导航:首页 > 化学知识 > 如何绘制化学需氧量曲线

如何绘制化学需氧量曲线

发布时间:2022-12-15 18:29:50

‘壹’ 水质化学需氧量的测定快速消解分光光度法得出的标准曲线,吸光度与COD指是成反比么

成正比呀。吸光度越高,COD值越高。

试样中加入已知量的重铬酸钾溶液,在强硫酸介质中,以硫酸银作为催化剂,经高温消解后,用
分光光度法测定COD 值。
当试样中COD 值为100 ~ 1 000 mg / L,在600 nm ± 20 nm 波长处测定重铬酸钾被还原产生的三价铬(Cr3 + )的吸光度,试样中COD 值与三价铬(Cr3 + )的吸光度的增加值成正比例关系,将三价铬(Cr3 + )的吸光度换算成试样的COD 值。
当试样中COD 值为15 ~ 250 mg / L,在440 nm ± 20 nm 波长处测定重铬酸钾未被还原的六价铬(Cr6 + )和被还原产生的三价铬(Cr3 + )的两种铬离子的总吸光度;试样中COD 值与六价铬(Cr6 + )的吸光度减少值成正比例,与三价铬(Cr3 + )的吸光度增加值成正比例,与总吸光度减少值成正比例,将总吸光度值换算成试样的COD 值

‘贰’ 无机磷标准曲线的绘制,氯酸买不到了怎么办

1.1方法原理在强酸性溶液中,用一定量的重铬酸钾氧化水样中还原性物质,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁氨溶液回滴.根据硫酸亚铁铵的用量算出水样中还原性物质消耗氧的量. 1.2 适用范围适用于地表水、地下水、饮用水、近岸海域海水、生活污水和工业废水的监测.用0.2500mol/L浓度的重铬酸钾溶液可测定大于50mg/L的COD值,定上限是700mg/L,用0.0250mol/L浓度的重铬酸钾溶液可测定5~50mg/L的COD值. 2仪器试剂 2.1回流装置:带250ml锥形瓶的全玻璃回流装置. 2.2加热装置:变阻电炉. 2.3 50ml酸式滴定管. 2.4重铬酸钾标准溶液(1/6K2CrO7=0.2500mol/L):称取预先在 120℃烘干2h的基准或优级纯重铬酸钾12.258g溶于水中,移 入1000ml 容量瓶,稀释至标线,摇匀. 2.5试亚铁灵指示液:称取1.458g邻菲啰啉(C12H8N2?H2O,1,10—phenanthroline),0.695g硫酸亚铁(FeSO4?7H2O)溶于水中,稀释至100ml,贮于棕色瓶内. 2.7硫酸亚铁铵标准溶液[(NH4)2Fe(SO4)2?6H2O≈0.1mol/L]:称取39.5g硫酸亚铁铵溶液于水中,边搅拌边缓慢加入20ml浓硫酸,冷却后移入1000ml容量瓶中,加水稀释至标线,摇匀.临用前,剧重铬酸钾标准溶液标定. 标定方法:准确吸取10.00ml重铬酸钾标准溶液于500ml锥形瓶中,加水稀释至110ml左右,缓慢加入30ml浓硫酸,混匀.冷却后,加入3滴试亚铁灵指示液(约0,15mi),用硫酸亚铁铵溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点. C[(NH4)2Fe(SO4)2]=0.2500*10.00/V 式中:C---硫酸亚铁铵标准溶液的浓度(mol/L); F---硫酸亚铁铵标准滴定溶液的用量(ml). 2.8硫酸—硫酸银溶液:于2500ml浓硫酸中加入25g硫酸银.放置1~2d,不时摇动使其溶解. 2.9硫酸汞:结晶或粉末. 3 操作步骤 3.1取20.00ml混合均匀的水样(或适量水样稀释至20.00ml)置250ml磨口的回流锥形瓶中,准确加入10.00ml重铬酸钾标准溶液及数粒洗净的玻璃珠或沸石,连接磨口回流冷凝管,从冷凝管上口慢慢地加入 30ml硫酸—硫酸银溶液,轻轻摇动锥形瓶使溶液混匀,加热回流2h(自开始沸腾时计时). 注:①对于化学需氧量高的废水样,可先取上述操作所需1/10的废水样和试剂,于15mmXl50mm硬质玻璃试管中,摇匀,加热后观察是否变成绿色.如溶液显绿色,再适当减少废水取样量,直到溶液不变绿色为止:,从而确定废水样分析时应取用的体积.稀释时,所取废水样量不得少于5ml,如果化学需氧量很高,则废水样应多次逐级稀释. ②废水中氯离子含量超过30mg/L时,应先把0.4g硫酸汞加入回流锥形瓶中,再加20.00ml废水(或适量废水稀释至20.00ml)、摇匀.以下操作同上. 3.2冷却后,用90ml水从上部慢慢冲洗冷凝管壁,取下锥形瓶.溶液总体积不得少于 140ml,否则因酸度太大,滴定终点不明显. 3.3溶液再度冷却后,加3滴试亚铁灵指示液,刚硫酸亚铁铵标准溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点,记录硫酸亚铁铵标准溶液的用量. 3.4测定水样的同时,以20.00ml重蒸馏水,按同样操作步骤作空白试验.记录滴定空白时硫酸亚铁铵标准溶液的用量. 4 计算 CODcr(O2,mg/L)=(V0-V1)*C*8*1000/V 式中:C—硫酸亚铁铵标准溶液的浓度(mol/L); V0—滴定空白时硫酸亚铁铵标准溶液用量( ml); V1—滴定水样时硫酸亚铁铵标准溶液的用量 (ml); V—水样的体积(m1); 8--氧(1/2O)摩尔质量(g/mol). 5 仪器维护 5.1操作人员应严格按照本规程及操作说明书操作,使用后应做好使用登记并搞好仪器周边卫生. 5.2仪器长期没使用时,保管人要定期开机运行一次,检查仪器运转是否正常,每年定期由计量局派专业人员负责校准,并作好记录. 总磷 1概述 1.1方法原理在酸性条件下,正磷酸盐与钼酸盐、酒石酸锑氧钾反应,生成磷钼杂多酸,被还原剂抗坏血酸还原,则变成蓝色络合物,通常即称磷钼蓝. 1.2干扰及消除砷含量大于2mg/L有干扰,可用硫代硫酸钠除去.硫化物量大于2mg/L有干扰,在酸性条件下通氮气可以除去.六价铬大于50mg/L有干扰,用亚硫酸钠除去.亚硝酸盐大于1mg/L有干扰,用氧化消解或加氨磺酸均可以除去.铁浓度为20mg/L,使结果偏低5%;铜浓度达10mg/L不干扰;氟化物小于70mg/L也不干扰.水中大多数常见离子对显色的影响可以忽略. 1.3方法的适用范围本方法最底检出浓度为0.01mg/L(吸光度A=0.01时所对应的浓度);测定上限为0.6mg/L. 可适用于测定地表水、生活污水及化工、磷肥、机加工金属表面磷化处理、农药、钢铁、焦化等行业的工业废水中的正磷酸盐分析. 2仪器及试剂 2.1仪器分光光度计. 2.2试剂 ①(1+1)硫酸; ②10%抗坏血酸溶液:溶解10g抗坏血酸于水中,并稀释至100ml.该溶液贮存在棕色玻璃瓶中,在约4℃可稳定几周.如颜色变黄,则弃去重配. ③钼酸盐溶液:溶解13g钼酸铵[(NH4)6Mo7O24?4H2O]于100ml水中.溶解0.35 g酒石酸锑氧钾[K(SbO)C4H4O6?1/2H2O] 于100ml水中. 在不断搅拌下,将钼酸铵溶液徐徐加到300ml(1+1)硫酸中,加酒石酸锑氧钾溶液并且混合均匀.贮存在棕色的玻璃瓶中于约4℃保存.至少稳定两个月. ④浊度―色度补偿液:混合两份体积的(1+1)硫酸和一份体积的10%抗坏血酸溶液.此溶液当天配制. ⑤磷酸盐贮备溶液:将优级纯磷酸二氢钾(KH2PO4)于110℃干燥2h,在干燥器中放冷.称取0.2197g溶于水,移入1000ml溶量瓶中.加(1+1)硫酸5ml,用水稀释至标线.此溶液每毫升含50.0μg磷(以P计). ⑥磷酸盐标准溶液:吸取10.00 ml磷酸盐贮备液于250ml溶量瓶中,用水稀释至标线.此溶液每毫升含2.00μg磷.临用时现制. 3步骤(1) 校准曲线的绘制取数支50ml具塞比色管,分别加入磷酸盐标准使用液:0、0.50、1.00、3.00、5.00、10.0、15.0 ml,加水至50ml. ①显色:向比色管中加入1ml 10%抗坏血酸溶液,混匀.30s后加2ml钼酸盐溶液充分混匀,放置15min. ②测量:用10mm或30 mm比色皿,于700nm波长处,以零浓度溶液为参比,测量吸光度. (2) 样品测定分取适量经滤膜过滤或消解的水样(使含磷量不超过30μg)加入50ml比色管中,用水稀释至标线.以下按绘制标准曲线的步骤进行显色和测量.减去空白试验的吸光度,并从标准曲线上查出含磷量. 4计算 m 磷酸盐(P,mg/L)= ——— V 式中:m——由校准曲线查得的磷量(μg); V——水样体积(ml). 氨氮 1概述水样的预处理水样带色或浑浊以及含其他一些干扰物质,影响氨氮的测定.为此,在分析时需作适当的预处理.对较清洁的水,可采用絮凝沉淀法;对污染严重的水或工业废水,则用蒸馏法消除干扰. 絮凝沉淀法 1.1方法原理加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤除去颜色和浑浊. 2仪器试剂 2.1 10%硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml. 2.2 25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中. 2.3 硫酸,ρ=1.84. 3 操作步骤取100ml水样于具塞量筒或比色管中,加入1ml10%硫酸锌溶液和0.1~0.2ml25%氢氧化钠溶液,调节PH至10.5左右,混匀.放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml. 蒸馏法 1概述 1.1方法原理调节水样的PH使在6.0~7.4的范围,加入适量氧化镁使呈微碱性,蒸馏释放出的氨被吸收于硫酸或硼酸溶液中.采用纳氏比色法或酸滴定法时,以硼酸溶液为吸收液;采用水杨酸-次氯酸盐比色法时,则以硫酸溶液为吸收液. 2仪器试剂 2.1 带氮球的定氮蒸馏装置:500ml凯氏烧瓶、氮球、直形冷凝管和导管. 2.2 水样稀释及试剂配制均用无氮水.无氮水制备: 2.2.1 蒸馏法:每升蒸馏水中加0.1ml硫酸,在钱玻璃蒸馏器中重蒸馏,弃去50ml初馏液,接取其余馏出液于具塞磨口的玻璃瓶中,密封保存. 2.2.2 离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱. 2.3 1mol/L盐酸溶液. 2.4 1mol/氢氧化钠溶液. 2.5 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐. 2.6 0.05%溴百里酚蓝指示液(PH6.0~7.6) 2.7防沫剂,如石腊碎片. 2.8吸收液: 2.8.1 硼酸溶液:称取20g硼酸溶于水,稀释至1L. 2.8.2硫酸(H2O4)IPIY:0.01mol/L 3 操作步骤 3.1 蒸馏装置的预处理:加250ml水样于凯氏烧瓶中,加0.25g轻质氧化镁和数粒玻璃珠,热蒸馏至馏出液不含氮为止,弃去瓶内残液. 3.2 分取250ml水样(如氨氮含量较高,可分取适量并加水至250ml,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调节至PH7左右.加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下.加热蒸馏,至馏出液达200ml时,停止蒸馏,定容至250ml. 3.3 采用酸滴定法和纳氏比色法时,以50ml硼酸溶液为吸收液;采用水杨酸-次氯酸盐比色法时,改用50ml0.01mol/L硫酸溶液为吸收液. 纳氏试剂光度法 1概述 1.1 方法原理碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽波长内具强吸收.通常测量用波长在410~425nm范围. 1.2 适用范围本方法最低检出浓度为0.025mg/L(光度法),测定上限为2mg/L.采用目视比色法,最低检出浓度为0.02mg/L.水样作适当的预处理后,本法可适用于地表不、地下水、工业废水和生活污水中的氨氮的测定. 2仪器试剂 2.1 分光光度计. 2.2 PH计. 2.3 配制试剂用均应为无氨水. 纳氏试剂: 2.3.1 称取20g碘化钾溶于约10ml水中,边搅拌边分次少量加入二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,停止滴加氯化汞溶液.,并充分搅拌,当出现微量朱红色沉淀不溶解时,停止滴加氯化汞溶液.另称得上20克氢氧化钾溶于水,并稀释至 ml,充分冷却至室温后,将上述溶液在搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀.静置过夜.将上清液移入聚乙烯瓶中,密塞保存. 2.4 酒石酸钾钠溶液:称取50g酒石酸钾钠溶于100 ml水中,加热煮沸以除去氨,放冷,定容至100ml. 2.5 铵标准贮备液:称取3.819g经100℃干燥过的优级纯氯化铵溶于水,移入1000ml容量瓶中,稀释至标线.此溶液每毫升含1.00mg氨氮. 2.6 铵标准使用溶液:移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线.此溶液每毫升含0.010mg氨氮. 3、操作步骤 3.1 标准曲线的绘制 3.1.1 吸取0、0.50、1.00、3.00、5.00、7.00和10.0ml铵标准使用液于50ml比色管,加水至标线,加1.0ml酒石酸钾钠溶液,混匀.加1.5ml纳氏试剂,混匀.放置10min后,在波长420nm处,用光程20mm比色皿,以水为参比,测量吸光度. 3.1.2 由测得的吸光度,减去零浓度空白的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的校准曲线. 3.2 水样的测定 3.2.1 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液.以下同校准曲线的绘制. 3.2.2 分取适量经蒸馏预处理后的馏出液,加入50 ml比色管中, 加一定量1mol/L氢氧化钠溶液以中和硼酸,稀释至标线.加1.5ml纳氏试剂,混匀.放置10min后,同校准曲线的步骤测量吸光度. 3.3 空白试验以无氨水代替水样,做全程序空白测定. 4 计算由水样测得的吸光度减去空白试验的吸光度后,从校准曲线上查得氨氮含量(mg). 氨氮(N,mg/L)=m/V×1000 式中:m——从校准曲线上查得氨氮含量(mg); V——水样体积(ml).

‘叁’ 求CM-02 COD快速测定仪 说明书

下面应该是你要的
http://www..com/s?ie=gb2312&bs=CM-02+COD%CA%B9%D3%C3&sr=&z=&cl=3&f=8&wd=CM-02+COD%D4%F5%C3%B4%CA%B9%D3%C3&ct=0

点第一个HTML查看,是你要的

‘肆’ 氨氮的测试方法

氨气敏电极法
1 原理
在pH值大于11的环境下,铵根离子向氨转变,氨通过氨敏电极的疏水膜转移,造成氨敏电极的电动势的变化,仪器根据电动势的变化测量出氨氮的浓度。
2 检测步骤
用新的水样冲洗测量水样、试剂体积的容器和电极安装管。
使用蠕动泵进样。水样并不直接与蠕动泵管接触--有一个空气缓冲区。进样的体积由一可视测量系统控制。
与进样相同,辅助试剂也通过蠕动泵投加,并由可视测量系统控制加药体积。
通过鼓泡混合水样和试剂。
由测量系统自动控制反映时间。
残液由蠕动泵排出。
在用户自定义的测量周期中,分析仪会利用内置的校准标液和清洗溶液自动进行校准和清洗。
3 如何分辨氨气敏电极法仪器的性能
1.量程:电极法氨氮量程规格分为:0-1200;0-2000;0-3000;0-10000不等。并且量程自由切换,量程越大,说明仪器采用的电极的适应性越强。
2.最低检出限:仪器的最低检出限越低,代表电极的品质越好,一般为0.05mg/l。
纳氏试剂分光光度法 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,其色度与氨氮含量成正比,通常可在波长410~425nm范围内测其吸光度,计算其含量.
本法最低检出浓度为0.025mg/L(光度法),测定上限为2mg/L.采用目视比色法,最低检出浓度为0.02mg/L.水样做适当的预处理后,本法可用于地面水,地下水,工业废水和生活污水中氨氮的测定. 2.1 带氮球的定氮蒸馏装置:500mL凯氏烧瓶,氮球,直形冷凝管和导管.
2.2 分光光度计
2.3 pH计 配制试剂用水均应为无氨水
3.1 无氨水可选用下列方法之一进行制备:
蒸馏法:每升蒸馏水中加0.1mL硫酸,在全玻璃蒸馏器中重蒸馏,弃去50mL初馏液,按取其余馏出液于具塞磨口的玻璃瓶中,密塞保存.
离子交换法:使蒸馏水通过强酸型阳离子交换树脂柱.
3.2 1mol/L盐酸溶液.
3.3 1mol/L氢氧化纳溶液.
3.4 轻质氧化镁(MgO):将氧化镁在500℃下加热,以除去碳酸盐.
3.5 0.05%溴百里酚蓝指示液:pH6.0~7.6.
3.6 防沫剂,如石蜡碎片.
3.7 吸收液:
硼酸溶液:称取20g硼酸溶于水,稀释至1L.
0.01mol/L硫酸溶液.
3.8 纳氏试剂:可选择下列方法之一制备:
称取20g碘化钾溶于约100mL水中,边搅拌边分次少量加入二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改写滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液.
另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀.静置过夜将上清液移入聚乙烯瓶中,密塞保存.
称取16g氢氧化钠,溶于50mL水中,充分冷却至室温.
另称取7g碘化钾和碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100mL,贮于聚乙烯瓶中,密塞保存.
3.9 酒石酸钾钠溶液:称取50g酒石酸钾钠KNaC4H4O6·4H2O)溶于100mL水中,加热煮沸以除去氨,放冷,定容至100Ml.
3.10 铵标准贮备溶液:称取3.819g经100℃干燥过的优级纯氯化铵(NH4Cl)溶于水中,移入1000mL容量瓶中,稀释至标线.此溶液每毫升含1.00mg氨氮.
3.11 铵标准使用溶液:移取5.00mL铵标准贮备液于500mL容量瓶中,用水稀释至标线.此溶液每毫升含0.010mg氨氮. 4.1 水样预处理:取250mL水样(如氨氮含量较高,可取适量并加水至250mL,使氨氮含量不超过2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化纳溶液或盐酸溶液调节至pH7左右.加入0.25g轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下.加热蒸馏,至馏出液达200mL时,停止蒸馏,定容至250mL.
采用酸滴定法或纳氏比色法时,以50mL硼酸溶液为吸收液;采用水杨酸-次氯酸盐比色法时,改用50mL0.01mol/L硫酸溶液为吸收液.
4.2 标准曲线的绘制:吸取0,0.50,1.00,3.00,7.00和10.0mL铵标准使用液分别于50mL比色管中,加水至标线,加1.0mL酒石酸钾溶液,混匀.加1.5mL纳氏试剂,混匀.放置10min后,在波长420nm处,用光程20mm比色皿,以水为参比,测定吸光度. 由测得的吸光度,减去零浓度空白管的吸光度后,得到校正吸光度,绘制以氨氮含量(mg)对校正吸光度的标准曲线.
4.3 水样的测定:
分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50mL比色管中,稀释至标线,加入0.1mL酒石酸钾钠溶液.以下同标准曲线的绘制.
分取适量经蒸馏预处理后的馏出液,加入50mL比色管中,加一定量1mol/L氢氧化纳溶液,以中和硼酸,稀释至标线.加1.5mL纳氏试剂,混匀.放置10min后,同标准曲线步骤测量吸光度.
4.4 空白实验:以无氨水代替水样,做全程序空白测定. 由水样测得的吸光度减去空白实验的吸光度后,从标准曲线上查得氨氮量(mg)后,
按下式计算:
氨氮(N,mg/L)=m/V×1000
式中:m——由标准曲线查得的氨氮量,mg;
V——水样体积,mL. 6.1 纳氏试剂中碘化汞与碘化钾的比例,对显色反应的灵敏度有较大影响.静置后生成的沉淀应除去.
6.2 滤纸中常含痕量铵盐,使用时注意用无氨水洗涤.所用玻璃皿应避免实验室空气中氨的玷污. 废水中氨氮的构成主要有两大类,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。共分四种:有机氮.氨氮.亚硝酸氮(NO2-)和硝酸氮(NO3-)。
而自然地表水体和地下水体中主要以硝酸盐氮(NO3-)为主。
高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,
一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,
ph在酸性的条件下废水中的氨氮主要由于无机氨所导致。

‘伍’ 化学耗氧量的季节变化

水中还原性物质包括有机物、亚硝酸盐、亚铁盐、硫化物等,化学耗氧量则反映水中受还原性物质污染的程度。因此,化学耗氧量通常是作为评定水质是否受到有机污染的重要指标之一,指在强酸并加热条件下,用重铬酸钾作为氧化剂处理水样时所消耗氧化剂的量,以氧的 mg/L 来表示。湖泊的化学耗氧量和生化需氧量一样,除了用来评价普通有机物外,还用来评价藻类的现存量 (合田健,1989) 。

水被有机物污染是很普遍的,因此化学耗氧量也作为有机物相对含量的指标之一。大通塘、谢二塘、潘三塘和高塘湖 4 水体化学需氧量监测结果见表3.4。大通塘化学需氧量平均为 71.60 mg/L,变化在 24.8 mg/L (4 月份) ~102.0 mg/L (8 月份) 之间,极差高达 77.2 mg/L,变幅较大 (图3.23) 。除 4 月份以外,其余各月监测值均超过 《地表水环境质量标准 (GB3838—2002) 》的Ⅴ类标准 (40 mg/L) 。

图3.23 4个水体化学需氧量 (COD) 的月变化曲线

谢二塘化学需氧量平均为 48.57 mg/L,各月监测值均超过 《地表水环境质量标准(GB3838—2002) 》Ⅳ类标准 (30 mg/L) ,其中除 5、6、7 月份以外,其余各月均超过《地表水环境质量标准 (GB3838—2002) 》的Ⅴ类标准 (40 mg/L) 。月变化趋势呈 “波浪”式,在 9 月份出现 “波峰”(83.42 mg/L) ,自 9 月份分别向 3 月份和次年 2 月份出现两个 “波谷”,谷底值分别为 30.07 mg/L (5 月份) 、38.22 mg/L (11 月份) 。

潘三塘化学耗氧量为9.52 mg/L (4 月份) ~91.0 mg/L (6 月份) ,极差为81.48 mg/L,年平均 44.79 mg/L。除 4、5、7 月份以外,其余各月份化学耗氧量均超过 《地表水环境质量标准》的Ⅴ类标准 (40 mg/L) 。

高塘湖化学需氧量为 13.70 mg/L (7 月份) ~ 49.13 (8 月份) ,平均 28.99 mg/L,变幅相对较小,从月变化趋势看,除 6 ~9 月份出现 “锯齿”状变化外,其余各月变化平稳。6 月份和 8 月份的监测值超过 《地表水环境质量标准 (GB3838—2002) 》的Ⅴ类标准(40 mg/L) 。

从全年平均值和各月监测值变化趋势来看,化学需氧量均体现大通塘 > 谢二塘 > 潘三塘 > 高塘湖的现象,说明大通塘的有机污染程度最为严重,谢二塘和潘三塘次之,高塘湖相对较轻。

4个水体化学耗氧量的季节性变化趋势如图3.24 所示。大通塘各季节化学需氧量均超过 《地表水环境质量标准 (GB3838—2002) 》的Ⅴ类标准 (40 mg/L) 。其中夏季最高(93.73 mg/L) ,秋季次之 (76.33 mg/L) ,春季最低 (51.23 mg/L) ,随季节排序为: 夏季 > 秋季 > 冬季 > 春季。

谢二塘秋季化学需氧量最高 (59.76 mg/L) ,其次是冬季 (50.75 mg/L) ,最低出现在夏季 (37.81 mg/L) ,随季节排序为: 秋季 > 冬季 > 春季 > 夏季。秋、冬、春 3 个季节化学需氧量均超过 《地表水环境质量标准 (GB3838—2002) 》的Ⅴ类标准 (40 mg/L) ,夏季超过 《地表水环境质量标准 (GB3838—2002) 》的Ⅳ类标准 (30 mg/L) 。

潘三塘化学需氧量变幅为14.58 mg/L (春季) ~57.09 mg/L (秋季) 。夏、秋季化学耗氧量比较接近,且均超过 《地表水环境质量标准 (GB3838—2002) 》的Ⅴ类标准 (40 mg/L) 。

高塘湖化学需氧量随季节变化在 24.18 mg/L (春季) ~ 36.46 mg/L (夏季) 之间,夏季最高,冬季次之 (30.45 mg/L) ,春、秋季相近 (24.18 ~24.88 mg/L) ,呈现夏季 >冬季 > 秋季 > 春季的趋势。夏季化学需氧量超过 《地表水环境质量标准 (GB3838—2002) 》 的 Ⅳ 类 标 准 (30 mg / L ) , 其 余 3 个 季 节 均 达 到 《地 表水 环 境 质 量 标 准(GB3838—2002) 》的Ⅲ类标准 (20 mg/L) 。

图3.24 4个水体化学需氧量 (COD) 的季节变化趋势

‘陆’ cod标线怎么做

cod标准曲线的制作要有加cod标准液浓度,对应cod浓度,标准样品对应的吸光度(绝对值),化学需氧量COD(Chemical Oxygen Demand)是以化学方法测量水样中需要被氧化的还原性物质的量。废水、废水处理厂出水和受污染的水中,能被强氧化剂氧化的物质(一般为有机物)的氧当量。在河流污染和工业废水性质的研究以及废水处理厂的运行管理中,它是一个重要的而且能较快测定的有机物污染参数,常以符号COD表示。

‘柒’ 什么是氧垂曲线

在河流受到大量有机物污染时,由于微生物对有机物的氧化分解作用,水体溶解氧发生变化,随着污染源到河流下游一定距离内,溶解氧由高到低,再到原来溶解氧水平,可绘制成一条溶解氧变化曲线,称之为氧垂曲线。水体受到污染后,水体中的溶解氧逐渐被消耗,到临界点后又逐步回升的变化过程。需氧污染物排入水体后即发生生物化学分解作用,在分解过程中消耗水中的溶解氧。溶解氧的变化状况反映了水体中有机污染物净化的过程,因而可把溶解氧作为水体自净的标志。

如果以河流流程作为横坐标,溶解氧饱和率作为纵坐标,在坐标纸上标绘曲线,将得一下垂形曲线,常称氧垂曲线,最低点称临界点在一维河流和不考虑扩散的情况下,河流中的可生物降解有机物和溶解氧的变化可以用S-P(Streeter-Phelps)公式模拟。

该图反应了耗氧和复氧的协同作用。图中a为有机物分解的耗氧曲线,b为水体复氧曲线,c为氧垂曲线,最低点Cp为最大缺氧点。若Cp点的溶解氧量大于有关规定的量,从溶解氧的角度看,说明污水的排放未超过水体的自净能力。若排入有机污染物过多,超过水体的自净能力,则 Cp点低于规定的最低溶解氧含量,甚至在排放点下的某一段会出现无氧状态,此时氧垂曲线中断,说明水体已经污染。在无氧情况下,水中有机物因厌氧微生物作用进行厌氧分解,产生硫化氢、甲烷等,水质变坏,腐化发臭。

氧垂曲线上,[DO]变化规律反映河段对有机污染的自净过程。这一问题的研究,对评价水污染程度,了解污染物对水产资源的危害和利用水体自净能力,都有重要意义。

复氧与耗氧
有机物进行生物净化的过程中,复氧与耗氧同时进行,水中溶解氧含量即为耗氧与复氧两过程相互作用的结果。氧垂曲线反映了DO的变化:

在未污染前,河水中的氧一般是饱和的。污染之后,先是河水的耗氧速率大于复氧速率,溶解氧不断下降。随着有机物的减少,耗氧速率逐渐下降;而随着氧饱和不足量的增大,复氧速率逐渐上升。当两个速率相等时,溶解氧到达最低值。随后,复氧速率大于耗氧速率,溶解氧不断回升,最后又出现饱和状态,污染河段完成自净过程。可表示如下:

当耗氧速率>复氧速率时,溶解氧曲线呈下降趋势;

当耗氧速率 = 复氧速率时,为溶解氧曲线最低点,即最缺氧点;

当耗氧速率<复氧速率时,溶解氧曲线呈上升趋势

发生以上变化的原因来自水体复氧和耗氧两方面:

耗氧原因:

①有机物的生物氧化

②硝化作用:水中存在氨,硝化作用会消耗溶解氧。

③水底沉泥的分解。

④水生植物的呼吸作用。

⑤无机还原性物质的影响。

复氧原因:

①空气中的氧通过河流水面不断地溶入水中;

②水体中植物光合作用产生氧。

阅读全文

与如何绘制化学需氧量曲线相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:661
乙酸乙酯化学式怎么算 浏览:1332
沈阳初中的数学是什么版本的 浏览:1269
华为手机家人共享如何查看地理位置 浏览:955
一氧化碳还原氧化铝化学方程式怎么配平 浏览:806
数学c什么意思是什么意思是什么 浏览:1322
中考初中地理如何补 浏览:1219
360浏览器历史在哪里下载迅雷下载 浏览:629
数学奥数卡怎么办 浏览:1298
如何回答地理是什么 浏览:951
win7如何删除电脑文件浏览历史 浏览:982
大学物理实验干什么用的到 浏览:1403
二年级上册数学框框怎么填 浏览:1612
西安瑞禧生物科技有限公司怎么样 浏览:754
武大的分析化学怎么样 浏览:1170
ige电化学发光偏高怎么办 浏览:1260
学而思初中英语和语文怎么样 浏览:1554
下列哪个水飞蓟素化学结构 浏览:1349
化学理学哪些专业好 浏览:1415
数学中的棱的意思是什么 浏览:971