❶ 重金属在土壤中的存在形式
重金属进入土壤中会发生迁移转化 存在形式变化多样
以下为主要重金属在土壤中的迁移转化:
1)镉的迁移转化:重金属元素镉一旦进入土壤便会长时间滞留在耕作层中。由于它移动缓慢,故一般不会对地下水产生污染。
土壤中镉的存在形态分为水溶性和非水溶性镉。离子态cdcl2、cd(no3)2、cdco3和络合态的如cd(oh)2呈水溶性的,易迁移,可别植物吸收,而难溶性镉的化合物如镉沉淀物、胶体吸附态镉等,不易迁移和为植物吸收。但两种在一定条件下可相互转化。
在旱地土壤中多以碳酸镉、磷酸镉和氢氧化镉形态存在,其中以碳酸镉为主,尤其在ph大于7的石灰性土壤中明显。
淹水土壤,如水稻土则是另一情况,当土壤内积水时,在水下形成还原环境,有机物不能完全分解而产生硫化氢,当施用硫酸铵肥料时,由于硫还原细菌的作用,也大量生成硫化氢。在含硫化氢的还原环境中,镉多以硫化镉的形式存在于土壤中,而溶解度下降形成难溶性硫化镉形态。所以,在单一种植水稻的土壤中硫化镉积累将占优势。
作物对镉的吸收,随土壤ph 值的增高而降低,土壤中的有机质能与镉合成螯合物,从而降低镉的有效性;其次氧化-还原电位也影响作物对镉的吸收,氧化-还原电位(eh)降为0时,则有利于形成难溶性的硫化镉和其它难溶性化合物。当水田落干时,硫化镉则会氧化成硫酸镉,或通过其它氧化还原反应,而增加其溶性。
另一方面s2- 氧化为硫酸,使ph降低,硫化镉的溶解度增加。
据研究,镉和锌、铅、铜的含量存在一定的关系,镉含量高的地方锌、铅、铜也相应高,所以镉还受锌、铅、铜(ⅱ)、铁(ⅱ)、锰(ⅱ)、钙、磷酸根等伴生离子的影响。
2)汞的迁移转化:土壤中汞的存在形态有离子吸附和共价吸附的汞、可溶性汞(氯化汞),难溶性汞(磷酸氢汞、碳酸汞及硫化汞)。影响汞迁移转化的因素主要有:
(1)吸附剂的种类:土壤中汞的腐殖质胶体和无机胶体对汞有很强的吸附力,进入土壤的汞由于吸附等作用使绝大部分汞积累在耕作层土壤,不易向深层迁移,除沙土或土层极薄的耕地以外,汞一般不会通过土壤污染地下水。
粘土矿物对氯化汞的吸附能力其顺序是:伊利石> 蒙脱石>高岭石;对醋酸汞的吸附顺序是蒙脱石>水铝英石>高岭石 。ph值等于7时,无机胶体对汞的吸附量最大;而研究胶体在ph值较低时,就能达到最大的吸附量。非离子态汞也可被胶体吸附。此外,当土壤溶液含很少的氯化亚汞、氯化汞和不溶性硫化汞时,如果溶液中含有大量的氯离子,就会生成的hgcl42- ,即可大大提高汞的迁移能力。在酸性土壤中有机质以富里酸为主,它与汞络合和吸附时,也可以成溶解状态迁移。
(2)氧化-含有状态
无机汞(hg、hg2+、hgs)之间在微生物作用下可以相互转化。在氧化环境,hg在抗汞细菌的参与下可以被氧化成hg2+。土壤溶液中存在一定的s2- 时,就可能生成hgs,hgs在嫌气条件下是稳定的,但存在大量s2- 时,则会生成一种可溶性的hgs22- 存在于溶液中。在氧化环境某些特殊生物酶的作用下,hgs也可转化成hg2+。
另外,无机汞和有机汞也可相互转化。在嫌气或好气条件下均可以通过生物或者化学合成途径合成甲基汞。一般在碱性和有机氮存在的情况下有利于合成二甲基汞。在酸性介质中二甲基汞不稳定,易分解成甲基汞。
(3)植物对汞的吸收与土壤中汞含量关系:试验证明,水稻生长的“米汞”和“土汞”之间生物吸收富集系数为0.01。土壤中汞及其化合物可以通过离子交换与植物的根蛋白进行结合,发生凝固反应。汞在作物不同部位的累积顺序为:根>叶>茎>种子。不同作物对汞的吸收和积累能力是不同的,在粮食作物中的顺序为:水稻>玉米>高粱>小麦。不同土壤中汞的最大允许量是有差别的,如酸性土壤为0.5ppm,石灰性土壤为1.5ppm。如果土壤中的汞超过此值,就可能生产出对人体有毒的“汞米”。
3)砷的迁移转化:土壤中砷的形态可分为水溶性砷、交换性砷和难溶性砷。其中水溶性砷约占总砷的5~10%,大部分是交换态及难溶性砷。
自然界砷的化合物,大多数以砷酸盐的形态存在于土壤中,如砷酸钙、砷酸铝、亚砷酸钠等。砷有三价和五价,而且可在土壤中相互转化。
由于污染而进入土壤中砷,一般都在表层积累,难于向下移动。除碱金属与砷反应生产的亚砷酸盐如亚砷酸钠溶解度较大,易于迁移外,其余的亚砷酸盐类溶解度均较小,限制了砷在溶液中的迁移。
土壤中的砷大部分为胶体所吸附,或与有机物络合螯合,或与土壤中的铁、铝、钙等结合形成难溶性化合物,或与铁、铝等氢氧化物形成共沉淀。土壤中的粘土矿物胶体不同类型对砷的吸附量明显不同,一般是蒙脱石>高岭石>白云石。
吸附于粘粒表面的交换性砷,可被植物吸收,而难溶性砷化物很难为作物吸收,并积累在土壤中。增加这部分砷的比例可减轻砷对作物的毒害,并可提高土壤的净化能力。
土壤中各种形态的砷可以发生转化。例如,在旱田土壤中,大部分以砷酸根状态存在,当土壤处于淹水条件时,随着氧化-还原电位的降低,则还原成亚砷酸。一般认为亚砷酸盐对作物的危害性比砷酸盐类高3倍以上。为了有效地防止砷的污染及危害,提高土壤氧化-还原电位值的措施以减少低价砷酸盐的形成,降低其活性是非常必要的。
❷ 浙北地区土壤元素有效度影响因素分析
在浙江省北部地区约13200km2的区域范围内,以约120km2作为1个采样单元格,布设采集了105件代表性土壤样品,测定了土壤元素全量和有效量,以及有机质含量和pH值,取得了如下研究成果。
1.土壤元素有效度
(1)土壤元素有效度
统计资料表明,浙北地区土壤元素全量依次为(中值,单位:mg/kg):Fe 320 000、Mn 485、Zn 80.5、B 61.9、Cu 31.8、Pb 31.5、As 9.3、Mo 0.50、Se 0.33、Hg 0.192、Cd 0.190,而元素有效态或可浸提性含量依次为(中值,单位:mg/kg):Mn 123、Fe 120、Pb 5.54、Cu 5.48、Zn 5.47、B 0.26、Mo 0.13、Cd 0.114、As 0.036、Se 0.011、Hg 0.00018(表5-9)。对比两者间的排序可以发现,土壤元素有效量或可浸提量与全量总体排序十分相似,如Fe、Mn无论是全量还是有效量均为最高,含量级别往往高于其他元素一个或数个含量级,又如B、Cu、Pb、Zn4元素,无论是全量还有效量或可浸提量均处在第二级次,反映了土壤元素有效量总体受其元素丰度所控制。
表5-9 浙北地区土壤元素有效量与有效度
注:有效量含量单位Cd、Hg为ng/g,其余为mg/kg。
由表5-9可见,浙北地区土壤元素有效度(中值,单位:%)顺序为:Cd 59.82、Mn 26.20、Mo 24.00、Cu 17.94、Pb 17.06、Zn 7.22、Se 3.45、B 0.43、As 0.37、Fe 0.35、Hg 0.11,可见不同元素的有效度相差悬殊,显然,元素表生地球化学性质是决定其有效度的重要因素。例如,土壤中Hg、Cd全量(中值)分别为192ng/g、190ng/g,十分接近。但是,由于土壤中Cd活动性强,Cd有效度远大于Hg,相差约500倍,从而使土壤中Cd有效量显着高于Hg。同时,Cd的生物毒性很强,因此,在评价土壤Cd、Hg污染时,土壤Cd污染的生态危害性更应引起注意。
(2)地貌特征与土壤元素有效度
在各种地貌单元中,土壤物质来源和成壤作用过程往往不同,低山丘陵区主要发育红壤化作用,土壤风化淋溶程度较高,而杭州湾沿岸新围垦滨海平原区,主要发育脱盐碱作用,风化淋溶程度低。不同地貌单元土壤有机质含量和酸碱性具有一定差别,经统计,浙北地区低山丘陵岗地、山前平原、河网平原3 种地貌类型土壤有机质含量(中值)分别为3.05%、3.32%、2.89%,pH值分别为5.38、6.36、6.95。各类地貌单元土壤中元素有效度差异明显(表5-10)。
1)低山丘陵岗地As、Cd、Fe、Pb、Se、Zn有效量较高。除了受土壤元素全量的影响外,显然与低山丘陵岗地多分布红壤有关。红壤酸性较强,比较富含有机质,使土壤中这些元素的有效度提高。
2)调查表明,浙北地区山前平原多为湖沼相、潟湖相沉积,原始沉积物中Hg、Pb、Zn元素含量较高,重金属元素含量由地表向深部的下降幅度较小,表明土壤重金属主要为原始沉积成因。同时,浙北地区山前平原往往也是大中城市集中分布区,如宁波、杭州、绍兴等,表层土壤中或多或少叠加有污染来源的Hg、Pb、Zn等重金属元素。因而,浙北山前平原区土壤中Hg、Pb、Zn等元素含量较高。
表5-10 浙北地区不同类型地貌单元土壤中元素有效度
注:含量单位Cd、Hg为ng/g,其余为mg/kg。
(3)土壤类型与元素有效量、有效度
土壤是成土母质、地形地貌、气候、植被与时间等多种因素综合作用的产物,不同类型土壤有着其独特的理化性质、元素含量和元素分配特征,从而决定土壤元素有效量及有效度。毋庸置疑,土壤元素含量及其分布分配不仅受到自然地质作用的影响,还不同程度地受到工业“三废”排放、化肥农药施肥、交通运输污染等各种人为因素的影响。
浙北地区主要土壤类型为红壤、水稻土、潮土和滨海盐砂土。各类土壤中有机质含量(中值,单位:%)分别为红壤2.81、水稻土3.32、潮土1.58、滨海盐土0.84,水稻土最富含有机质,钱塘江沿岸围垦区耕作熟化程度较低的潮土、滨海盐砂土有机质最低。各类土壤pH值(中值)分别为红壤5.36、水稻土6.55、潮土8.01、滨海盐土8.20,以红壤酸性最强,水稻土次之,而潮土、滨海盐砂土的盐基含量较高,呈碱性。从表5-11可见,浙北地区不同类型土壤中各种元素的有效度变化较大,具有以下规律:
As、Mn、Se有效度为:红壤>水稻土>潮土>滨海盐砂土;
Fe、Pb有效度为:红壤>水稻土>滨海盐砂土>潮土;
Cu、Cd、Zn有效度为:水稻土>红壤>潮土>滨海盐砂土;
B有效度为:滨海盐砂土>潮土>红壤>水稻土;
Mo有效度为:水稻土>潮土>滨海盐砂土>红壤;
Hg有效度为:红壤>滨海盐砂土>潮土>水稻土。
不同土壤类型间元素有效度的这种差异性,反映了土壤有机质、pH值对土壤元素地球化学行为的规律性作用。
1)红壤和水稻土相对富含有机质,呈中酸性,从而使As、Cd、Cu、Fe、Mn、Pb、Se、Zn等多数元素具有较高的有效度;而潮土和滨海盐砂土为偏碱性或碱性土壤,有机质含量低,因而多数元素有效度很低。土壤成因、性质的不同以及由此决定的元素有效度的显着差异,使红壤和水稻土中As、Cd、Cu、Fe、Mn、Pb、Se、Zn等元素有效量明显大于潮土和滨海盐砂土。
2)红壤、水稻土、潮土、滨海盐砂土中B元素含量分别为62.6、62.2、63.7、55.6mg/kg,相差不大,以滨海盐砂土B含量最低。由于碱性条件下B元素有效度较高,导致滨海盐砂土和潮土中B有效量较高。
表5-11 浙北地区不同类型土壤中元素有效量与有效度
注:含量单位Cd、Hg为ng/g,其余为mg/kg。
3)各种类型土壤间Hg、Mo有效度虽有差异,但变化不大。水稻土中Hg有效度最低,可能是由于淹水灌溉使水稻田经常处于还原状况,Hg与S2-结合形成极难溶的硫化汞(HgS)有关。尽管如此,由于水稻土中Hg全量很高,其有效量仍然高于其他土壤。红壤中Mo有效度明显较低,与酸性条件下Mo活动性弱有直接关系。
2.影响土壤元素有效度的主要因素
已有大量研究证实,土壤元素赋存形态及其生物有效性除了元素自身的表生地球化学性质外,还与土壤有机质含量、酸碱度(pH值)、矿物组成(矿物种类、晶格结构)、机械粒级组成(砂粒和粘粒含量、阳离子交换量CEC)、氧化还原电位(Eh)、微生物组成及含量、元素及有机物含量、含水量等各种土壤理化条件有关。不同成壤条件形成的土壤类型不同,不同类型土壤的理化性质存在一定差异,从而成为决定土壤元素存在形态及其有效量、有效度的主要影响因素。
(1)土壤元素全量对有效量的影响
浙北地区土壤有效态样品统计表明,各种元素全量与有效量相关系数分别为:Fe-0.012,Mn 0.897,Cu 0.809,Zn 0.551,B 0.040,Mo 0.480,Cd 0.826,Hg-0.012,As-0.076,Pb 0.814,Se 0.649(样本数为105个、置信度α=0.05时,显着相关临界值约为0.195)。即Mn、Cu、Zn、Mo、Cd、Pb、Se等元素有效量总体上受总量的明显影响,因此,土壤元素全量资料对于农业施肥(Mn、Cu、Zn、Mo)、环境质量及生态效应评价(Cd、Pb、Mn、Cu、Zn)、富硒特色农产品发展均具有较为直接的参考应用价值。
(2)土壤有机质对有效量和有效度的影响
1)对有效量的影响。研究表明,浙北地区土壤有机质(碳)含量与Fe、Se有效量(可浸提量)呈现一定的共消长关系(图5-1),与Cu、Pb、Zn、Cd、Mo、B具有良好的线性关系;而Hg、Mn有效量与有机质(碳)的关系不明显(图5-1)。
图5-1 浙北地区元素有效量(可浸提量)与有机质含量散点图
2)对有效度的影响。统计分析表明,土壤元素有效度与有机质含量间的相关系数分别为:Fe 0.547,Mn-0.058,Cu 0.648,Zn 0.380,B 0.035,Mo 0.146,Cd 0.579,Hg-0.364,As 0.268,Pb 0.451,Se 0.151(置信度α=0.05时,显着相关临界值约为0.195),表明多数元素有效度明显受土壤有机质含量的影响。其中Fe、Cu、Zn、Cd、As、Pb的有效度与有机质呈正相关性,表明长期耕作并经常处于还原状态的水稻土对有机质的积累,以及低山丘陵岗地残株落叶导致的有机质积聚,均可能导致Fe、Cu、Zn、Cd、As、Pb有效度的提高,使土壤中这些元素的生物有效量增加,从而增加其生态风险性。相反,土壤中Hg有效度与有机质含量呈负相关性,表明增加土壤有机质含量有利于使土壤保持较低的氧化还原电位,从而使土壤Hg处于相对稳定的赋存状态,事实上这已成为控制治理土壤污染的途径之一。
(3)土壤pH值对有效度的影响
统计分析表明,元素有效度与pH值间的相关系数分别为:Fe-0.702,Mn-0.088,Cu-0.543,Zn-0.494,B0.286,Mo-0.116,Cd-0.639,Hg-0.019,As-0.266,Pb-0.653,Se-0.637(置信度α=0.05时,显着相关临界值约为0.195)。反映多数元素有效度明显受土壤pH值的影响,其中Fe、Cu、Zn、Cd、As、Pb、Se有效度与pH值显着负相关,而B则与pH值呈显着正相关。即pH值是影响土壤中Cd、Zn、Cu、As、Pb等重金属元素有效性及其可浸提量的重要因素(图5-2)。
图5-2 浙江地区土壤pH值对元素有效度的影响
以上研究表明,浙北地区土壤类型及其有机质、酸碱度等理化性质对土壤元素赋存形态、有效量及有效度有重要影响。土壤中Mn、Cu、Zn、Mo、Cd、Pb、Se等元素全量是其有效量的重要影响控制因素;有机质含量较高有利于Fe、Cu、Zn、Cd、As、Pb等元素的活化,增加其生物有效量;土壤酸碱度对Fe、Cu、Zn、Cd、As、Pb、Se有效度有显着影响,酸性土壤有利于提高这些元素的有效量,而碱性环境中B元素有效量较高。土壤元素有效量与全量的关系及其影响因素研究成果,对于区域土壤地球化学资料(元素全量)在农业营养施肥、环境质量评价,以及重金属污染生态危害预测评价等方面具有重要的指导意义。
❸ 水稻土和旱地土壤有何差异
应该很多方面都不同吧,像水分含量,氧化还原电位等都不同,土层结构,土壤里面的各种微生物什么的都不同吧,也适合不同的种植物亲想了解更多的话可以找度娘看看这两种土壤各自的网络http://ke..com/link?url=
http://ke..com/subview/717202/8059415.htm?fr=aladdin
希望能帮到你!
❹ 土壤化学指标
一、土壤酸碱度(pH值)
土壤酸碱度对土壤肥力及植物生长影响很大,我国西北、北方不少土壤pH值大,南方红壤pH值小。因此可以种植和土壤酸碱度相适应的作物和植物。如红壤地区可种植喜酸的茶树,而苜蓿的抗碱能力强等。土壤酸碱度对养分的有效性影响也很大,如中性土壤中磷的有效性大;碱性土壤中微量元素(锰、铜、锌等)有效性差。在农业生产中应该注意土壤的酸碱度,积极采取措施,加以调节。
1.电位法
土壤实验室基本上都采用电位法测定土壤pH值,电位法有准确、快速、方便等优点。其基本原理是:用pH计测定土壤悬浊液的pH值时,由于玻璃电极内外溶液H+离子活度的不同产生电位差。
2.比色法
取土壤少许(约黄豆大),弄碎后放在白磁盘中,滴入土壤混合指示剂数滴,到土壤全部湿润,并有少量剩余。震荡磁盘,使指示剂与土壤充分作用,静置1min,和标准比色卡比色,即得出土壤的酸碱度。
3.原位酸碱度传感器法
土壤原位pH测定仪可直接埋入土壤测试,直接读数,非常方便,在指导农业科研及农业生产中起到了非常重要的作用。
二、土壤氧化还原电位(Eh)
土壤氧化还原电位是以电位反映土壤溶液中氧化还原状况的一项指标,用Eh表示,单位为mV。
土壤氧化还原电位的高低,取决于土壤溶液中氧化态和还原态物质的相对浓度,一般采用铂电极和饱和甘汞电极电位差法进行测定。影响土壤氧化还原电位的主要因素有:①土壤通气性;②土壤水分状况;③植物根系的代谢作用;④土壤中易分解的有机质含量。
旱地土壤的正常Eh为200~750mV,若Eh﹥750mV,则土壤完全处于氧化状态,有机质消耗过快,有些养料由此丧失有效性,应灌水适当降低Eh。若Eh﹤200mV,则表明土壤水分过多,通气不良,应排水或松土以提高其Eh值。
水田土壤Eh变动较大,在淹水期间Eh值可低至-150mV,甚至更低;在排水晒田期间,土壤通气性改善,Eh值可增至500mV以上。一般地说,稻田适宜的Eh值在200~400mV之间,若Eh经常在180mV以下或低于100mV,则水稻分蘖或生长发育受阻。若长期处于-100mV以下,水稻会严重受害甚至死亡,此时应及时排水晒田以提高其Eh值。
1.二电极法
测定氧化还原电位的常用方法是铂电极直接测定法,方法是基于铂电极本身难以腐蚀、溶解,可作为一种电子传导体。当铂电极与介质(土壤、水)接触时,土壤或水中的可溶性氧化剂或还原剂,将从铂电极上接受电子或给予电子,直至在铂电极上建立起一个平衡电位,即该体系的氧化还原电位。由于单个电极电位是无法测得的,故须与另一个电极电位固定的参比电极(饱和甘汞电极)构成电池,用电位计测量电池电动势,然后计算出铂电极上建立的平衡电位,即氧化还原电位Eh值。
2.去极化测定仪法
对复杂的介质,可采用去极化法测定氧化还原电位。可以在较短时间内得到较为精确的结果,用去极化法测得的平衡Eh值,与直接电位法平衡48h后测得的稳定Eh值,差数一般﹤10mV。所以去极化法能缩短测定时间,并有较高的测定精度。
将铂电极接到极化电压的正端(极化电压为600mV或750mV),以银-氯化银电极作为辅助电极,接到电源的负端,阳极极化10 s以上(自由选择)。接着切断极化电源,进行去极,时间在20 s以上(视极化曲线而定),在去极化后监测铂电极的电位(对甘汞电极),对于大多数的测试样品,电极电位E(mV)和去极化时间的对数log t间存在直线关系。以相同的方法进行阴极极化和随后的去极化和监测电位。阳极去极化曲线与阴极去极化曲线的延长线的交点相当于平衡电位。
三、土壤阳离子交换量(CEC)
CEC的大小,基本上代表了土壤可能保持的养分数量,即保肥性的高低。阳离子交换量的大小,可作为评价土壤保肥能力的指标。阳离子交换量是土壤缓冲性能的主要来源,是改良土壤和合理施肥的重要依据。
1.乙酸铵交换法
适用于酸性与中性土壤阳离子交换量的测定。原理:用1mol/L乙酸铵溶液(pH7.0)反复处理土壤,使土壤成为铵离子饱和土。过量的乙酸铵用95%乙醇洗去,然后加氧化镁,用定氮蒸馏方法进行蒸馏,蒸馏出的氨用硼酸溶液吸收,然后用盐酸标准溶液滴定,根据铵离子的量计算土壤阳离子交换量。
2.EDTA——铵盐法
铵盐法不仅适用于中性、酸性土壤,并且适用于石灰性土壤阳离子交换量的测定。采用0.005mol/L EDTA与1mol/L的醋酸铵混合液作为交换剂,在适宜的pH条件下(酸性土壤pH7.0,石灰性土壤pH8.5),这种交换配合剂可以与2价钙离子、镁离子和3价铁离子、铝离子进行交换,并在瞬间即形成电离度极小而稳定性较大的配合物,不会破坏土壤胶体,加快了2价以上金属离子的交换速度。同时由于醋酸缓冲剂的存在,对于交换性氢和1价金属离子也能交换完全,形成铵质土,再用95%酒精洗去过剩的铵盐,用蒸馏法测定交换量。对于酸性土壤的交换液,同时可以用作为交换性盐基组成的待测液用。
3.氯化钡-硫酸强迫交换法
土壤中存在的各种阳离子可被氯化钡(BaCl2)水溶液中的阳离子(Ba2+)等价交换。土壤用BaCl2溶液处理,使之和Ba2+饱和,洗去剩余的BaCl2溶液后,再用强电解质硫酸溶液把交换到土壤中的Ba2+交换下来,由于形成了硫酸钡(BaSO4)沉淀,而且氢离子(H+)的交换吸附能力很强,使交换反应基本趋于完全。这样可以通过计算消耗硫酸的量,计算出阳离子交换量。
四、土壤碱化度(ESP)
土壤的碱化度是用Na+的饱和度来表示,它是指土壤胶体上吸附的交换性Na+占阳离子交换量的百分率。当碱化度达到一定程度时,土壤的理化性质会发生一系列的变化,土壤呈极强的碱性反应pH﹥8.5甚至超过10.0,且土粒分散、湿时泥泞、不透气、不透水、干时硬结、耕性极差,土壤理化性质所发生的这一系列变化称为碱化作用。碱化度是盐碱土分类、利用、改良的重要指标。一般把碱化度﹥20%定为碱土,5%~20%定为碱化土(15%~20%为强碱化土,10%~15%为中度碱化土,5%~10%为轻度碱化土)。
计算公式:
碱化度=(交换性钠/阳离子交换量)× 100%
式中:交换性钠[cmol(Na+)/kg]用乙酸铵-氢氧化钠铵交换-火焰光度法测得;阳离子交换量[cmol(+)/kg]用氯化铵-乙酸铵交换法测得。
五、土壤水溶性全盐量(易溶盐)
土壤水溶性盐是盐碱土的一个重要属性,是限制作物生长的障碍因素。我国的盐碱土分布广,面积大,类型多。在干旱、半干旱地区盐渍化土壤,以水溶性的氯化物和硫酸盐为主。滨海地区由于受海水浸渍,生成滨海盐土,所含盐分以氯化物为主。在我国南方(福建、广东、广西等省区)沿海还分布着一种反酸盐土。盐土中含有大量水溶性盐类,影响作物生长,同一浓度的不同盐分危害作物的程度也不一样。盐分中以碳酸钠的危害最大,增加土壤碱度和恶化土壤物理性质,使作物受害。其次是氯化物,氯化物又以MgCl2的毒害作用较大,另外,氯离子和钠离子的作用也不一样。
土壤(及地下水)中水溶性盐的分析,是研究盐渍土盐分动态的重要方法之一,对于了解盐分对种子发芽和作物生长的影响以及拟订改良措施都是十分必要的。
1.电导法
土壤中的水溶性盐是强电介质,其水溶液具有导电作用,导电能力的强弱可用电导率表示。在一定浓度范围内,溶液的含盐量与电导率呈正相关,含盐量愈高,溶液的渗透压愈大,电导率也愈大。土壤水浸出液的电导率用电导仪测定,直接用电导率数值表示土壤的含盐量。
2.质量法
吸取一定量的土壤浸出液放在瓷蒸发皿中,在水浴上蒸干,用过氧化氢(H2O2)氧化有机质,然后在105~110℃烘箱中烘干,称重,即得烘干残渣质量。
六、土壤养分元素
土壤养分元素是指由土壤提供的植物生长所必需的营养元素,能被植物直接或者转化后吸收。土壤养分可大致分为大量元素、中量元素和微量元素,包括氮(N)、磷(P)、钾(K)、钙(Ca)、镁(Mg)、硫(S)、铁(Fe)、硼(B)、钼(Mo)、锌(Zn)、锰(Mn)、铜(Cu)和氯(Cl)等13种。在自然土壤中,土壤养分主要来源于土壤矿物质和土壤有机质,其次是大气降水、坡渗水和地下水。在耕作土壤中,还来源于施肥和灌溉。
根据在土壤中存在的化学形态,土壤养分的形态分为:①水溶态养分,土壤溶液中溶解的离子和少量的低分子有机化合物;②代换态养分,水溶态养分的来源之一;③矿物态养分,大多数是难溶性养分,有少量是弱酸溶性的(对植物有效);④有机态养分,矿质化过程的难易强度不同。
根据植物对营养元素吸收利用的难易程度,土壤养分又分为速效性养分和迟效性养分。一般来说,速效养分仅占很少部分,不足全量的1%。应该注意的是速效养分和迟效养分的划分是相对的,两者是处于动态平衡之中。
土壤养分的总储量中,有很小一部分能为当季作物根系迅速吸收同化的养分,称速效性养分;其余绝大部分必须经过生物的或化学的转化作用方能为植物所吸收的养分,称迟效性养分。一般而言,土壤有效养分含量约占土壤养分总储量的百分之几至千分之几或更少。故在农业生产中,作物经常出现因某些有效养分供应不足而发生缺素症的现象。
1.全氮测定法
(1)开氏定氮法。土壤、植株和其他有机体中全氮的测定通常都采用开氏消煮法,用硫酸钾-硫酸铜-硒粉做加速剂。此法虽然消煮时间长,但控制好加速剂的用量,不易导致氮素损失,消化程度容易掌握,测定结果稳定,准确度较高,适用于常规分析。
土壤中的含氮有机化合物在加速剂的参与下,经浓硫酸消煮分解,有机氮转化为铵态氮,碱化后把氨蒸馏出来,用硼酸吸收,标准酸滴定,求出全氮含量。硫酸钾起提高硫酸溶液沸点的作用,硫酸铜起催化剂作用,加速有机氮的转化,硒粉是一种高效催化剂,用量不宜过多,否则会引起氮素损失。
(2)半微量开氏法。样品在加速剂的参与下,用浓硫酸消煮时,各种含氮有机化合物,经过复杂的高温分解反应,转化为铵态氮。碱化后蒸馏出来的氨用硼酸吸收,以标准酸溶液滴定,求出土壤全氮含量(不包括全部硝态氮)。
包括硝态和亚硝态氮的全氮测定,在样品消煮前,需先用高锰酸钾将样品中的亚硝态氮氧化为硝态氮后,再用还原铁粉使全部硝态氮还原,转化为铵态氮。
2.全磷硫酸-高氯酸消煮测定法
在高温条件下,土壤中含磷矿物及有机磷化合物与高沸点的硫酸和强氧化剂高氯酸作用,使之完全分解,全部转化为正磷酸盐而进入溶液,然后用钼锑抗比色法测定。
3.全钾测定法
土壤中的有机物先用硝酸和高氯酸加热氧化,然后用氢氟酸分解硅酸盐等矿物,硅与氟形成四氟化硅逸去。继续加热至剩余的酸被赶尽,使矿质元素变成金属氧化物或盐类。用盐酸溶液溶解残渣,使钾转变为钾离子。经适当稀释后用火焰光度法或原子吸收分光光度法测定溶液中的钾离子浓度,再换算为土壤全钾含量。
4.碱解氮测定法
土壤水解性氮或称碱解氮包括无机态氮(铵态氮、硝态氮)及易水解的有机态氮(氨基酸、酰铵和易水解蛋白质)。用碱液处理土壤时,易水解的有机氮及铵态氮转化为氨,硝态氮则先经硫酸亚铁转化为铵。以硼酸吸收氨,再用标准酸滴定,计算水解性氮含量。
5.速效磷测定法
(1)碳酸氢钠法。石灰性土壤由于存在大量的游离碳酸钙,不能用酸溶液来提取速效磷,可用碳酸盐的碱溶液。由于碳酸根的同离子效应,碳酸盐的碱溶液降低了碳酸钙的溶解度,也就降低了溶液中钙的浓度,这样就有利于磷酸钙盐的提取。同时由于碳酸盐的碱溶液也降低了铝和铁离子的活性,有利于磷酸铝和磷酸铁的提取。此外,碳酸氢钠碱溶液中存在着OH-,
(2)钼锑抗比色法。酸性土壤中的磷主要是以Fe—P、Al—P的形态存在,利用氟离子在酸性溶液中有配合Fe3+,Al3+的能力,可使这类土壤中比较活性的磷酸铁铝盐被陆续活化释放,同时由于H+的作用,也能溶解出部分活性较大的Ca—P,然后用钼锑抗比色法进行测定。
6.速效钾测定法
用1mol/L NH4OAc浸提土壤,可将胶体表面吸附的钾离子全部浸提出来,而与黏土矿物晶格固定的钾截然分开。
7.有机质重铬酸钾容量测定法
在加热的条件下,用过量的重铬酸钾-硫酸(K2Cr2O7-H2SO4)溶液,来氧化土壤有机质中的碳,
七、土壤重金属
土壤的重金属主要包括汞(Hg)、镉(Cd)、铅(Pb)、铬(Cr)和类金属砷(As)等生物毒性显着的元素,以及有一定毒性的锌(Zn)、铜(Cu)、镍(Ni)等元素。主要来自农药、废水、污泥和大气沉降等,如汞主要来自含汞废水,镉、铅污染主要来自冶炼排放和汽车废气沉降,砷则被大量用作杀虫剂、杀菌剂、杀鼠剂和除草剂。过量重金属可引起植物生理功能紊乱、营养失调,镉、汞等元素在作物子实中富集系数较高,即使超过食品卫生标准,也不影响作物生长、发育和产量,此外汞、砷能减弱和抑制土壤中硝化、氨化细菌活动,影响氮素供应。重金属污染物在土壤中移动性很小,不易随水淋滤,不为微生物降解,通过食物链进入人体后,潜在危害极大,应特别注意防止重金属对土壤的污染。一些矿山在开采中尚未建立石排场和尾矿库,废石和尾矿随意堆放,致使尾矿中富含难降解的重金属进入土壤,加之矿石加工后余下的金属废渣随雨水进入地下水系统,造成严重的土壤重金属污染。
1.原子吸收分光光度法
原子吸收分光光度法的测量对象是呈原子状态的金属元素和部分非金属元素,是由待测元素灯发出的特征谱线通过供试品经原子化产生的原子蒸气时,被蒸气中待测元素的基态原子所吸收,通过测定辐射光强度减弱的程度,求出供试品中待测元素的含量。原子吸收一般遵循分光光度法的吸收定律,通常借比较对照品溶液和供试品溶液的吸光度,求得供试品中待测元素的含量。所用仪器为原子吸收分光光度计,它由光源、原子化器、单色器、背景校正系统、自动进样系统和检测系统等组成。
2.X射线荧光光谱(XRF)法
XRF法是介于原子发射光谱(AES)和原子吸收光谱(AAS)之间的光谱分析技术。它的基本原理是基态原子(一般蒸气状态)吸收合适的特定频率的辐射而被激发至高能态,而后激发过程中以光辐射的形式发射出特征波长的荧光。该方法可定量分析测量待测元素的原子蒸气在一定波长的辐射能激发下发射的荧光强度。原子荧光的波长在紫外、可见光区。气态自由原子吸收特征波长的辐射后,原子的外层电子从基态或低能态跃迁到高能态,经10~8 s,又跃迁至基态或低能态,同时发射出荧光。若原子荧光的波长与吸收波长相同,称为共振荧光;若不同,则称为非共振荧光。共振荧光强度大,分析中应用最多。在一定条件下,共振荧光强度与样品中某元素浓度成正比。该法的优点是灵敏度高,谱线简单;在低浓度时校准曲线的线性范围宽达3~5个数量级,特别是用激光做激发光源时更佳。主要用于金属元素的测定,在环境科学、高纯物质、矿物、水质监控、生物制品和医学分析等方面有广泛的应用。
3.电感耦合等离子光谱(ICP)法
高频振荡器发生的高频电流,经过耦合系统连接在位于等离子体发生管上端,铜制内部用水冷却的管状线圈上。石英制成的等离子体发生管内有3个同轴氢气流经通道。冷却气(Ar)通过外部及中间的通道,环绕等离子体起稳定等离子体炬及冷却石英管壁,防止管壁受热熔化的作用。工作气体(Ar)则由中部的石英管道引入,开始工作时启动高压放电装置让工作气体发生电离,被电离的气体经过环绕石英管顶部的高频感应圈时,线圈产生的巨大热能和交变磁场,使电离气体的电子、离子和处于基态的氖原子发生反复猛烈的碰撞,各种粒子的高速运动,导致气体完全电离形成一个类似线圈状的等离子体炬区面,此处温度高达6000~10 000℃。样品经处理制成溶液后,由超雾化装置变成全溶胶由底部导入管内,经轴心的石英管从喷嘴喷入等离子体炬内。样品气溶胶进入等离子体焰时,绝大部分立即分解成激发态的原子、离子状态。当这些激发态的粒子回收到稳定的基态时要放出一定的能量(表现为一定波长的光谱),测定每种元素特有的谱线和强度,和标准溶液相比,就可以知道样品中所含元素的种类和含量。
发射光谱分析方法只要将待测原子处于激发状态,便可同时发射出各自特征谱线同时进行测定。ICP-AES仪器,不论是多道直读还是单道扫描仪器,均可以在同一试样溶液中同时测定大量元素(30~50个,甚至更多)。已有文献报道的分析元素可达78个,即除He,Ne,Ar,Kr,Xe惰性气体外,自然界存在的所有元素,都已有用ICP-AES法测定的报告。
❺ 重金属在土壤中的迁移转化行为
不同重金属的环境化学行为和生物效应各异,同种金属的环境化学和生物效应与其存在形态有关。例如,土壤胶体对Pb2+、Pb4+、Hg2+及Cd2+等离子的吸附作用较强,对AsO2-和Cr2O72-等负离子的吸附作用较弱。对土壤�水稻体系中污染重金属行为的研究表明:被试的四种金属元素对水稻生长的影响为:Cu>Zn>Cd>Pb;元素由土壤向植物的迁移明显受共存元素的影响,在试验条件下,元素吸收系数的大小顺序为:Cd>Zn>Cu>Pb,与土壤对这些元素的吸持强度正好相反;"有效态"金属更能反映出元素间的相互作用及其对植物生长的影响。
二、土壤中重金属元素的迁移转化
1、重金属元素在土壤中的污染特征
①不易随水移动,不断微生物分解,而在土壤中累积;②通过植物吸收而富集转化,可转化为对人类带来危害性强的化合物;③重金属污染初期不易被觉察,一旦发现,难以彻底消除。
2、重金属污染的危害
(1)对植物:土壤N、P、K及Fe、Mn、Cu等不足会阻碍其生长,过量也会带来污染,过多的Mn、Cu和P会阻碍植物对Fe的吸收,引起酶作用的减退,并阻碍体内N素的代谢,造成植物的缺绿病(发黄),这些元素是植物生长必需的元素。
植物生长不需要的元素,Hg、Cd、Pb、As等,对人体也有影响,土壤中无机砷含量达12ppm时,水稻生长受到抑制,达40ppm时,产量减少50%,达160ppm时,不能生长,如果有机砷危害更大,0.7ppm,就会颗粒无收。
对微生物的毒性顺序:Hg>Cd>Cr>Pb>Co>Cu
(2)对人体健康的影响
通过下列途径:①挥发作用进入大气(有机砷、有机Cd、有机汞)及蒸汽态金属(Hg、AsH)而挥发,造成空气污染;②受水淋溶、地表径流进入地下水、地表水而影响水生生物;③作物吸收入体内在体内积累。
(3)存在形态及去向:
①形态水溶态的,不溶态的、强烈的、换剂、次生矿物、原生矿物的。
②去向:a.进入排水,随水离开土体;b.被植物或其它生物吸收;c.吸持在土壤上并分为可溶态和不可溶态;d.进入大气。
2、土壤条件与重金属的迁移转化
不同土壤条件下(土壤类型、土地利用方式、土壤物化性状、酸碱性、氧化––还原、吸附、络合)的影响,可引起土壤中重金属元素存在形态的差异,从而影响重金属的迁移和作物对重金属的吸收。
(1)氧化–––还原条件。土壤的这一体系是一个由众多无机和有机的单项氧化–––还原体系组成的复杂体系。
无机体系:O2、Fe、S、H2体系,由决定电位体系控制,其中O2–H2O体系和硫体、H2体系作用明显,对重金属元素价态变化起重要作用。
①O2–H2O体系:
25℃时,Eh=1.23+0.015lgPo2-0.059pH
②H2体系,旱地土壤中少见,淹水状态下,为还原强烈的土层中:有H2积累
25℃时,Eh=0.059pH
以上两体系为土壤氧化––还原体系的两个极端,土壤中其他体系介于二者之间。所以这两个体系为上限和下限。
重金属元素按其性质分为氧化难溶性(氧化固定元素–––Fe3+、Mn4+等,和还原难溶性(还原固定)元素––Cd、Cu、Zn、Cr等(Cd、Zn、Cu、Pb、Ni等生成难溶性化物沉淀)。
在水中:
另外,氧化还原条件的改变,还原使重金属的毒性发生变化,如Cr3+氧化条件下成为Cr6+,其毒性大于Cr3+;As在还原条件下生成亚砷酸,毒性大于砷酸。
(2)土壤酸碱度
pH值对重金属元素的溶解度有密切的关系,研究表明,随着土壤pH值的升高,重金属元素的溶出率会迅速降低,见图。
碱性条件:重金属元素呈难溶态的氢氧化物沉淀或以碳酸盐,磷酸盐形态存在。
金属氢氧化物的溶解度(s)直接受到土壤pH值控制,其平衡反应式及溶度积(Ksp)如下:
Cu2++2OH Ksp=1.6×10-19
据此推求重金属离子浓度与pH的关系:
[Cu2+][OH-]2=1.6×10-19 (1)
[Cu2+]=1.6×10-19/[OH-]2 (2)
[H+][OH-]=1×10-14
[OH-]=1×10-14/[H+]
Ksp=1.6×10-19 [OH-]=1×10-14/[H+]
代入(2)式:[Cu2+]=KsP/[OH-]2=KsP/[ ]2
两边取对数并展开:
log[Cu2+]=9.2-2PH
上式可见,一般情况下,pH越高,重金属离子的浓度则下降,则易形成沉淀物从土壤溶液中析出(沉积),也就是说,pH值从中性升高到碱性,会降低Cu、Zn、Cd、Mn、Fe等的溶解度,重金属则难以被作物吸收,作物受污染的可能性会减轻。反之亦然。
(3)土壤胶体的吸附作用与重金属的迁移转化
土壤中无机和有机胶体对重金属元素有明显的固定作用。一般重金属呈两种形态。
(1)重金属元素在土壤溶液中呈胶体状态(湿润地区、富含有机质的酸性条件)。
Fe、Mn、Cr、As等,Cu、Pb、Zn。
(2)土壤中有机、无机胶体的吸附,使重金属沉淀(转入固相)污染累积的重要原因。
土壤胶体吸附重金属的数量,取决于土壤胶体的代换能力和重金属离子在土壤溶液中的浓度和酸碱度。这种作用的发生与土壤胶体微粒所带电荷有关,带电荷的符号、数量不同,对重金属离子吸附的种类和吸附交换容量也不同。
粘土矿物带负电荷,可吸附阳离子,如:Pb2+、Cu2+、Hg2+等等,且蒙脱石(2:1型)层间无其他离子连接,因此,易发生吸附交换作用,顺序为:
Pb2+>Cu2+>Ca2+>Ba2+>Mg2+>Hg2+
而高岭石(1:1型)层间以氢键连接,不易发生交换作用。
Hg2+>Cu2+≥Pb2+
带正电荷的水合氧化铁胶体,可吸附 。
腐殖质胶体:Pb2+>Cu2+>Cd2+>Zn2+>Ca2+>Mg2+
在胶体对金属离子的吸附时,分为两种方式:
①同晶替换的,保持在胶体晶格中(即粘土矿物晶格中的Si4+,被Al3+代替)很难释放,不利于金属元素的迁移。
②阳离子交换作用,吸附在胶体表面的交换点(扩散层)上,易释放。
(4)土壤中重金属的络合––螯合作用
金属离子的浓度较低时,以络合–––螯合作用为主。金属离子浓度高时,以吸附交换作用为主。
在无机配位体中,重规羟基(OH-)和氯离子(Cl-)的络合作用。络合作用可以改变(主要可提高)重金属氢氧化物的溶解度,尤其是对Hg2+、Cd2+、Pb2+、Zn2+的水解作用。提高其溶解度,使之易迁移。
腐殖质有较强的螯合能力,可与重金属形成螯合物,其稳定性受金属离子性质的影响。顺序为:
Pb>Cu>Ni>Co>Zn>Mg>Ba>Ca>Ng>Cd
3、主要重金属在土壤中的迁移转化
(1)镉:长时间滞留在耕作层,不对地下水产生污染,形态:水溶性和非水溶性镉,可互相转化。
水溶性:CdCl2、Cd(NO3)、CdCO3、Cd(OH)2,易迁移,为植物吸收;
非水溶性:Cd的沉淀物,胶体吸收态镉,不是迁移,为植物吸收。
旱地土壤中,多以水溶性Cd形态存在,pH>7的碱性土壤。
水田中,水下形成还原条件,有机物不能完全分解产生H2S,因此,镉多以CdS的形式存在于土壤中,而溶解度下降形成难溶性CdS形态。
作物对Cd的吸收,随土壤pH值增高而降低,Eh也影响作物对镉的吸收,Eh低或Eh=0时,有利于形成难溶的硫化镉,当水田落干时,CdS含氧化成CdSO4参与氧化––还原反应,增加水溶性。
另一方面,S2=氧化为硫酸,使pH降低,CdS溶解度增加。
(3)汞的迁移转化
存在形态:①离子吸附,共价吸附的汞;②可溶性汞(HgCl2);③难溶性汞(HgHOP4、HgCO3)
①吸附剂:腐殖质及无机胶体,粘土矿物对HgCl2的吸附力:伊利石>蒙脱石>高岭石。
②氧化––还原状况
❻ 土壤对人体有危害的重金属元素主要有几种
土壤重金属是指由于人类活动将金属加入到土壤中,致使土壤中重金属明显高于原生含量、并造成生态环境质量恶化的现象。重金属是指比重等于或大于5.0的金属,如Fe、Mn、Zn、Cd、Hg、Ni、Co等;As是一种准金属,但由于其化学性质和环境行为与重金属多有相似之处,故在讨论重金属时往往包括砷,有的则直接将其包括在重金属范围内。由于土壤中铁和锰含量较高,因而一般认为它们不是土壤污染元素,但在强还原条件下,铁和锰所引起的毒害亦引起足够的重视。土壤一旦遭受重金属污染就很难恢复,因而应特别关注Cd、Hg、Cr、Pb、Ni、Zn、Cu等对土壤的污染,这些元素在过量情况下有较大的生物毒性,并可通过食物链对人体健康带来威胁。1、重金属的土壤化学行为进入土壤中的重金属的归宿将由一系列复杂的化学反应和物理与生物过程所控制。虽然不同重金属之间某些化学行为有相似之处,但它们并不存在完全的一致性。当它们加入土壤后,最初的可动性将在很大程度上依赖添加重金属的形态,也就是说这将依赖于金属的来源。在消化泥污中,与有机质相缔合的金属占有相当大的比例,仅有一小部分以硫化物、磷酸盐和氧化物而存在。熔炼厂的颗粒排放物含有金属氧化物;燃烧石油时,铅以溴代氯化物形式排出,但在大气和土壤中容易转化为硫酸铅和含氧硫酸铅。由于形态的不同,进入土壤中的金属离子的形态和量也很不相同,并直接影响重金属在土体的迁移、转化及植物效应。在不同土壤条件下,包括土壤的重金属类型、土地利用方式(水田、旱地、果园、林地、草场等),土壤的物理化学性状(土壤的酸碱度、氧化还原条件、吸附作用、络合作用等)的影响,都能引起土壤中重金属元素存在形态的差异,从而影响重金属的转化和作物对重金属的吸收。1)土壤氧化-还原条件与重金属的迁移转化:土壤是一个氧化-还原体系,土壤水分状况,土壤中有机质和硫的含量都处于动态变化之中。土壤中的氧化还原体系是一个由众多无机的和有机的单质氧化-还原体系组成的复杂体系。在无机体系中,重要的有氧体系、铁体系、硫体系和氢体系等。由起主导作用的决定电位体系控制。其中O2-H2O体系和硫体系在土壤氧化还原反应中作用明显,对重金属元素价态变化起重要作用。(1)O2-H2O体系:土壤中的氧主要来源于大气。降水和灌溉水也可带进以部分溶解氧。在水稻田中,稻根分泌的氧以及某些藻类光合作用放出的氧气也是来源之一。(2)H2体系:在旱地土壤中氢气是很少的,但在淹水状态下的强烈还原状态的土层中,往往有H2的积累。O2-H2O体系和H2体系是组成土壤氧化-还原体系的两个极端体系,土壤中其它的氧化-还原体系则介于两者之间。因此,这两个体系就构成了土壤氧化-还原电位的上限和下限。(3)硫体系:土壤中的硫以无机和有机两种形态存在,其含量一般在0.05%。在氧化条件下以硫酸盐的形式存在;在还原条件下以硫化氢或金属硫化物形式存在。金属元素按其性质一般可以大致分为难溶性(氧化固定)元素和还原难溶性(还原固定)元素,例如,铁、锰等属于前者;镉、铜、锌、铬则属于后者。氧化-还原作用不仅会使重金属元素还发生价态变化,而且还会使重金属元素的形态发生变化。例如,在氧化还原电位低时(+100mv左右)砷酸铁可还原成亚铁形态,电位进一步降低,以致使砷还原为亚砷酸盐,增强砷的移动性。相反,土壤中铁、铝组分的增加,又可能使水溶性砷转化为不溶态砷。
❼ 我国不同土壤的特点分布
国土壤资源丰富、类型繁多,世界罕见。中国主要土壤发生类型可概括为红壤、棕壤、褐土、黑土、栗钙土、漠土、潮土(包括砂姜黑土)、灌淤土、水稻土、湿土(草甸、沼泽土)、盐碱土、岩性土和高山土等12系列。
红壤系列
中国南方热带、亚热带地区的重要土壤资源,自南而北有砖红壤、燥红土(稀树草原土)、赤红壤(砖红壤化红壤)、红壤和黄壤等类型。
砖红壤
发育在热带雨林或季雨林下强富铝化酸性土壤,在中国分布面积较小。海南岛砖红壤的分析资料表明:风化度很高,粘粒的二氧化硅/氧化铝比值(以下同)低于1.5,粘土矿物含有较多的三水铝矿、高岭石和赤铁矿,阳离子交换量很少,盐基高度不饱和。
燥红土
热带干热地区稀树草原下形成的土壤,分布于海南岛的西南部和云南南部红水河河谷等地,土壤富铝化程度较低,土体或具石灰性反应。
赤红壤
发育在南亚热带常绿阔叶林下,具有红壤和砖红壤某些性质的过渡性土壤。
红壤和黄壤
均为中亚热带常绿阔叶林下生成的富铝化酸性土壤,前者分布在干湿季变化明显的地区,淀积层呈红棕色或桔红色,剖面下部有网纹和铁锰结核,二氧化硅/氧化铝比值为1.9~2.2,粘土矿物含有高岭石、水云母和三水铝矿;后者分布在多云雾,水湿条件较好的地区,以川、黔两省为主,以土层潮湿、剖面中部形成黄色或蜡黄色淀积层为其特征,粘土矿物含有较多的针铁矿和褐铁矿。
红壤系列的土壤适于发展热带、亚热带经济作物、果树和林木,作物一年可二熟、乃至三熟、四熟,土壤生产潜力很大。目前尚有较大面积荒山、荒丘有待因地制宜加以改造利用。 棕壤系列 亦为中国东部湿润地区发育在森林下的土壤,由南至北包括黄棕壤、棕壤、暗棕壤和漂灰土等土类。
黄棕壤
亚热带落叶阔叶林杂生常绿阔叶林下发育的弱富铝化、粘化、酸性土壤,分布于长江下游,界于黄、红壤和棕壤地带之间,土壤性质兼有黄、红壤和棕壤的某些特征。
棕壤
主要分布于暖温带的辽东半岛和山东半岛,为夏绿阔叶林或针阔混交林下发育的中性至微酸性的土壤,特点是在腐殖质层以下具棕色的淀积粘化层,土壤矿物风化度不高,二氧化硅/氧化铝比值3.0左右,粘土矿物以水云母和蛭石为主,并有少量高岭石和蒙脱石,盐基接近饱和。
暗棕壤
又称暗棕色森林土,是发育在温带针阔混交林或针叶林下的土壤,分布在东北地区的东部山地和丘陵,介于棕壤和漂灰土地带之间,与棕壤的区别在于腐殖质累积作用较明显,淋溶淀积过程更强烈,粘化层呈暗棕色,结构面上常见有暗色的腐殖质斑点和二氧化硅粉末。
漂灰土
过去称为棕色泰加林土和灰化土,分布在大兴安岭中北部,是北温带针叶林下发育的土壤,亚表层具弱灰化或离铁脱色的特征,常出现漂白层,强酸性,盐基高度不饱和,属于生草灰化土和暗棕壤之间的过渡性土类,可认为是在地方性气候和植被影响下的特殊土被。
棕壤系列土壤均为很重要的森林土壤资源。目前,不仅分布有较大面积的天然林可供采伐利用,为中国主要森林业生产基地;且大部分土壤,尤其是分布在丘陵平原上的黄棕壤和棕壤有很高的农用价值,多数已垦为农地和果园。
褐土系列
包括褐土、黑垆土和灰褐土,这类土壤在中性或碱性环境中进行腐殖质的累积,石灰的淋溶和淀积作用较明显,残积一淀积粘化现象均有不同程度的表现。
褐土
又称褐色森林土,分布于中国暖温带东部半湿润、半干旱地区,形成于中生夏绿林下,其特点为腐殖质层以下具褐色粘化层、风化度低,二氧化硅/氧化铝比值3.0~3.5,含有较多水云母和蛭石等粘土矿物,石灰聚积以假菌丝形状出现在粘化层之下。
土 褐土经长期施用土类堆积覆盖和耕作影响,在剖面上部形成厚达30~50厘米以上的熟化层,即变成 土。主要分布于陕西的关中地区。
黑垆土
以深厚的淡黑色垆土层而得名。首先形成于半干旱草原植被下,后又经长期耕种熟化的土壤,主要分布在陕北、晋西和陇东一带的黄土地区。
灰褐土
又称灰褐色森林土,是分布在干旱和半干旱地区山地森林下的土壤,具暗棕色或浅褐色的粘化层,因石灰淋溶程度的不同又分灰褐土和淋溶灰褐土两个亚类。
在利用上,褐土系列除灰褐土是重要的林用地外,其他土壤为中国北方的旱作地,搞好水土保持,是发展农业生产的重要措施。
黑土系列
中国温带森林草原和草原区的地带性土壤,包括灰黑土(灰色森林土)、黑土、白浆土和黑钙土。以强烈的腐殖质累积过程为特点。
灰黑土
又称灰色森林土。处在湿润的地区,以大兴安岭的西坡最为集中,植被为森林类型,林下草灌植物繁茂,生草过程较强,有机质累积量大,土壤具较明显的淋溶作用和粘粒移动淀积现象。
黑土
土壤水分状况较充沛,相对湿润,植被为草原化草甸,当地称“五花草塘”,土壤有机质的累积量较高,具有黑色而深厚的土层,腐殖质层厚达30~70厘米以上,底土常出现轻度潜育特征。
白浆土
表层腐殖质层下具灰白色的白浆层而得名。分布在东北地区东部山间盆地和谷地,气候湿润,植被类型为喜湿性的浅根植物,土壤有机质累积量不及黑土,因有机质分解程度差,而常具泥炭化特征,白浆土表层有机质的含量达8~10%,白浆层下质地多属重壤土和粘土;白浆层质地相对较轻,铁的淋失十分明显,粘土矿物以水云母为主,并有少量高岭石和无定物质。
黑钙土
分布在半干旱地区,植被以草原类型为主,也有草甸草原植物,有机质的累积量小,分解强度较黑土大,腐殖质层一般厚约30~40厘米;石灰在土壤中淋溶淀积,常在60~90厘米处形成粉末状或假菌状的钙积层,是黑钙土区别于其他黑土的重要特征。
黑土系列的土壤以东北地区分布的面积最广,适于发展农、牧业和林业,特别是黑土、黑钙土和白浆土是发展农业的重要对象,除已垦者外,尚有较大面积的荒地可供开垦,农业生产潜力巨大。
栗钙土系列
包括栗钙土、棕钙土和灰钙土,是中国北方分布范围极广的一些草原土壤。这类土壤均具有较明显的腐殖质累积和石灰的淋溶一淀积过程,并多存在弱度的石膏化和盐化过程。 栗钙土 湿带半干旱地区干草原下形成的土壤,表层为栗色或暗栗色的腐殖质量,厚度为25~45厘米,有机质含量多在1.5~4.0%;腐殖质层以下为含有多量灰白色斑状或粉状石灰的钙积层,石灰含量达10~30%。中国栗钙土土壤性质表现出明显的地区差异。东部内蒙古高原的栗钙土具少腐殖质、少盐化、少碱化和无石膏或深位石膏及弱粘化特点,而西部新疆地区在底土有数量不等的石膏和盐分聚积,腐殖质的含量也相对较高,但土壤无碱化和粘化现象。
棕钙土
与栗钙土相比较,其腐殖质累积过程更弱,而石灰的聚积过程则大为增强,钙积层的位置在剖面中普遍升高,形成于温带荒漠草原环境,主要分布于内蒙古高原的中西部、鄂尔多斯高原的西部和准噶尔盆地的北部,是草原向荒漠过渡的地带性土壤。
灰钙土
其形成常与黄土母质相联系,分布面积以黄土高原的西北部、河西走廊的东段和新疆的伊犁河谷最为集中,土壤剖面分化弱,发生层次不及栗钙土、棕钙土清晰,腐殖质层的基本色调为浅黄棕带灰色,钙积层不明显,表层有机质含量0.5~3.0%,且下延较深,一般可达50~70厘米。
栗钙土系列土壤是中国主要的牧业基地,也是重要的旱作农业区,需因地制宜实行农牧结合,改良草场和建立人工饲草料基地。
漠土系列
中国西北荒漠地区的重要土壤资源,包括灰漠土、灰棕漠土、棕漠土和龟裂土等,共同特征是:具有多孔状的荒漠结皮层,腐殖质含量低,石灰含量高,且表聚性强,石膏和易溶性盐分在剖面不大的深度内聚积,存在较明显的残积粘化和铁质染红现象以及整个剖面的厚度较薄和石砾含量多(龟裂土和灰漠土除外)等。在成土过程中主要表现为钙化作用(石灰聚积)、石膏化与盐化作用、弱的铁质化作用,同时风成作用相当明显。
灰漠土
发育在温带荒漠边缘细土物质上的土壤, 主要分布在新疆准噶尔盆地南部冲积平原和北部剥蚀高原、河西走廊的中、西段及阿拉善高原的东部。新疆灰漠土表层有机质含量在1.0%左右,腐殖质层极不明显,石灰的最大含聊愫蒙达10~30%,聚层出现在20或30厘米以下,易溶性盐含盐最大的层次在40厘米以下,往往与石膏层相联系,土壤矿物风化处于脱钾阶段,二氧化硅/氧化铝比值4.0左右;粘土矿物以水云母为主。
灰棕漠土
温带荒漠条件下和粗骨母质上发育的土壤,在西北占有很大的面积,同灰漠土比较,腐殖质的累积作用更弱,几无腐殖质层,表层有机质含量很少超过0.5%,且随深度增加含量亦无多大变化,C/N比值很窄,多在4~7,但石灰的含量以表层或亚表层最高,且石膏的聚积较普遍,在10~40厘米处常形成小粒状或纤维状结晶的石膏层,石膏的最大含聊愫蒙达 30%以上。
棕漠土
暖温带半灌木-灌木荒漠下发育的土壤,广布于新疆的南部和东部。这类土壤基本上是与石质漠境或戈壁相适应,与北非的石漠(或称石膏荒漠和石膏壳)近似,但其干旱程度更强,以致在土壤中出现氯化物的盐层,成为世界荒漠土壤中罕见的现象。
龟裂土
发育较年轻的荒漠土壤,分布在温带和暖温带荒漠区的细土平原上,常受暂短地表水流的影响。但不具水成土的性质,地表平坦、坚硬,呈灰白色,被网状裂纹切成不规则的多角形裂片,形似镶嵌在地上的龟裂图案,是其最具代表性的特征。
漠土系列在利用上主要受制于细土物质含量的多少和灌溉水源的有无。目前,大部分用作牧地,仅有小部分垦为农田。
潮土、灌淤土系列
中国重要的农耕土壤资源,包括潮土、灌淤土、绿洲土。这类土壤是在长期耕作、施肥和灌溉的影响下所形成。在成土过程中,获得了一系列新的属性,使土壤有机质累积、土壤质地及层次排列、盐分剖面分布,都起了很大变化。
潮土(包括砂姜黑土)
曾称浅色草甸土,主要分布于黄淮海平原,辽河下游平原,长江中、下游平原及汾、渭谷地,以种植小麦、玉米、高粱和棉花为主。土壤剖面中沉积层次明显,粘砂相间,地下水位较浅,土壤中、低层氧化还原交互进行,有明显的锈纹斑及碳酸盐分异与聚积。有些地区出现沼泽化和盐渍化。
黄河淤积平原潮土的机械组成,老河床和天然堤上多为砂土,老河床两侧缓斜平地多为轻壤土,浅平洼地则为粘土。土壤有机质含量仅0.6~1%。碳酸钙含量在6~8%,含钾聊愫蒙达 2%左右,含磷量多在0.1~0.2%。其含盐量一般不超过 0.1%;在洼地边缘可达0.5~1%。土壤呈碱性反应,pH值7.5~8.5。
潮土土层深厚,矿质养分丰富,有利于深根作物生长,但有机质、氮素和磷含量偏低,且易旱涝,局部地区有盐渍化问题,亟待改良。
灌淤土
主要分布于银川、内蒙古后套及辽西平原。灌淤层可厚达 1米以上,一般也可达30~70厘米。土壤剖面上下较均质,底部常见文化遗物。灌淤层下可见被埋藏的古老耕作表层。土壤的理化性质因地区不同而异。西辽河平原的灌淤土,质地较粘重,有机质含量约2~4%,盐分含量,一般小于0.3%,不含石膏;河套地区的灌淤土,质地较砂松,有机质含量约1%,含盐量较高。
灌淤土是中国半干旱地区平原中的主要土壤,一年一熟,以春播作物为主,生长小麦、玉米、糜谷等。地下水位较浅,水源充沛;因排水条件较差,有次生盐化现象,应注意灌排结合。
绿洲土
又称灌漠土,主要分布于新疆及河西走廊的漠境地区的绿洲中,是干旱地区的主要耕作土壤。灌溉淤积层甚至可厚达1.0~1.5米;在引用坎儿井灌溉地区,灌淤层不超过1米。这些厚层灌溉淤积层土壤层次分化不明显,上部土层有机质含量一般在1~2%,下材愫蒙达0.5~0.7%。磷钾含量均较丰。碳酸钙含量一般在10-20%,且分布均匀。但易发生板结,有次生盐化问题。采取灌溉与排水相结合,营造防风林带与林网,合理轮作倒茬,多种绿肥、牧草,是提高肥力的主要途径。
草甸、沼泽土系列 即湿土。为水成、半水成土壤类型。
草甸土
直接受地下水浸润,在草甸植被覆盖下发育而成。广布于松嫩平原、三江平原,在内蒙古、新疆等地河流两岸的泛滥平原、湖滨阶地上,也有分布。
草甸土腐殖质含量一般较丰富,分布在东北地区的草甸土,暗色有机质层厚达1米以上,土壤底部常见二氧化硅粉末,土体中见锈色斑纹及铁锰结核;在新疆地区的草甸土有机质层仅25厘米,常见大量石灰结核,并有盐分累积。表层有机质含量约3~6%,甚或可高达10%。在1米深的土层中,其含量尚可达1%。在西北干旱区有机质含量表层低于4%。在新疆、内蒙古的草甸土中,碳酸钙含聊愫蒙达10%。
草甸土开垦后,表层土壤垒结性减低,较前疏松,有机质含量亦随之下降。这类土壤肥力较高,养分也较丰,水分供应良好,是主要垦殖对象;亦为重要牧场基地,合理安排农、牧关系十分重要。
沼泽土
在长期积水或过湿情况下形成。广布于中国东北三江平原及川西松潘草地。均有深厚的腐殖质层或泥炭层。
因土壤长期处于还原状态,产生了明显的潜育过程,形成充分分解的蓝灰色潜育层。土壤结持力甚低。在表层有机质层或泥炭层与底层蓝灰色潜育层间,尚可见大量锈斑或灰斑的土层,亦可见铁锰结核。沼泽土中有机质含量常在5~25%,泥炭层可高达40%以上,有机质分解不充分,C/N比值宽。大都尚未充分利用。 水
稻土系列
在中国境内,主要分布在秦岭—淮河一线以南,其中长江中、下游平原、珠江三角洲、四川盆地和台湾西部平原最为集中。
水稻土是耕种活动的产物。是由各种地带性土壤、半水成土和水成土经水耕熟化培育而成,其形成过程是在季节性淹水灌溉、耕作、施肥等措施影响下,进行氧化还原交替过程、有机质的合成与分解、复盐基作用与盐基的淋溶,及粘粒的分解、聚积与迁移、淋失,使原来的土壤特征受到不同程度的改变,使剖面发生分异,而形成特有的土壤形态、理化和生物特性。
水稻土的剖面结构包括下列层次:耕作层(A)、犁底层(P)、渗育层(W)、 淀积层(B)、淀积潜育层(Bg)及潜育层(G)。耕作层淹水时水分饱和, 呈半流泥糊状或泥浆状。排水落干后,呈包含有屑粒、碎块的大块状结构,结构面见锈斑杂有植物残体;犁底层较紧实,暗棕色的垂直结构发达,有锈纹和小铁锰结核;渗育层由于水分渗透,铁质淋洗强烈,颜色较淡;淀积层多呈棱块状结构,多锈纹、锈斑和铁锰结核;淀积潜育层处在地下水变动范围内,呈灰蓝色,有较多的锈斑和锈纹结构不明显;潜育层处于还原状态,呈蓝灰色结构。 水稻土大致可分为淹育、潴育及潜育等三种类型。淹育型发育层段浅薄,属初期发育的水稻土,底土仍见母土特性,如红壤仍有红色底层;潴育型发育完整,具有完整的剖面结构;潜育型属由潜育土或沼泽土发育而成。
水稻土是中国很重要的农业土壤资源,应根据土壤特性因地制宜加以改良,充分利用。
盐碱土系列 又可分为盐土和碱土。
盐土
中国土壤中含可溶盐较高的盐土主要分布在北方干旱、半干旱地区,尤以内蒙古、宁夏、甘肃、清海和新疆为多。华北平原和汾、渭谷地也有零星分布。气候干旱、蒸发强烈、地势低洼、含盐地下水接近地表是盐土形成的主要条件。盐分累积的形态通常是地表出现白色盐霜,作斑块状分布。含盐量高的盐土可出现盐结皮厚度(小于3厘米)或盐结壳(大于3厘米),在结皮或结壳以下为疏松的盐与土的混合层,可由几厘米到30~50厘米;甚或可见盐结盘层。盐分累积的特点是表聚性很强,逐渐向下盐分递减。沿海地带盐分累积特点是整层土体均含较高盐分。
中国盐土的盐分组成甚为复杂。滨海地区的盐土主要为氯化物盐土;硫酸盐盐土则分布于新疆北部、甘肃河西走廊、宁夏银川平原和内蒙古后套地区,但面积不大。而氯化物与硫酸盐混合类型的盐土,在中国盐土中到处可见,以河北、内蒙古、宁夏、甘肃和新疆等省区最为集中。此外,东北松嫩平原、山西大同盆地等,在其盐分组成中含有碳酸根,称苏打盐土,碱性特强,腐蚀植物根系,大部植物难以生长。
盐土的改良应采取灌排、生物及耕作等综合措施;种稻洗盐也是改良盐土的有效措施。
碱土 在中国分布面积较小,大都零星分布于盐土地区,特点是表层含盐量一般不超过0.5%,但土壤溶液中普遍含有苏打。在吸收复合体中(尤其是碱化层)代换性钠占代换总量20%以上;pH值可达 9.0或更高。土壤有机与无机部分高度分散,胶粒和腐殖质淋溶下移,使表土质地变轻,而胶粒聚积的碱化层则相对粘重,有时形成柱状结构,湿时膨胀泥泞,干时收缩板结,通透性与耕性均极差。过高的碱度可以毒害植物根系,过多的交换性钠可引起一系列不良的理化性质,对植物生长危害极大。
碱土的形成与发育因地区而异,如松辽平原的碱土是由于苏打盐土在脱盐过程中,钠离子进入土壤吸收复合体而形成的。华北平原的碱土(当地称瓦碱)是由盐化潮土或盐土在脱盐过程中,突出了土壤的碱化特性,表层出现碱壳。前者代换性钠含量较高(7~10毫克当量/100克土),碱化度大都在20~40%;后者在质地较轻的土壤中仅1~2毫克当量/100克土,在粘重土壤中也仅5~7毫克当量/100克土,可能属于初期形成的碱土。碱土的改良除上述水利及农业措施外,尚需采取施用石膏和磷石膏等化学改良措施。
岩性土系列
包括紫色土、石灰土、磷质石灰土、黄绵土(黄土性土)和风沙土。这类土壤性状仍保持母岩或成土母质特征。
紫色土
紫红色岩层上发育的土壤。以四川盆地分布最广,在南方诸省盆地中零星分布。紫色土有机质含量 1.0%左右,其发育程度较同地区的红、黄壤为迟缓,尚不具脱硅富铝化特征,属化学风化微弱的土壤,呈中性至微碱性反应,pH值为7.5~8.5,石灰含量随母质而异,盐基饱和度达80~90%。紫色土矿质养分丰富,在四川盆地的丘陵地区中为较肥沃土壤,其农业利用价值很高。利用中需防止水土流失和注意蓄水灌溉、增施有机肥料、合理轮作等。 石灰(岩)土 发育在石灰岩上的岩成土。在中国热带和亚热带湿润地区,凡有石灰岩出露之地均有分布,但主要分布于广西、贵州和云南境内。在石灰岩体出露的喀斯特地区多形成较为年幼的石灰(岩)土。石灰 (岩)土的植被多为喜钙植物如蕨类、五节芒、白茅等。这类植物的有机质成为石灰土腐殖化作用的物质基础。石灰(岩)土可分为黑色石灰土、棕色石灰土和红色石灰土。①黑色石灰土,有机质含量丰富,呈良好团粒结构,土色暗黑,中性至碱性反应(pH6.5~8.0),土层厚薄不一。②棕色石灰土,常见于山麓坡地,色棕粘重,不均质石灰反应。③ 红色石灰土,土色鲜红,剖面上部多无石灰反应,表土pH6.5,心土7.0~7.5。 磷质石灰土 分布于中国南海的东沙、西沙、中沙和南沙群岛。由于岛屿地处热带,大都由珊瑚礁构成。磷质石灰土即于珊瑚礁磐基础上发育而成,成土母质为珊瑚灰岩或珊瑚、贝壳机械粉碎的细砂。在海岛上的细砂表面聚积了大量富含磷质和有机质的海鸟粪,形成富含磷质的石灰性土壤。表层有机质含聊愫蒙高达12%以上,全磷量26~32%。成为富含有机质的天然磷肥资源。
黄绵土
又称黄土性土壤,广布于黄河中游丘陵地区。土壤色泽与母质层极相近,质地均匀,疏松多孔,耕性良好,有机质含量低,仅0.5%,矿质养分丰富。
风沙土
主要分布在中国北部的半干旱、干旱和极端干旱地区。风沙土的特征是成土作用经常受到风蚀和沙压,很不稳定,致使成土过程十分微弱,土壤性状与风沙堆积物无多大改变。随沙地的自然固定和土壤形成阶段的发展,由流动风沙土到半固定、固定风沙土,土壤有机质含量逐渐增加,说明只要增加肥分与水分,使植被逐步稳定生长,也能成为农林牧用地。
高山土系列 高山土壤是指青藏高原和与之类似海拔,高山垂直带最上部,在森林郁闭线以上或无林高山带的土壤。由于高山带上冻结与溶化交替进行,土壤有机质腐殖化程度低,矿物质分解也很微弱,土层浅薄,粗骨性强,层次分异不明显。因而将高山土壤作为独特的系列划分开来;有黑毡土(亚高山草甸土)、草毡土(高山草甸土)、巴嘎土(亚高山草原土)、莎嘎土(高山草原土)、高山漠土和高山寒漠土之分。
黑毡土
主要分布于青藏高原东部和东南部。腐殖质累积明显,腐殖化程度相对较高,盐基不饱和或饱和度低,pH5~8,为高原优良牧场,也是小麦等作物的高产土壤。
草毡土
分布于原面平缓山坡,土体一般较湿润,密生高山矮草草甸。表层有厚3~5厘米至10厘米不等的草皮,根系交织似毛毡状,轻韧而有弹性,地表常因冻融交互作用呈鳞片状滑脱。腐殖质层厚9~20厘米,含量6~14%,作浅灰棕或暗灰色,剖面厚度30~40厘米。大都用作夏季牧场。
巴嘎土
主要分布于喜马拉雅山北侧的高原宽谷湖盆,植被属于干草原类型。土壤有机质含量有时可达3~10%,剖面下部砾石背面常有薄膜状碳酸钙累积。大部为牧地,植被稀疏,载畜量低。
莎嘎土
分布于羌塘高原东南部,西喜马拉雅山的山前地带。土体较干燥,腐殖质累积过程减弱,且出现积钙过程,土体富含砾石,表层草根较少,不形成连续草皮层,有机质含量约1.5~3%,碳酸钙聚积明显,最大可达10%以上。土壤均较沙质,有风沙危害,均为牧地。
高山漠土
又称冷漠土。主要分布于西藏羌塘高原,山原平坦,植被低矮而稀疏,盖度5~10%。土壤中有机质累积微弱,0.4~0.6%,盐分0.5~1.6%,碳酸钙累积明显。地表见白色盐霜及结皮,多孔,含砾石较多,亦见石膏新生体,其下为砾质母质层,此类土壤甚少利用,仅在低洼处积水后,可饲养羊群。
高山寒漠土
脱离冰川影响最晚,成土年龄最短的土壤。主要分布在青藏高原冰雪活动带以下冰缘附近。土层浅薄,剖面分化不明显,土表有微向上突起的融冻结壳,通体大部为粗骨性,土壤矿物分解度甚低,植被为壳状地垫及耐寒的垫状点地梅等
❽ 分析土壤有机质在提高酸性土壤+N、P+和+K+有效性的机理分别有何异同点。
摘要 氮(N)
❾ 简述镉的来源与形态
镉是作为副产品从锌矿石或硫镉矿中提炼出来的。形态:银白色有光泽的金属。
熔点320.9℃,沸点765℃,密度8650 kg/m³;。有韧性和延展性。镉在潮湿空气中缓慢氧化并失去金属光泽,加热时表面形成棕色的氧化物层,若加热至沸点以上,则会产生氧化镉烟雾。高温下镉与卤素反应激烈,形成卤化镉。
也可与硫直接化合,生成硫化镉。镉可溶于酸,但不溶于碱。镉的氧化态为+1、+2。氧化镉和氢氧化镉的溶解度都很小,它们溶于酸,但不溶于碱。镉可形成多种配离子,如Cd(NH3)、Cd(CN)、CdCl等。
(9)水稻土和旱地土壤镉化学行为存在哪些异同点扩展阅读
环境工程领域中的镉绝大多数淡水的含镉量低于1微克/升,海水中镉的平均溶度为0.15微克/升。镉的主要污染源是电镀、采矿、冶炼、染料、电池和化学工业等排放的废水。
环境监测中测定镉的方法有:原子荧光光谱法、原子吸收分光光度法、双硫腙分光光度法、阳极溶出伏安法和示波极谱法等。
镉的化合物曾广泛用于制造(黄色)颜料、塑料稳定剂、(电视映像管)荧光粉、杀虫剂、杀菌剂、油漆等。
用于电镀等。镉氧化电位高,故可用作铁、钢、铜之保护膜,广用于电镀防腐上,但因其毒性大,这项用途有减缩趋势。
❿ 化学肥力和有机肥料的有哪些异同点
有机肥料和化学肥料各有特点,概括起来主要有以下7点:
(l)有机肥料含有大量的有机质,具有明显的改土培肥作用;化学肥料只能提供作物无机养分,长期施用会对土壤造成不良影响,使土壤“越种越馋”。
(2)有机肥料含有多种养分,所含养分全面平衡;而化肥所含养分种类单一,长期施用容易造成土壤和食品中的养分不平衡。
(3)有机肥料养分含量低,需要大量施用,而化学肥料养分含量高,施用量少。
(4)有机肥料肥效时间长;化学肥料肥效期短而猛,容易造成养分流失,污染环境。
(5)有机肥料来源于自然,肥料中没有任何化学合成物质,长期施用可以改善农产品品质;化学肥料属纯化学合成物质,施用不当能降低农产品品质。
(6)有机肥料在生产加工过程中,只要经过充分的腐熟处理,施用后便可提高作物的抗旱、抗病、抗虫能力,减少农药的使用量;长期施用化肥,由于降低了植物的免疫力,往往需要大量的化学农药维持作物生长,容易造成食品中有害物质增加。
(7)有机肥料中含有大量的有益微生物,可以促进土壤中的生物转化过程,有利于土壤肥力的不断提高;长期大量施用化学肥料可抑制土壤微生物的活动,导致土壤的自动调节能力下降。
看来长期实用有机肥还是有好处的,无论是从农业的角度出发还是从农民的产量出发,应多多使用有机肥。