‘壹’ 氢化物的沸点怎么比较
气态氢化物沸点
分子间范德华力越强,熔、沸点越高.
分子组成和结构相似的分子晶体,一般分子量(即式量)越大,分子间作用力越强,晶体熔、沸点越高.
如:hcl<hbr<hi
特殊:
n,o,f,形成氢化物时,熔沸点比同族高,因为h和这几个极性强的分子间还会有静电力,起名叫氢键
lih很特殊,lih是离子化合物,锂原子的最外层电子彻底失去给了氢原子,而h2o中氧的非金属性再强,也只是点在靠近氧原子!另外,曾经老师讲过一个规律:离子键〉氢键〉共价键
‘贰’ 氢化物的沸点怎么比较
同主族元素的气态氢化物的沸点,从上到下,逐渐升高;但氮、氧和氟的气态氢化物的沸点反应,比下一周期的元素的氢化物的沸点要高,原因是NH3、H2O和HF分子间存在氢键。
氢化物是氢与其他元素形成的二元化合物。但一般科学技术工作中总是把氢同金属的二元化合物称氢化物,而把氢同非金属的二元化合物称某化氢。
在周期表中,除稀有气体外的元素几乎都可以和氢形成氢化物,大体分为离子型、共价型和过渡型3类,它们的性质各不相同。
‘叁’ 同周期的元素氢化物沸点怎么比较
首先,判断元素单质的熔沸点要先判断其单质的晶体类型,晶体类型不同,决定其熔沸点的作用也不同。金属的熔沸点由金属键键能大小决定;分子晶体由分子间作用力的大小决定;离子晶体由离子键键能的大小决定;原子晶体由共价键键能的大小决定。所以第一主族的碱金属熔沸点是由金属键键能决定,在所带电荷相同的情况下,原子半径越小,金属键键能越大,所以碱金属的熔沸点递变规律是:从上到下熔沸点依次降低。第七主族的卤素,其单质是分子晶体,故熔沸点由分子间作用力决定,在分子构成相似的情况下,相对分子质量越大,分子间作用力也越大,所以卤素的熔沸点递变规律是:从上到下熔沸点依次升高。用这样的方法去判断同主族元素的熔沸点递变规律就行了,因为理解才是最重要的。同周期的话,不太好说了。通常会比较同一类型的元素单质熔沸点,比如说比较Na、Mg、Al的熔沸点,则由金属键键能决定,Al所带电荷最多,原子半径最小,所以金属键最强,故熔沸点是:Na<Mg<Al。非金属元素一般不会比较它们单质之间的熔沸点,一般比较他们的氢化物的熔沸点。比较时要注意CH4、NH3、H2O、HF他们的分子间除分子间作用力外,还有氢键,所以同主族氢化物熔沸点他们是最高的,其余的按分子间作用力大小排列。如氧族元素氢化物的熔沸点是:H2O>H2Te>H2Se>H2S;卤素:HF>HI>HBr>HCl。同周期比较的话,是从左至右熔沸点依次升高,因为气态氢化物的热稳定性是这样递变的。另外有时还要注意物质的类型,比如让你比较金刚石、钙、氯化氢的熔沸点,只要知道金刚石是原子晶体,熔沸点最高,其次是金属钙,最后是分子晶体氯化氢。还有原子晶体的:比较金刚石、晶体硅、碳化硅的熔沸点,那就要看共价键了,原子半径越小,共价键键能越大,故熔沸点:金刚石>碳化硅>晶体硅。
‘肆’ 如何比较氢化物的沸点及稳定性
氢化物的稳定性是试卷中经常考查的题目,通常考查同周期或同主族元素的对应氢化物的稳定性。一般规律是,同周期从左到右,对应元素的非金属性逐渐增强,氢化物的稳定性逐渐增强;同主族从上到下,对应元素的非金属性逐渐减弱,氢化物的稳定性逐渐减弱。但有时题目中会出现既不同周期也不同主族元素的氢化物稳定性的比较,这时候如何比较呢?日前笔者在为某出版社审核一份原创试卷时,就发现有这么一个题目:“H2O的稳定性比HCl的稳定性弱。”命题者认为这是正确的。
笔者将这个问题让全班学生进行讨论,也有很多学生认为这句话是正确的,归纳起来主要有以下几种观点:(1)看状态:常温下,H2O为液态,HCl为气态,液态的物质比气态的物质稳定性强。(2)看作用力:水分子间存在氢键或H2O的氢键数量比HCl的多,水分子间作用力更大,结构更稳定。(3)看反应条件:水是由氧气和氢气制得的,一般在点燃条件下反应,在光照时不反应;氯化氢是由氯气和氢气制得的,在点燃或混合光照的条件下都能发生反应,而且比较剧烈。反应的难易程度与生成物的稳定性有关:反应越容易,生成物越稳定。(4)看氧化性:Cl2的氧化性比O2强,其原因是Cl2只有一个共价键而O2有两个,因此Cl―Cl键更易断裂,也更易反应,所以生成的氯化氢更稳定。
二、问题探讨
对于观点(1):我们知道,物理性质和化学性质是物质的两种不同性质,是并列的关系,不能相互影响,因此(1)是错误的。对于观点(2):物质的物理性质和化学性质是受组成物质的作用力所影响的,有的物质中的作用力同时影响两种性质,如离子晶体中的离子键和原子晶体中的共价键;也有的物质两种性质受不同的作用力影响,如分子晶体中的分子间作用力影响物理性质,分子内的共价键影响化学性质。水在固态时属于分子晶体,水分子间存在氢键,氢键主要影响物质的溶解性、熔沸点、物质的状态等物理性质,而物质的稳定性是化学性质,由水中的共价键所影响,氢键不可能影响化学性质,因此(2)是错误的。(1)与(2)错误的原因是混淆了基本概念之间的关系。
对于观点(3):在中学化学中,通常认为非金属单质与氢气反应越容易,则生成的氢化物越稳定,这可能是命题者和很多学生易犯的错误。我们知道,任何规律都会存在着特殊情况,这里也不例外。对于观点(4):Cl2只有一个共价键,其Cl―Cl的键能为242.7kJ・mol-1,O2中的
‘伍’ 怎样比较简单氢化物的沸点
同主族元素的气态氢化物的沸点,从上到下,逐渐升高;但氮、氧和氟的气态氢化物的沸点反应,比下一周期的元素的氢化物的沸点要高,原因是NH3、H2O和HF分子间存在氢键。气态氢化物一般是指非金属氢化物。
沸腾是在一定温度下液体内部和表面同时发生的剧烈汽化现象。沸点是液体沸腾时候的温度,也就是液体的饱和蒸气压与外界压强相等时的温度。沸点指纯净物在1个标准大气压下沸腾时的温度。不同液体的沸点是不同的。沸点随外界压力变化而改变,压力低,沸点也低。
相关信息
当液体沸腾时,在其内部所形成的气泡中的饱和蒸汽压必须与外界施予的压强相等,气泡才有可能长大并上升,所以,沸点也就是液体的饱和蒸汽压等于外界压强时的温度。液体的沸点跟外部压强有关。当液体所受的压强增大时,它的沸点升高;压强减小时;沸点降低。
例如,蒸汽锅炉里的蒸汽压强,约有几十个大气压,锅炉里的水的沸点可在200℃以上。又如,在高山上煮饭,水易沸腾,但饭不易熟。这是由于大气压随地势的升高而降低,水的沸点也随高度的升高而逐渐下降。,水的沸点是93.5℃),沸点低的一般先汽化,而沸点高的一般较难汽化。
‘陆’ 高中化学 气态氢化物的稳定性和熔沸点怎么比较 单质的稳定性和熔沸点怎么比较
非金属的气态氢化物热稳定性及熔沸点的比较:
1、热稳定性比较原子半径越大,原子之间的化学键越弱,越容易分解,即热稳定性越小。
比如热稳定性:HCl > HBr > HI
2、比较熔沸点(分子晶体)
通常比较分子之间作用力,分子间力越大,熔沸点越高。一般情况下,分子间以色散力为主,而色散力与分子体积有关,所以半径越大,分子间作用力越大,熔沸点越高。
如:HCl < HBr < HI
3、需要注意的情况
同一系列,即同族元素,同类型氢化物才有可比性。
如出现氢键等其他特殊条件,熔沸点会出现例外。
拓展:各种晶体的熔沸点比较
金属键形成的单质晶体。金属单质及一些金属合金都属于金属晶体,例如镁、铝、铁和铜等。金属晶体中存在金属离子(或金属原子)和自由电子,金属离子(或金属原子)总是紧密地堆积在一起,金属离子和自由电子之间存在较强烈的金属键,自由电子在整个晶体中自由运动,金属具有共同的特性,如金属有光泽、不透明,是热和电的良导体,有良好的延展性和机械强度。大多数金属具有较高的熔点和硬度,金属晶体中,金属离子排列越紧密,金属离子的半径越小、离子电荷越高,金属键越强,金属的熔、沸点越高。例如周期系IA族金属由上而下,随着金属离子半径的增大,熔、沸点递减。第三周期金属按Na、Mg、Al顺序,熔沸点递增。
根据中学阶段所学的知识。金属晶体都是金属单质,构成金属晶体的微粒是金属阳离子和自由电子(也就是金属的价电子)。
冰(H2O)分子晶体棍球模型分子间以范德华力相互结合形成的晶体。大多数非金属单质及其形成的化合物如干冰(CO2)、I2、大多数有机物,其固态均为分子晶体。分子晶体是由分子组成,可以是极性分子,也可以是非极性分子。分子间的作用力很弱,分子晶体具有较低的熔、沸点,硬度小、易挥发,许多物质在常温下呈气态或液态,例如O2、CO2是气体,乙醇、冰醋酸是液体。同类型分子的晶体,其熔、沸点随分子量的增加而升高,例如卤素单质的熔、沸点按F2、Cl2、Br2、I2顺序递增;非金属元素的氢化物,按周期系同主族由上而下熔沸点升高;有机物的同系物随碳原子数的增加,熔沸点升高。但HF、H2O、NH3、CH3CH2OH等分子间,除存在范德华力外,还有氢键的作用力,它们的熔沸点较高。
分子组成的物质,其溶解性遵守“相似相溶[1]”原理,极性分子易溶于极性溶剂,非极性分子易溶于非极性的有机溶剂,例如NH3、HCl极易溶于水,难溶于CCl4和苯;而Br2、I2难溶于水,易溶于CCl4、苯等有机溶剂。根据此性质,可用CCl4、苯等溶剂将Br2和I2从它们的水溶液中萃取、分离出来。分子晶体熔沸点高低规律
分子间作用力越强,熔沸点越高
①组成和结构相似的分子晶体,一般相对分子质量越大,分子间作用力越强,熔沸点越高。例如:元素周期表中第ⅦA族的元素单质其熔沸点变化规律为:At2>I2 > Br2 > Cl2>F2。
②若分子间有氢键,则分子间作用力比结构相似的同类晶体大,故熔沸点较高。
例如:HF > HI > HBr > HCl。H2O> H2Se> H2S。 NH3> PH3
原子晶体定义:相邻原子之间通过强烈的共价键结合而成的空间网状结构的晶体叫做原子晶体原理简介
相邻原子间以共价键结合而形成的空间网状结构的晶体。例如金刚石晶体,是以一个碳原子为中心,通过共价键连接4个碳原子,形成正四面体的空间结构,每个碳环有6个碳原子组成,所有的C-C键键长为1.55×10-10米,键角为109°28′,键能也都相等
金刚石是典型的原子晶体,熔点高达3550℃,是硬度最大的单质。原子晶体中,组成晶体的微粒是原子,原子间的相互作用是共价键,共价键结合牢固,原子晶体的熔、沸点高,硬度大,不溶于一般的溶剂,多数原子晶体为绝缘体,有些如硅、锗等是优良的半导体材料。原子晶体中不存在分子,用化学式表示物质的组成,单质的化学式直接用元素符号表示,两种以上元素组成的原子晶体,按各原子数目的最简比写化学式。常见的原子晶体是周期系第ⅣA族元素的一些单质和某些化合物,例如金刚石、硅晶体、SiO2、SiC等。(但碳元素的另一单质石墨不是原子晶体,石墨晶体是层状结构,以一个碳原子为中心,通过共价键连接3个碳原子,形成网状六边形,属过渡型晶体。)对不同的原子晶体,组成晶体的原子半径越小,共价键的键长越短,即共价键越牢固,晶体的熔,沸点越高,例如金刚石、碳化硅、硅晶体的熔沸点依次降低。
金刚石的晶体模型相邻原子间以共价键结合而形成的空间网状结构的晶体,如:金刚石、晶体硅、碳化硅、二氧化硅等。凡靠共价键结合而成的晶体统称为原子晶体。例如金刚石晶体,是以一个碳原子为中心,通过共价键连接4个碳原子,形成正四面体的空间结构,每个碳环有6个碳原子组成,所有的C-C键键长为1.55×10-10米,键角为109°28′,键能也都相等,金刚石是典型的原子晶体,熔点高达3550℃,是自然界硬度最大的单质。原子晶体中,组成晶体的微粒是原子,原子间的相互作用是共价键,共价键结合牢固,原子晶体的熔、沸点高,硬度大,不溶于一般的溶剂,多数原子晶体为绝缘体,有些如硅、锗等是优良的半导体材料。原子晶体中不存在分子,用化学式表示物质的组成,单质的化学式直接用元素符号表示,两种以上元素组成的原子晶体,按各原子数目的最简比写化学式。常见的原子晶体是周期系第ⅣA族元素的一些单质和某些化合物,例如金刚石、硅晶体、SiO2、SiC、B等。对不同的原子晶体,组成晶体的原子半径越小,共价键的键长越短,即共价键越牢固,晶体的熔,沸点越高,例如金刚石、碳化硅、硅晶体的熔沸点依次降低。 且原子晶体的熔沸点一般要比分子晶体和离子晶体高。
离子间通过离子键结合形成的晶体。在离子晶体中,阴、阳离子按照一定的格式交替排列,具有一定的几何外形,例如NaCl是正立方体晶体,Na+离子与Cl-离子相间排列,每个Na+离子同时吸引6个Cl离子,每个Cl-离子同时吸引6个Na+。不同的离子晶体,离子的排列方式可能不同,形成的晶体类型也不一定相同。离子晶体中不存在分子,通常根据阴、阳离子的数目比,用化学式表示该物质的组成,如NaCl表示氯化钠晶体中Na+离子与Cl-离子个数比为1:1, CaCl2表示氯化钙晶体中Ca2+离子与Cl-离子个数比为1:2。
离子晶体是由阴、阳离子组成的,离子间的相互作用是较强烈的离子键。离子晶体的代表物主要是强碱和多数盐类。离子晶体的结构特点是:晶格上质点是阳离子和阴离子;晶格上质点间作用力是离子键,它比较牢固;晶体里只有阴、阳离子,没有分子。离子晶体的性质特点,一般主要有这几个方面:有较高的熔点和沸点,因为要使晶体熔化就要破坏离子键,离子键作用力较强大,所以要加热到较高温度。硬而脆。多数离子晶体易溶于水。离子晶体在固态时有离子,但不能自由移动,不能导电,溶于水或熔化时离子能自由移动而能导电 离子晶体熔沸点高低比较
离子所带电荷越高,离子半径越小,则离子键越强,熔沸点越高。例如:Al2O3 > MgO > NaCl > CsCl
‘柒’ 如何比较氢化物的沸点呢
简单来说首先看有没有氢键,有氢键沸点就高,没有的话,就看相对分子质量,相对分子质量越大,沸点越高,含有氢键中学最常见的就是氟化氢,水,和氨气了,一般他们沸点比同周期的都高。