这种改变的方向移动。
例⒍下列事实中不能应用勒沙特列原理来解释的是(答案)
(A)往H2S水溶液中加碱有利于S2-的增多 (B)加入催化剂有利于氨氧化反应
(C)高压有利于合成氨反应 (D)500℃左右比室温更有利于合成氨反应
三、化学平衡状态的标志
化学平衡状态有两大特征:①正逆反应速率相等 ②平衡混合物中各组分的浓度保持不变,只要任具其一即可说明已达平衡状态。因此,判断一定条件下的可逆反应是否达到化学平衡状态,关键是看是否具备上述基本特征。
例⒎在一定温度下的密闭容器中,下列可以说明反应A(g)+B(g)C(g)+D(g)已达平衡状态的是(C为有色气体)(答案)
①A和C的生成速率相等
②容器中A、B、C、D共存
③容器中A、B、C、D的物质的量浓度相等
④容器中A的物质的量浓度保持不变
⑤容器内压强不随时间变化
⑥A、B、C、D的分子数之比等于反应式系数之比
⑦混合气体总的物质的量不随时间变化
⑧混合气体平均式量不随时间变化
⑨混合气体的密度不随时间变化
⑩混合气体的颜色不发生变化
例⒏ 若上题中反应为A(g)+3B(g)2C(g)+D(g),则应选(答案)
例⒐ 下列说法可以说明反应N2(g)+3H2(g)2NH3(g)已达平衡状态的是(答案)
(A)一个N≡N断裂的同时有三个H—H断裂
(B)一个N≡N断裂的同时有三个H—H形成
(C)一个N≡N断裂的同时有六个N—H断裂
(D)一个N≡N断裂的同时有六个N—H形成
例⒑ 在一定温度下的定容容器中,当下列物理量不再发生变化时,表明反应A(s)+2B(g)C(g)+D(g)已达平衡状态的是(答案)
(A)混合气体的压强 (B)混合气体密度 (C)B的物质的量浓度 (D)气体总的物质的量
在平衡状态标志试题中值得注意的是平均式量与平衡体系的关系:①平衡混合物全为气体的可逆反应且反应前后气体的系数和相等时,不论平衡是否移动,平均式量不变;②平衡混合物全为气体但反应前后气体的系数和不等的可逆反应,平衡移动时,平均式量必改变。若气体物质的量增加则平均式量减小,反之则增大;③反应中有固体,要根据具体情况(即气体质量及物质的量变化)进行讨论。如:在一个密闭容器中加入C和H2O(g),发生反应:C(s)+H2O(g)CO(g)+H2(g),达到平衡状态后加压使平衡向逆反应方向移动,气体质量和物质的量均减少,但反应物中水蒸气的式量为18,而生成相同物质的量的CO和H2的平均式量为15,故平衡向逆反应方向移动后混合气体的平均式量要增大。
四、相同平衡状态的建立
根据化学平衡状态的概念,相同平衡状态是指在一定条件下,同一可逆反应无论反应是从正向开始还是从逆向开始(即不同的途径),经一段时间达平衡后,反应体系中任一反应物和生成物的浓度均相同的多个化学平衡状态之间的互称。因此,相应物质的转化率、各组分的百分含量也相同,而相应物质的物质的量等不一定相同。
⒈等温等容时
⑴对反应前后气体体积变化的可逆反应,可通过可逆反应的化学计量关系(即反应方程式的系数)把不同情况下各物质的物质的量都换算成反应物(或生成物)时,若相应的物质的量相等;或所有参加反应的物质中各元素的量守恒,则可达到相同的平衡状态,例如:
N2(g) + 3H2(g)2NH3(g)
① 1mol 3mol 0
② 0 0 2mol
③ 0.5mol 1.5mol 1mol
④ 2mol 6mol 0
在等温等容时,以上①②③组中三种原料的配比最终会达到相同平衡状态。此时,各组分的浓度、体积分数、物质的量、转化率及反应速率都完全相同;而④组则不能
【思考】①上面例子中按第④组原料的配比,最终达到平衡时NH3的产率与其它组相比有何不同?
②在体积不变的密闭容器中加入2molN2和3molH2,使其反应达到平衡后,NH3的浓度为w mol/L。若维持温度不变,N2、H2、NH3三种物质如何配比,才能使其达到平衡时NH3的浓度为仍为w mol/L?
⑵对于反应前后气体体积不变的可逆反应,由于给此类反应体系加压使气体体积缩小,或者按比例加大(或减小)各物质的物质的量,再次达到平衡时,各组分的浓度将同等程度地改变,反应速率也会发生相应的改变,但各组分的体积分数及反应物的转化率保持不变(讨论:各组分的物质的量如何改变?)。因此,只要把不同情况下各物质的物质的量完全换算成反应物(或生成物)后,各反应物(或生成物)的物质的量之比一致,即可实现上述平衡状态。例如:
H2(g) + I2(g)2HI(g)
① 2mol 1mol 0
② 4mol 2mol 0
③ 5mol 2mol 2mol
⒉等温等压时(容积可变),对于反应前后气体体积无论不变还是变化的可逆反应,只要将不同情况下各物质的物质的量完全换算成反应物(或生成物)后,各反应物(或生成物)的物质的量之比一致,便可达到相同的平衡状态。此时,各组分的浓度、体积分数、转化率及反应速率都完全相同(但各组分的物质的量将同等程度改变)。
⒊在平衡体系中充入稀有气体或与反应无关的气体:
等温等容时,引起平衡体系的压强增大,但各物质的浓度不变,反应速率不变,平衡不移动。
等温等压时,引起平衡体系的体积增大,各物质的浓度同等程度减小,反应速率减小,平衡向气体体积增大的方向移动。
例⒒在一个固定体积的密闭容器中,加入2molSO2和1molO2,可发生如下反应:2SO2(g)+O2(g)2SO3(g),达平衡时SO3的浓度为w mol/L,若维持温度体积不变,按下列配比作为起始物质,达到平衡时,SO3的浓度仍为w mol/L的是(答案)
(A)4molSO2和2molO2 (B)1molSO2、0.5 molO2和1molSO3 (C)2molSO3
(D)1molSO3 (E)2.5molSO3 (F)2molSO2和2molO2
例⒓将上题改为体积可变的密闭容器,维持温度压强不变,则应选(答案)
例⒔在一固定体积的密闭容器中,加入2molA和1molB,发生反应如下反应:2A(g)+B(g)3C(g)+D(g),达平衡时C的浓度为w mol/L,若维持容器体积和温度不变,按下列配比作为起始物质,C的浓度仍为w mol/L的是(答案)
(A)4molA+2molB (B)2molA+1molB+3molC+1molD
(C)3molC+1molD+1molB (D)3molC+1molD
例⒕若上题反应式中B为固体,则应选(答案)
五、化学平衡移动图象的处理方法
方法有二:⑴定一议二:当图象中同时有三个变量时,使其中之一不变,讨论另外两个变量间的关系;⑵先拐先平:变化曲线若与时间轴平行,表示反应体系已达平衡状态,先达到平衡(先出现拐点)的曲线所示的温度或压强较大。
例⒖可逆反应2SO2(g)+O2(g)2SO3(g),△H=-Q(Q>0),在温度为T1、T2,压强为P1、P2条件下测得SO3的物质的量n (SO3)与 时间t的关系如下图所示,从图中可知下列关系正确的是(答案)
例⒗对于反应2A(g)+B(g)2C(g) △H =-Q(Q>0),下列图象正确的是(答案)
六、有关化学平衡的计算
⒈反应物的平衡量 = 起始量—转化量(指物质的量或物质的量浓度)
生成物的平衡量 = 起始量 + 转化量
应注意的是,上述三种量中只有转化量之比等于反应方程式系数之比。
应注意的是:①可逆反应的平衡转化率最大;②对于某一平衡体系,其它条件不变,只增大反应物甲的浓度,可提高反应物乙的转化率,而甲的转化率降低。
⒊由阿伏加德罗定律推论得出:等温等压:气体体积之比等于其物质的量之比
等温等容:气体压强之比等于其物质的量之比
例⒘ 一定条件下的可逆反应2SO2(g)+O2(g)2SO3(g)在体积不变的密闭容器中达到平衡后,改变条件,重新达平衡后,下列各种量如何变化?
改变条件(其它条件不变)
转化率
浓度
SO2
O2
SO2
O2
SO3
①只加入SO2
②只加O2
③SO2、O2、SO3浓度同时增大一倍
答案
改变条件(其它条件不变)
转化率
浓度
SO2
O2
SO2
O2
SO3
①只加入SO2
↓
↑
↑
↓
↑
②只加O2
↑
↓
↓
↑
↑
③SO2、O2、SO3浓度同时增大一倍
↑
↑
↑
↑
↑
注意:在原平衡中加入某物质,再次平衡后该物质浓度必增大
‘肆’ 化学平衡的规律,公式关系
‘伍’ 化学平衡的条件
化学平衡状态具有逆,等,动,定,变等特征。
逆:化学平衡研究的对象是可逆反应。
等:平衡时,正逆反应速率相等,即v正=v逆。
动:平衡时,反应仍在进行,是动态平衡,反应进行到了最大程度。
定:达平衡状态时,反应混合物中各组分的浓度保持不变,反应速率保持不变,反应物的转化率保持不变,各组分的含量保持不变。
变:化学平衡跟所有的动态平衡一样,是有条件的,暂时的,相对的,当条件发生变化时,平衡状态就会被破坏,由平衡变为不平衡,再在新的条件下建立新平衡。
影响化学平衡的因素有很多.
如压强\温度\浓度\等.(注意:催化剂不影响化学平衡,仅影响反应速率)
在其他条件不变的情况下,增大反应物浓度或减小生成物浓度,可使平衡向正反应方向移动
勒夏特列原理:如果改变影响平衡的一个条件(浓度压强或温度等),平衡就向能够减弱这种改变的方向移动
‘陆’ 浓度与化学平衡的关系。
首先要明确一个概念,化学平衡的建立与途径无关.
接下来解决你的问题.
甲容器中投料是1gso2,1go2
乙容器中投料是2gso2,2go2,我可以把这样的投料分为两部分,
先投入1gso2,1go2,那么打到平衡后和甲容器的平衡态是相同的,则o2的浓度也相
同,那么,此时我再投入剩下的1gso2,1go2,平衡固然正向移动,但是如果要达到和
之前相同的浓度,那么后投入的1go2需要完全消耗掉,但是,可逆反应的特征是不
能实现完全转化,也就是说后加入的o2不能完全消耗掉,所以平衡两部分o2的浓度
相加必然大于甲容器.
这是定性分析,如果要定量分析的话可以引入平衡常数,不过我这里现在没数据,
并且过程比较繁琐,就不进行演算了.
最后给你一句很有用的话:只减弱,不抵消.
用在这道题上就是说乙中开始o2浓度远大于甲,所以平衡正向移动,"减弱"这个条
件,也就是使o2浓度不那么大,但是它"不抵消"这种影响,也就是说最后乙的浓度
还是会大于甲.而且我们还可以推出乙的浓度小于甲的两倍,因为乙的浓度起初为
甲的浓度的两倍,但是因为"减弱",所以小于甲的两倍,但是因为"不抵消",所以还
是大于甲的浓度.这句话很有用,把浓度换成体积分数,压强等等都适用,我做题的
时候常常可以条件反射似的用到这句话解决问题.
‘柒’ 请问怎样才能更好的理解化学平衡(拜托哪位高手解答一下)
化学平衡状态是指在一定条件下的可逆反应,正反应和逆反应的速率相等,反应混合物中各组分的浓度保持不变的状态。
‘捌’ 化学平衡怎么改变的
影响平衡移动的因素只有有浓度、压强和温度三个。
1.浓度对化学平衡的影响
在其他条件不变时,增大反应物浓度或减小生成物浓度, 平衡向正反应方向移动;减小反应物浓度或增大生成物浓度, 平衡向逆反应方向移动。
2.压强对化学平衡的影响
在有气体参加、有气体生成而且反应前后气体分子数变化的反应中,在其他条件不变时,增大压强(指压缩气体体积使压强增大),平衡向气体体积减小方向移动;减小压强(指增大气体体积使压强减小),平衡向气体体积增大的方向移动。
注意:恒容时,充入不反应的气体如稀有气体导致的压强增大不能影响平衡.
3.温度对化学平衡的影响
在其他条件不变时,升高温度平衡向吸热反应方向移动。
以上三种因素综合起来就得到了勒夏特列原理(Le Chatelier's principle)即平衡移动原理:
如果改变影响平衡的一个条件(如浓度、压强、温度),平衡就向能够减弱这种改变的方向移动。
说明:催化剂只能缩短达到平衡所需时间,而不能改变平衡状态(即百分组成)
可用勒夏特列原理定性地说明浓度对化学平衡的影响——增加反应物浓度或减小生成物浓度,平衡向生成物方向移动,增加生成物浓度或减小反应物浓度,平衡向反应物方向移动。
利用化学平衡的概念,对比K和J大小,可以判断系统中的反应混合物是否达到平衡,以及平衡将向哪个方向移动。即:J 〉K,平衡向左移动;J〈 K,平衡向右移动;J = K,达到平衡状态。这一关系式被称为化学平衡的质量判据,是与上面的能量判据相对应的。为便于记忆,可缩写为:
J K
自然,我们作此判断时假设反应不存在动力学的障碍。若系统的动力学性质不明,以上判断仅为反应方向的预测。
‘玖’ 化学平衡常数的公式是什么啊
平衡常数的表达式:
①
溶液中的反应:
[A]
、[B]
、[C]
、[D]
:
表示
A
、B
、G
、D
在平衡时的浓度;
Kc
为浓度平衡常数;单位:
Δn
=(
x
+
y
)–(
m
+
n
)
Δn=
0
时,
Kc
无量纲,Δn
≠
0
时,
Kc
有量纲
,
②
气相反应:
压力平衡常数:
PA
、PB
、PC
、PD:气态物质
A
、
B
、
G
、
D
平衡时的分压,
KP为压力平衡常数
Kp
量纲:
(Pa)Δn,
(kPa)Δn,
(atm)Δn
Δn
=0
时,
无量刚
,
Δn
≠0
时,
Kp有量纲,浓度平衡常数
Kp与Kc的关系
:
反应物生成物都近乎理想气体时,根据理想气体的气态方程
PV
=
nRT
P
=
cRT
,代入到
表达式中,
Kp
=
Kc(RT)△n(
只应用于单纯气态反应
)
Δn
=0时,Kp
=
Kc(注意适用条件)
③
复相反应
反应物或生成物中同时存在溶液状态、气体状态、固体状态时,纯液相和纯固相不出现在平衡常数表达式中,该反应平衡常数表达式的气体用分压表示,溶液用浓度表示,平衡常数
Kx,称为杂平衡常数。
例:
Kx:
Pa·(mol·dm-3)-1
,
kPa·(mol·dm-3
)-1
,
atm·(mol·dm-3)-1
3.平衡常数的意义:
表示在一定条件下,可逆反应所能进行的极限,平衡常数
K
越大,说明正反应进行的越彻底。
通常:K
>
107
,正反应单向;
K
<
10-7
,逆反应单向;
K
=
10-7
~
107
,可逆反应
‘拾’ ,化学平衡常数的公式怎么来的
化学平衡常数,是指在一定温度下,可逆反应无论从正反应开始,还是从逆反应开始,也不管反应物起始浓度大小,最后都达到平衡,这时各生成物浓度的化学计量数次幂的乘积与各反应物浓度的化学计量数次幂的乘积的比值是个常数,用K表示,这个常数叫化学平衡常数。平衡常数一般有浓度平衡常数和压强平衡常数。