‘壹’ 在化学上,什么是“电化学发光法”
电化学发光免疫测定(ECLI)是一种在电极表面由电化学引发的特异性发光反应,包括电化学和化学发光两个部分。分析中应用的标
记物为电化学发光的底物三联吡啶钌或其衍生物N-羟基琥珀酰胺(NHS)酯,可通过化学反应与抗体或不同化学结构抗原分子结合,
制成标记的抗体或抗原。ECLI的测定模式与ELISA相似。其基本原理是发光底物二价的三联吡啶钌及反应参与物三丙胺在电极表
面失去电子而被氧化。氧化的三丙胺失去一个H+而成为强还原剂,将氧化型的三价钌还原为激发的二价钌,随即释放光子而恢复为基态
的发光底物。这一过程在电极表面周而复始地进行,不断地发出光子而常保持底物浓度的恒定。
具有以下优点:1.标记物的再循环利用,使发光时间更长、强度更高、易于测定;2.敏感度高,可达pg/ml或pmol水平;3
.线性范围宽,>10的四次方;4.反应时间短,20min以内可完成测定;5.试剂稳定性好,2~5℃可保持一年以上。
‘贰’ 化学发光剂的常用发光剂
酶促反应的发光底物
酶促反应的发光底物是指经酶的降解作用而发出光的一类发光底物,目前化学发光酶免疫技术中常用的酶有辣根过氧化物酶(HRP)和碱性磷酸酶(AP)。HRP的发光底物为鲁米诺或其衍生物和对-羟基苯乙酸。AP的发光底物为3-(2-螺旋金刚烷-4-甲氧基-4-甲基-4-(3-磷酸氧基)-苯基-1,2-二氧乙烷(AMPPD)和4-甲基伞形酮磷酸盐(4-MUP,荧光底物)。
(1).鲁米诺或其衍生物。 鲁米诺的氧化反应在碱性缓冲液中进行,通常以0.1mol/L pH8.6Tris缓冲液作底物液。要注意是:首先,鲁米诺和H2O2在无HRP催化时也能缓慢自发发光,而在最后光强度测定中造成空白干扰,因而宜分别配制成2瓶试剂溶液,只在用前即刻混合;其次, HRP发光增强剂如某些酚试剂(如邻-碘酚)或萤火虫荧光素酶可增强HRP催化鲁米诺氧化的反应和延长发光时间,提高发光敏感度。
(2).对-羟基苯乙酸(HPA)。 对-羟基苯乙酸(HPA)在H2O2存在下被HRP氧化或氧化二聚体(荧光物质),在350nm激发光作用下,发出450nm波长的荧光,可用荧光光度计测量。
(3).AMPPD。 AMPPD在碱性条件下,被ALP酶解生成相当稳定的AMP-D阴离子,其有2-30min的分解半衰期,发出波长为470nm的持续性光,在15min时其强度达到高峰,15-60min内光强度保持相对稳定。
(4)4-MUP。 4-MUP被ALP催化生成4-甲基伞形酮,在360nm的激发光的作用下,发出448nm的荧光,用荧光光度计进行测量。
直接化学发光剂
直接化学发光剂不需酶的催化作用,只需改变溶液的pH等条件就能发光的物质,如吖啶酯(acridinium, AE)在有过氧化氢的稀碱溶液中即能发光。
电化学发光剂
电化学发光剂是指通过在电极表面进行电化学反应而发出光的物质。化学发光剂三联吡啶钌[Ru(bpy)3]2+(图16-7)和电子供体三丙胺(TPA)在阳性电极表面可同时失去一个电子而发生氧化反应。二价的[Ru(bpy)3]2+被氧化成三价,成为强氧化剂,TPA失去电子后被氧化成阳离子自由基TPA+,它很不稳定,可自发地失去一个质子(H+),形成自由基TPA.,成为一种很强的还原剂,可将一个高能量的电子递给三价的[Ru(bpy)3]3+使其形成激发态的[Ru(bpy)3]2+.。激发态的三联吡啶钌不稳定,很快发射出一个波长为620nm的光子,回复到基态的三联吡啶钌。这一过程可在电极表面周而复始地进行,产生许多光子,使光信号增强。
‘叁’ 电化学发光的好处
电化学发光现在是很热的研究领域,虽然已经发展了五六十年,但随着检测技术和电极(特别是透明电极的发展),电致发光得到了进一步应用,在生物分析、电分析领域发挥到越来越大的作用。
其中电化学发光与光谱学(比如紫外、荧光等)联用,可以实现高灵敏度、高选择性分析及电化学体系的测定。我正在看电化学大神J. Bard的《电化学方法原理与应用》,书里对电化学发光的描述:
60年代初,美国着名电化学家R.N. Adams教授在指导他的研究生T. Kuwana进行邻二苯胺衍生物电氧化时,观察到电极反应伴随有颜色的变化,他提出了这样的设想:“能不能设计出一种能看穿的电极,以光谱的方法来识别所形成的有色物质呢?”。这个创新思想终于在1964年由Kuwana 实现了。他们第一次使用的光透电极(OTE)是在玻璃板上镀了一薄层掺杂Sb的SnO2
玻璃(Nesa玻璃)。光谱电化学从此得到了迅速发展,已成为电化学的一个重要分支。它是各种波谱技术和电化学方法相结合,在同一个电解池内同时进行测量的方法。其特点是同时具有电化学和波谱学二者的特性,可以在电极反应过程中获得多种有用的信息,对于研究电极过程机理、电极表面特性,检测反应中间体、瞬间状态和产物性质,测定式量电位、电子转移数,电极反应速率常数和扩散系数等,提供了非常用力的研究手段。
‘肆’ 如何有效提高LED灯的发光强度
1.采用大芯片,高亮度等级的芯片
2.采用恒流电源
3.加聚光的透镜
4.可能的话再加反光材料。
‘伍’ 化学发光包括哪些方法
化学发光是物质在进行化学反应过程中伴随的一种光辐射现象,可以分为直接发光和间接发光。直接发光是最简单的化学发光反应,有两个关键步骤组成:即激发和辐射。如A、B两种物质发生化学反应生成C物质,反应释放的能量被C物质的分子吸收并跃迁至激发态C*,处于激发的C*在回到基态的过程中产生光辐射。这里C*是发光体,此过程中由于C直接参与反应,故称直接化学发光。
‘陆’ 有哪位大神解释一下电化学发光法,跪谢
化学发光法是分子发光光谱分析法中的一类,它主要是依据化学检测体系中待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理,利用仪器对体系化学发光强度的检测,而确定待测物含量的一种痕量分析方法。
电化学发光分析法具有灵敏度高、仪器设备简单、操作方便、易于实现自动化等特点,广泛地应用于生物、医学、药学、临床、环境、食品、免疫和核酸杂交分析和工业分析等领域。
在21世纪中必将继续为解决人类面临的各种重大问题发挥更加显着的作用。
化学发光与其它发光分析的本质区别是体系产生发光 (光辐射) 所吸收的能量来源不同。
体系产生化学发光,必须具有一个产生可检信号的光辐射反应和一个可一次提供导致发光现象足够能量的单独反应步骤的化学反应。
依据供能反应的特点,可将化学发光分析法分为:
1)普通化学发光分析法(供能反应为一般化学反应)。
2)生物化学发光分析法(供能反应为生物化学反应;简称BCL)。
3)电致化学发光分析法(供能反应为电化学反应,简称ECL)等。
根据测定方法该法又可分为:
1)直接测定CL分析法。
2)偶合反应CL分析法(通过反应的偶合,测定体系中某一组份)。
3)时间分辨CL分析法(即利用多组份对同一化学发光反应影响的时间差实现多组份测定)。
4)固相、气相、液相CL分析法。
5)酵联免疫CL分析法等。