㈠ 关于核磁共振中化学位移的问题
是的,化学位移值反映了分子结构的状态.质子受屏蔽后,吸收峰由低场区向高场区移动,具有较低的化学位移值;质子去屏蔽后,吸收峰由高场区向低场区移动,具有较高的化学位移值.
㈡ 核磁共振波谱法测量氢 如何校正谱图化学位移
一般将TMS的化学位移定为 0, 其它氢的位移就定了。 所以文献中都要标明所用氘代溶剂, 和以TMS 为内标。
㈢ 核磁共振的化学位移
氢的核磁共振谱提供了三类极其有用的信息:化学位移、偶合常数、积分曲线。应用这些信 息,可以推测质子在碳胳上的位置。
根据前面讨论的基本原理,在某一照射频率下,只能在某一磁感应强度下发生核磁共振。例如:照射频率为60 MHz,磁感应强度是 14.092 Gs(14.092×10^-4 T),100 MHz—23.486 Gs(23.486×10^-4 T),200 MHz—46.973 Gs(46.973×10^-4 T)。600 MHz—140.920 Gs(140.920×10^-4 T)。但实验证明:当1H在分子中所处化学环境(化学环境是指1H的核外电子以及与1H 邻近的其它原子核的核外电子的运动情况)不同时,即使在相同照射频率下,也将在不同的共振磁场下显示吸收峰。下图是乙酸乙酯的核磁共振图谱,图谱表明:乙酸乙酯中的8个氢,由 于分别处在a,b,c三种不同的化学环境中,因此在三个不同的共振磁场下显示吸收峰。同种核由于在分子中的化学环境不同而在不同共振磁感应强度下显示吸收峰,这称为化学位移(chemical shift)。 化学位移是怎样产生的?分子中磁性核不是完全裸露的,质子被价电子包围着。这些电子 在外界磁场的作用下发生循环的流动,会产生一个感应的磁场,感应磁场应与外界磁场相反(楞次定律),所以,质子实际上感受到的有效磁感应强度应是外磁场感应强度减去感应磁场强度。即
B有效=B0(1-σ)=B0-B0σ=B0-B感应
外电子对核产生的这作用称为屏蔽效应(shielding effect),也叫抗磁屏蔽效应(diamagnetic effect)。称为屏蔽常数(shielding constant)。与屏蔽较少的质子比较,屏蔽多的质子对外磁场感受较少,将在较高的外磁场B0作用下才能发生共振吸收。由于磁力线是闭合的,因此感应磁 场在某些区域与外磁场的方向一致,处于这些区域的质子实际上感受到的有效磁场应是外磁场B0加上感应磁场B感应。这种作用称为去屏蔽效应(deshielding effect)。也称为顺磁去屏蔽效应(paramagnetic effect)。受去屏蔽效应影响的质子在较低外磁场B0作用下就能发生共振吸收。综上所述:质子发生核磁共振实际上应满足:
ν射=γB有效/2π
因在相同频率电磁辐射波的照射下,不同化学环境的质子受的屏蔽效应各不相同,因此它们发生 核磁共振所需的外磁场B0也各不相同,即发生了化学位移。
对1H化学位移产生主要影响的是局部屏蔽效应和远程屏蔽效应。核外成键电子的电子云 密度对该核产生的屏蔽作用称为局部屏蔽效应。分子中其它原子和基团的核外电子对所研究的 原子核产生的屏蔽作用称为远程屏蔽效应。远程屏蔽效应是各向异性的。 化学位移的差别约为百万分之十,要精确测定其数值十分困难。现采用相对数值表示法,即选用一个标准物质,以该标准物的共振吸收峰所处位置为零点,其它吸收峰的化学位移值根据这 些吸收峰的位置与零点的距离来确定。最常用的标准物质是四甲基硅(CH3)4Si简称TMS。选TMS为标准物是因为:TMS中的四个甲基对称分布,因此所有氢都处在相 同的化学环境中,它们只有一个锐利的吸收峰。另外,TMS的屏蔽效应很高,共振吸收在高场出现,而且吸收峰的位置处在一般有机物中的质子不发生吸收的区域内。现规定化学位移用δ来 表示,四甲基硅吸收峰的δ值为零,其峰右边的δ值为负,左边的δ值为正。测定时,可把标准物与样品放在一起配成溶液,这称为内标准法。也可将标准物用毛细管封闭后放人样品溶液中进 行测定,这称为外标准法。此外,还可以利用溶剂峰来确定待测样品各个峰的化学位移。
由于感应磁场与外磁场的B0成正比,所以屏蔽作用引起的化学位移也与外加磁场B0成正 比。在实际测定工作中,为了避免因采用不同磁感应强度的核磁共振仪而引起化学位移的变化,δ一般都应用相对值来表示,其定义为
δ=(ν样-ν标)/ν仪×10^6④
在式④中,ν样和ν标分别代表样品和标准化合物的共振频率,ν仪为操作仪器选用的频率。多数有机物的质子信号发生在0~10处,零是高场,10是低场。 需注意也有一些质子的信号是在小于0的地方出现的。如安扭烯的环内的质子,受到其外芳环磁各向异性的影响,甚至可以达到-2.99。此外,在不同兆数的仪器中,化学位移的值是相同的。 化学位移取决于核外电子云密度,因此影响电子云密度的各种因素都对化学位移有影响,影 响最大的是电负性和各向异性效应。
⑴电负性(诱导效应)
电负性对化学位移的影响可概述为:电负性大的原子(或基团)吸电子能力强,1H核附近的吸电子基团使质子峰向低场移(左移),给电子基闭使质子峰向高场移(右移)。这是因为吸电子基团降低了氢核周围的电子云密度,屏蔽效应也就随之降低,所以质子的化学位 移向低场移动。给电子基团增加了氢核周围的电子云密度,屏蔽效应也就随之增加,所以质子的 化学位移向高场移动。下面是一些实例。
实例一: 电负性 C2.6 N3.0 O3.5 δ C—CH3(0.77~1.88) N—CH3(2.12~3.10) O—CH3(3.24~4.02) 实例二: 电负性 Cl3.1 Br2.9 I2.6 δ CH3—Cl(3.05)
CH2—Cl2(5.30)
CH—Cl3(7.27) CH3—Br(2.68) CH3—I(2.16) 电负性对化学位移的影响是通过化学键起作用的,它产生的屏蔽效应属于局部屏蔽效应。
⑵各向异性效应
当分子中某些基团的电子云排布不呈球形对称时,它对邻近的1H核产 生一个各向异性的磁场,从而使某些空间位置上的核受屏蔽,而另一些空间位置上的核去屏蔽, 这一现象称为各向异性效应(anisotropic effect)。
除电负性和各向异性的影响外,氢键、溶剂效应、van der Waals效应也对化学位移有影响。氢键对羟基质子化学位移的影响与氢键的强弱及氢键的电子给予体的性质有关,在大多数情况 下,氢键产生去屏蔽效应,使1H的δ值移向低场。有时同一种样品使用不同的溶剂也会使化学位移值发生变化,这称为溶剂效应。活泼氢的溶剂效应比较明显。
当取代基与共振核之间的距离小于van der Waals半径时,取代基周围的电子云与共振核周围的电子云就互相排 斥,结果使共振核周围的电子云密度降低,使质子受到的屏蔽效应明显下降,质子峰向低场移动,这称为van der Waals效应。氢键的影响、溶剂效应、van der Waals效应在剖析NMR图谱时很有用。
(3)共轭效应
苯环上的氢若被推电子基取代,由于P-π共轭,使苯环电子云密度增大,质子峰向高场位移。而当有拉电子取代基则反之。对于双键等体系也有类似的效果。
㈣ 核磁横坐标怎么改
改核磁横坐标。
1、打开软件,找到工具栏。
2、点击工具栏中图像为手持放大镜的图表,在弹出的对话框内修改相应数据,就可以更改横坐标范围。
㈤ 核磁处理软件中标定化学位移在哪
氢谱在核磁共振内有一个峰值,其出现化学位移是因为连接的官能团的影响,极性官能团与非极性官能团对氢谱的影响是一向左移,一向右移.自己根据这个再找几个核磁共振谱对照一下就非常明白了.
㈥ 固体核磁数据怎么处理
是固体核磁,不需要溶解。
一般而言,固体样品要求的是粉末状,粉末越细越好,这样有利于把样品装填紧密。对于特殊样品,可以考虑把他们弄成粉状,尽可能的细些,这样在很仔细的操作下也能够实现高速旋转完成测试。比如对于塑料膜状和丝状样品,也可以剪成细粉状(至少像锯末那样的状态)。然后再想写其他办法,比如可以通过参杂一些对于测试没有影响的其它材料的细粉,可以把样品装填紧密。
还有样品不能具有电磁性。
另外还有需要注意的是,顺磁性杂志的影响。顺磁性杂志会导致弛豫加快,杂志比较多时,会使得在采样还没开始就已经弛豫完了,使得采集不到信号。此外,顺磁性杂志还会导致化学位移各项异性增大,边带会加强。但是少量杂质还会有些帮助,弛豫时间的加快会使得测试速度加快,可以缩短采样间隔时间,这算是有利的一面。
㈦ 核磁软件怎么把化学位移范围调宽
点这个放大的图标,然后在图谱上从左到右拖动到想要的范围就可以了
㈧ 核磁谱图如何移动
方法:
1、首先选择已经测试好的核磁数据文件,选择一般为fid,打开方式中选择MestReNova,即可将核磁测。
2、打开附件一(常用氘代试剂和杂质峰在1H谱中的化学位移),可以看到(CD3)2SO(氘代DMSO)的溶剂峰化学位移为2.49,此外还有一个水峰的化学位移在3.33位置。
3、此时进行溶剂峰化学位移纠正,MestReNova软件点击分析-参考-参考(R),进行溶剂峰化学位移纠正。
4、一般在标准溶剂峰化学位移位置(2.49)附近寻找最高的峰5鼠标左键单击发现初始的化学位移在2.472处,明显与(CD3)2SO的标准化学位移不符合,所以在新的化学位移处改写为2.49后,点击OK即可完成溶剂峰化学位移纠正。解析图谱先观察图谱是否符合要求。
㈨ 如何在核磁软件中修改小数位数
首先选择已经测试好的核磁数据文件,选择一般为fid,打开方式中选择MestReNova,即可将核磁测试数据改变小数点。
一般打核磁的样品质量有一定要求,以600MHz核磁共振波谱仪为例,有机化合物使用15~20mg左右质量的样品溶解在氘代试剂即可(样品质量因仪器不同可进行调整),本文举例为使用氘代试剂DMSO作为溶剂进行核磁测试。
鼠标左键单击分析,积分,自动检测区域。注:这是一种快捷方式,能够直接得出我们需要的大部分信息,可以紧急使用。
㈩ 如何从一个化合物的核磁共振氢谱读取氢信号的化学位移
读取核磁共振氢谱氢信号的化学位移,一是为了解析分子结构,一是为了发表文章报道使用。
为解析结构,只需要精确到小数点后2位即可,后面的四舍五入。
发表论文时,也基本上读到小数点后2位即可。
只在解析高级谱图时,才需要读到小数点后4位,以便于计算使用。
对NMR谱图的峰信号,不论信号峰的形状是否规则、是否对称,信号峰的化学位移值总是位于整个信号峰把基线进行添加后构成封闭图形后的质量重心位置的横坐标上。
为此,先对信号峰进行谱峰分组,再求解包括化学位移在内的所有谱图信息参数。
对谱的每一组峰群进行分组,求解出每一个峰组的谱图信息参数:峰形(宽窄),分裂峰数(单峰s,二重峰d, 三重峰t, 四重峰q,五重峰,六重峰,多重峰M)。峰形与图谱公共基线所围峰面积积分比,化学位移δ值,自旋-自旋耦合常数J值(在非NMR专业论文中,一般都简述这些图谱参数)相互不迭加的谱峰容易进行分组,相互迭加的一级谱或复杂谱,解析的过程也是不断调整进行分组的过程。峰形一般较窄,解析时都是按较窄的峰形处理的。如果较宽,至少是底部较宽时,它的峰较宽的信息本身就代表一定的分子结构信息。
化学位移δ值,现在多使用相对值,即以某一个内标准物质,如四甲基硅等,以内标准物质的NMR信号化学位移δ值为0 ppm或0 Hz,测试物质的信号峰相对于内标物的化学位移δ值。如果NMR谱图内标物信号不在0 位,需要校正之。
常规分裂峰数,s, d, t, q, 五重,六重,七重峰,此外还有dd(双二重峰), dt(双三重峰), dq(双四重峰), ddd(双双二重峰), ddt(双双三重峰), dddd(双双双二重峰)等峰形,每一种都代表一定的结构信息。有了峰形分组和谱峰组成,才容易求解δ值――峰形质量中心的横坐标。求J值的过程也是不断解析谱图推导分子结构的过程。
单峰s,二重峰d, 三重峰t, 四重峰q,五重峰,六重峰,多重峰M,如果是左右对称的峰形,化学位移δ值就在对称峰形的中心峰上或中心处横坐标上读出。
对称的dd(双二重峰), dt(双三重峰), dq(双四重峰), ddd(双双二重峰), ddt(双双三重峰), dddd(双双双二重峰)等峰形,化学位移δ值也是在对称峰形的中心位置上读出。
如果是高级谱图,其中,一部分是一级谱图的变形,即由于耦合关系、相互耦合的内侧峰线高于外侧峰线的,其化学位移δ值稍向峰高的那一侧偏移,偏移得多少依据质量重心法则。另一部分的高级谱图峰形较复杂,如要近似地读出化学位移δ值也是如此即可。如果要想求解出精确的化学位移δ值,可以按照各种不同类型的高级谱图自旋体系的成套的解析公式进行解析,这些高级谱图的自旋类型的判断、计算、解析的整个内容都是很好的可发表论文的实质内容和精华部分。
教科书中都有这方面的内容和专门知识,可去学习。