导航:首页 > 化学知识 > 计算化学如何确定过渡态

计算化学如何确定过渡态

发布时间:2022-12-31 05:55:44

A. 一个反应存在多个途径怎么算过渡态

3.过渡态相关问题
3.1 无过渡态的反应途径(barrierless reaction pathways)
并非所有反应途径都需要越过势垒,这类反应在很低的温度下就能发生,盲目找它们的过渡态是徒劳的。常见的包括自由基结合,比如甲基自由基结合为乙烷;自由基向烯烃加成,比如甲基自由基向乙烯加成成为丙基自由基;气相离子向中性分子加成,比如叔碳阳离子向丙烯加成。等等。
3.2 Hammond-Leffler假设
过渡态在结构上一般会偏向反应物或者产物结构一边。Hammond-Leffler假设对预测过渡态结构往哪个方向偏是很有用的,意思是反应过程中,如果两个结构的能量差异不大,则它们的构型差异也不大。由此可知对于放热反应,因为过渡态能量与反应物差异小,与产物差异大,故过渡态结构更偏向反应物,相反,吸热反应的过渡态结构更偏向产物。所以初猜过渡态结构应考虑这一问题。
3.2 对称性问题
如果已经明确地知道过渡态是什么对称性,而且对称性高于平衡态对称性,且可以确信在这个高对称性下过渡态是能量最低点,则可以强行限制到这个对称性之后进行几何优化,几何优化算法比寻找过渡态算法方法更可靠。比如F+CH3F-->FCH3+F这个SN2反应,过渡态就是伞形翻转的一刻,恰为高对称性的D3h点群,而反应路径上的其它结构对称性都比它低,所以在D3h点群条件下优化,得到的能量最低点就是过渡态。
如果过渡态对称性不确定,则找过渡态计算的时候不宜设任何对称性,否则若默认保持了平衡态下的对称性,得到的此对称下的过渡态并不是真正的过渡态,容易得到二阶或高阶鞍点。
3.3 溶剂效应
计算凝聚态条件下过渡态的性质,必须考虑溶剂效应,它明显改变了势能面。一般对过渡态的结构影响较小,但对能量影响很大。有时溶剂效应也会改变反应途径,或产生气相条件下没有的势垒。溶剂条件下,上述寻找过渡态的方法依然适用。应注意涉及到与溶剂产生氢键等强相互作用的情况,隐式溶剂模型是不适合的,需要用显式溶剂考察它对过渡态的影响,即在输入文件中明确表达出溶剂分子。
3.4 计算过渡态的建议流程
直接用高水平方法计算过渡态往往比较花时间,可以使用逐渐提高方法等级的方法加速这一过程,一般建议是:
1 执行低水平的计算找过渡态,如半经验。
2 将第1步得到的过渡态作为初猜,用高级别的方法找过渡态。
3 在相同水平下对上一步找到的过渡态做振动分析,检验是否仅有一个虚频,以及观看其振动模式的动画来考察振动方向是否连接反应物与产物结构。有必要时可以做IRC进一步检验。
4 为获得更精确的过渡态能量,可使用更高等级方法比如含电子相关的方法计算能量。
4.内禀反应坐标(intrinsic reaction coordinate,IRC)
MEP指的是势能面上,由一个点到达另一个点的能量最低的路径,满足最小作用原理。若质量权重坐标下的MEP连接的是反应物、过渡结构和产物,则称为IRC。所谓质权坐标在笛卡儿坐标下即r(i,x)=sqrt(m(i))*R(i,x),m(i)为i原子质量,R(i,x)为i原子原始x方向坐标,同样有r(i,y)、r(i,z)。IRC描述了原子核运动速度为无限小时,质权坐标下由过渡态沿着势能负梯度方向行进的路径(最陡下降路径),其中每一点的负梯度方向就是此处核的运动方向,在垂直于路径方向上是能量极小点。注意质量权重和非权重坐标下的路径是不一样的。
IRC可看作0K时的实际在化学反应中原子核所走的路径,温度较低时IRC也是一个很好的近似。但是当温度较高,即核动能较大时,实际反应路径将明显偏离IRC,而趋于沿最短路径变化,即便经历的是势能面上能量较高的的路径,这时就需要以动力学计算的平均轨迹来表征反应路径。

5.IRC算法
5.1 最陡下降法(Steepest descent)
最简单的获得IRC的方法就是固定步长的最陡下降法,由过渡态位置开始,每步沿着当前梯度方向行进一定距离直到反应物/产物位置,也称Euler法。由于最陡下降法及下文的IMK、GS等方法第一步需要梯度,而过渡态位置梯度为0,所以第一步移动的方向沿着虚频方向。最陡下降方法与IRC的本质相符,但是此法实际得到的路径是一条在真实IRC附近反复震荡的曲折路径,而非应有的平滑路径,对IRC描述不够精确。虽然可以通过更小的步长得以一定程度的解决,但是太花时间,对于复杂的反应机理,需要更多的点。也可以通过RK4(四阶Runga-Kutta)来走步,比上面的方法更稳定、准确,但每步要需要算四个梯度,比较费时。
5.2 IMK方法(Ishida-Morokuma-Kormornicki)
它是最陡下降法的改进,解决其震荡问题。首先计算起始点X(k)的梯度g(k),获得辅助点X'(k+1)=X(k)-g(k)*s,其中s为可调参数。然后计算此点梯度g'(k+1),在g(k)与-g'(k+1)方向的平分线上(红线所示)进行线搜索,所得能量最小点即为X(k+1),之后再将X(k+1)作为上述步骤的X(k)重复进行。整个过程类似先做最陡下降法,然后做校正。此方法仍然需要相对较小的步长,获得较精确IRC所需计算的点数较多。

[图12]IMK方法示意图
Schmidt,Gordon,Dupuis改进了IMK的三个细节,使之更有效率、更稳定。(1)将X'(k+1)的确定方式改为了X(k)-g(k)/|g(k)|*s,即每一步在负梯度方向上行进固定的s距离,与梯度大小不再有关。(2)线搜索步只需在平分线上额外计算一个点的能量即可,这个点和X'(k+1)点的能量以及g'(k+1)在此平分线上的投影三个条件作联立方程即可解出曲线方程,减少了计算量。IMK原始方法则需要在平分线上额外计算两个点的能量与X'(k+1)的能量一起拟和曲线方程。(3)第一步在过渡态位置的移动距离Δq如此确定:ΔE=k*(Δq^2)/2,k为虚频对应的力常数,ΔE为降低能量的期望值(一般为0.0005 hartree),这样可避免在虚频很大的鞍点处第一步位移使能量降低过多。
5.3 Müller-Brown方法
这是通过球形限制性优化找IRC的方法。首先将过渡态和能量极小点位置定义为P1和P2,由P1开始步进,当前步结构以Q(n)表示。每一步,在相距Q(n)为r距离的超球面上用simplex法优化获得能量极小点Q'(图中绿点),优化的起始点是Q(n-1)Q(n)与Q(n)P2方向的平分线b上距Q(n)为r距离的位置S(红点)。若Q(n)Q'与Q(n)P2的夹角较小,则Q'可当作是下一步位置Q(n+1)。如此反复,直到符合停止标准,比如下一步能量比当前更高(已走过头了)、与P2距离已很近(如小于1.2r)、或者与P2方向偏离太大(P1与P2点通过此法无法找到IRC)。最终所得到全部结构点依次相连即为近似的IRC,减小步长r值可使结果更贴近实际IRC。基于此方法也可以用于寻找过渡态,先将反应物和产物作为P1和P2,将二者距离的约2/3作为r,由其中一点在P1-P2连线上相距其r位置为初始位置进行球形优化得到O点,在O与P1、O与P2上也如此获得P1'与P2',根据P1、P1'、O、P2'、P2的能量及之间距离信息以一定规则确定其中哪两个点作为下一步的P1和P2,确定新的P1和P2后重复上述步骤,直至P1与P2十分接近,即是过渡态。此方法计算IRC可以步长可设得稍大,第一步不需要费时的Hessian矩阵确定移动方向,缺点是获得的路径曲率容易有问题,对于曲率较大的反应路径需要减小步长。

[图13]Müller-Brown方法示意图
5.4 GS(Gonzalez-Schlegel)方法
这是目前很常用,也是Gaussian使用的方法,见图14。首先计算起始点X(k)的梯度,沿其负方向行进s/2距离得到X'(k+1)点作为辅助点。在距X'(k+1)点距离为s/2的超球面上做限制性能量最小化,找到下一个点X(k+1)。因为这个点的负梯度(黑色箭头)在弧方向上分量为0,故垂直于弧,即其梯度方向在X'(k+1)到X(k+1)的直线上。这必然可以得到一段用于描述IRC的圆弧(虚线),它通过X(k)与X(K+1)点,且在此二点处圆弧的切线等于它们的梯度方向,这与IRC的特点一致,这段圆弧可以较好地(实线)。之后再将X(k+1)作为上述步骤的X(k)重复进行。
GS方法对IRC描述得比较精确,在研究反应过程等问题中,由于对中间体结构精度有要求,GS是很好的选择,而且用大步长可以得到与小步长相近的结果,优于IMK、Müller-Brown等方法。若只想得到与过渡态相连的反应物和产物结构,或者粗略验证预期的反应路径,对IRC精度要求不高,使用最陡下降法往往效率更高,尽管GS可以用更大步长,但每步更花时间。

[图14]GS方法示意图
除上述外,IRC也可以通过已提及的EF、最缓上升法、球形优化等方法得到,它们的好处是不需要事先知道过渡态的结构。赝坐标法除了简单的反应以外,只能得到近似的IRC,由于结构的较小偏差会带来能量的较大变化,容易引入滞后效应,所以这样得到的势能曲线难以说明问题。

6. chain-of-states方法
这类方法主要好处是只需要提供反应物和产物结构就能得到准确的反应路径和过渡态。首先在二者结构之间以类似LST的方式线性、均匀地插入一批新的结构(使用内坐标更为适宜),一般为5~40个,每个结构就是势能面上的一个点(称为image),并将相邻的点以某种势函数相连,这样它们在势能面上就如同组成了一条链子。对这些点在某些限制条件下优化后,在势能面上的分布描述的就是MEP,能量最高的结构就是近似的过渡态位置。
6.1 Drag method方法
这个方法最简单,并不是严格的chain-of-states方法,因为每个结构点是独立的。插入的结构所代表的点均匀分布在图8所示的短虚线上,也可以在过渡态附近位置增加点的密度。每个点都在垂直于短虚线的超平面上优化,在图中就是指平行于长虚线方向优化。这种方法一般是奏效的,但也很容易失效,图8就是一例,优化后点的分布近似于从产物和反应物用最缓上升法得到的路径(黑色粗曲线),不仅反应路径错误,而且两段不连接,与黑色小点所示的真实MEP相距甚远(黑色点是用下文的NEB方法得到的)。目前基本不使用此方法。
6.2 PEB方法(plain elastic band)
这是下述Chain-of-state方法的基本形式。也是在反应物到产物之间插入一系列结构,共插入P-1个,反应物编号为0,产编号物为P。不同的是优化不是对每个点孤立地优化,而是优化一个函数,每一步所有点一起运动。下文用∑[i=1,P]X(i)符号代表由X(1)开始加和直到X(P)。PEB函数是这样的:S(R(1),R(2)...R(P-1))=∑[i=1,P-1]V(R(i)) + ∑[i=1,P]( k/2*(R(i)-R(i-1))^2 )。其中R(i)代表第i个点的势能面上的坐标,V(R(i))是R(i)点的能量,k代表力常数。优化过程中反应物R(0)和产物R(P)结构保持不变,优化此函数相当于对一个N*(P-2)个原子的整体进行优化,N为体系原子数。
优化过程中,式中的第一项目的是让每个点尽量向着能量极小的位置移动。第二项相当于将相邻点之间用自然长度为0、力常数为k的弹簧势连了起来,目的是保持优化中相邻点之间距离均衡,避免过大。当只有第一项的时候,函数优化后结构点都会跑到作为能量极小点的反应物和产物位置上去而无法描述MEP,这时必然会有一对儿相邻结构点距离很大。当第二项出现后,由于此种情况下弹簧势能很高,在优化中不可能出现,从而避免了这个问题。drag method法在图8中失败的例子中,也有一对儿相邻结构点距离太远,所以也不会在PEB方法中出现。简单来说,PEB方法就是保持相邻结构点的间距尽量小的情况下,优化每个结构点位置。可以近似比喻成在势能面的模型上,将一串以弹簧相连的珠子,一边挂在反应物位置,另一边挂在产物位置,拉直之后松手,这串珠子受重力作用在模型上滚动,停下来后其形状可当作MEP,最高的位置近似为过渡态。
但是PEB方法的结果并不能很好描述MEP。图15描述的是常见的A、B、C三原子反应的LEPS势能面,B可与A或C成键,黑色弧线为NEB方法得到的较真实的MEP。左图中,在过渡态附近PEB的结构点没有贴近MEP,得到的过渡态能量过高,称为corner-cutting问题。这是因为每点间的弹簧势使这串珠子僵硬、不易弯曲,由图15右图可见,R(i)朝R(i-1)与R(i+1)方向都会受到弹簧拉力,其合力牵引R(i),使R(i-1)、R(i)、R(i+1)的弧度有减小趋势。如果将弹簧力常数减小以减弱其效果,就会出现图15中间的情况,虽然结构点贴近了MEP,但相邻点间距没有得到保持,过渡态附近分辨率很低,错过了真实过渡态,若以能量最高点作为过渡态则能量偏低,这称为sliding-down问题。可见弹簧力常数k的设定对PEB结果有很大影响,为权衡这两个问题只能取折中的k,但结果仍不准确。

[图15]LEPS势能面上不同k值的PEB结果
6.3 Elber-Karplus方法
与PEB函数定义相似。第一项定义为1/L*∑[i=1,P-1]( V(R(i))*d(i,i-1) ),其中L为链子由0点到P-1点的总长,d(i,i+1)为R(i)与R(i+1)的距离,此项可视为所有插入点总能量除以点数,即插入点的平均能量。第二项为γ*∑[i=1,P](d(i,i-1)-<d>)^2,其中<d>代表相邻点的平均距离,是所有d(i,j)的RMS。此项相当于将弹簧自然长度设为了当前各个弹簧长度的平均值,由γ参数控制d(i,j)在平均值上下允许的波动的范围。此方法最初被用于研究蛋白质体系的构象变化。
6.4 SPW方法(Self-Penalty Walk)
在Elber-Karplus方法的基础上增加了第三项互斥项,∑[i=0,P-1]∑[i=j+1,P-1]U(ij),其中U(ij)=ρ*exp(-d(i,j)/(λ*<d>)),<d>定义同上。此项相当于全部点之间的“非键作用能U(ij)”之和,不再仅仅是相邻点之间才有限制势。任何点之间靠近都会造成能量升高,可以避免Elber-Karplus方法中出现的在能量极小点处结构点聚集、路径自身交错的问题,能够使路径充分地展开,确保过渡态区域有充足的采样点。式中ρ和λ都是可调参数来设定权重。此外相对与Elber-Karplus方法还考虑了笛卡儿坐标下投影掉整体运动的问题。
6.5 LUP方法(Locally Updated planes)
特点是优化过程中,只允许每个结构点R(i)在垂直于R(i-1)R(i+1)向量的超平面上运动。由于每步优化后R(i-1)与R(i+1)连线方向也会变化,故每隔一定步数重新计算这些向量,重新确定每个点允许移动的超平面。但是LUP缺点是结构点之间没有以上述弹簧势函数相连来保持间隔,容易造成结构点在路径上分布不均匀,甚至不连续,还可能逐渐收敛至两端的极小点。
6.6 NEB方法(Nudged Elastic Band)
NEB方法集合了LUP与PEB方法的优点,其函数形式基于PEB。从PEB方法的讨论可以看出,弹簧势是必须的,它平行于路径切线(R(i)-R(i-1)与R(i+1)-R(i)矢量和的方向)的分量保证结构点均匀分布在MEP上来描述它;但其垂直于路径的分量造成的弊端也很明显,它改变了这个方向的实际的势能面,优化后得到的MEP'就与真实的MEP发生了偏差,造成corner-cutting问题。解决这个问题很简单,在NEB中称为nudge过程,即每个点在平行于路径切线上的受力只等于弹簧力在这个方向分量,每个点在垂直于路径切线方向的受力只等于势能力在此方向上分量。这样弹簧力垂直于路径的分量就被投影掉了,而有用的平行于路径的分量完全保留;势能力在路径方向上的分量也不会再对结构点分布的均匀性产生影响,被保留的它在垂直于路径上的分量将会引导结构点地正确移动。这样优化收敛后结构点就能正确描述真实的MEP,矛盾得到解决。弹簧力常数的设定也比较随意,不会再对结果产生明显影响。但是当平行于路径方向能量变化较快,垂直方向回复力较小的情况,NEB得到的路径容易出现曲折,收敛也较慢,解决这一问题可以引入开关函数,即某点与两个相邻点之间形成的夹角越小,此点就引入更多的弹簧势垂直于路径的分量,使路径不易弯曲而变得光滑,但也会带来一定corner-cutting问题。也可以通过将路径切线定义为每个点指向能量更高的相邻点的方向来解决。
6.7 DNEB方法(Double Nudged Elastic Band)
弹簧势垂直于路径的分量坏处是造成corner-cutting问题,好处是避免路径卷曲。更具体来说,前者是由于它平行于势能梯度方向的那个分量造成的,若只将这个分量投影掉,就可避免corner-cutting问题,而其余分量的力F(DNEB)仍可以避免路径卷曲,这便是DNEB的主要思想。故DNEB与NEB的不同点就是DNEB保留了弹簧势垂直于路径的分量其中的垂直于势能梯度的分量。
DNEB的这个设定却导致结构点不能精确收敛到MEP上。正确的MEP上的点在垂直于路径方向上受势能力一定为0,但是当用了DNEB方法后,若其中某一点处路径是弯曲的,即弹簧力在垂直于路径方向上有分量F',而且此点势能梯度方向不垂直于此点处路径的切线,即F'不会被完全投影掉,F'力的分量F(DNEB)将继续带着这个点移动,也就是说结构点就不在正确的MEP上了。只有当结构点所处路径恰为直线,即F'为0则不会有此问题。为了解决此问题有人将开关函数加入到DNEB,称为swDNEB,当结果越接近收敛,即垂直于路径的势能力越小的时候,F(DNEB)也越小,以免它使结构点偏离正确MEP。一些研究表明DNEB和swDNEB相比NEB在收敛性(结构点受力最大值随步数降低速度)方面并没有明显提升,DNEB难以收敛到较高精度以内,容易一直震荡。
6.8 String方法
与NEB对力的投影定义一致,但点之间没有弹簧势连接,保持点的间距的方法是每步优化后使这些点在路径上平均分布。
6.9 Simplified String方法
String中计算每个点的切线并投影掉势能力平行于路径的分量的过程也去掉了,所有点之间用三次样条插值来表述路径,每一个点根据实际势能力运动后,在路径上重新均匀分布。优化方法最好结合RK4方法。NEB在点数较小的情况下比Simplified String方法能在更短时间内收敛到更高精度,但点数较多情况下则Simplified String更占优势。
6.10 寻找过渡态的chain-of-state方法
除非势能面对称且结构点数目为奇数,否则不会有结构点恰好落在过渡态。以能量最高的点作为过渡态只是近似的,为了更好地描述过渡态,可以增加结构点数,或者增加局部弹簧力常数,使过渡态附近点更密。根据已得到的点的能量,通过插值方法估算能量最高点是另一个办法。近似的过渡态也可以作为QN法的初猜寻找准确的过渡态。
6.10.1 CI-NEB方法
NEB与String等方法都可以结合Climbing Image方法,它专门考虑到了定位过渡态问题。CI-NEB与NEB的关键区别是能量最高的点受力的定义,在CI-NEB中这个点不会受到相邻点的弹簧力,避免位置被拉离过渡态,而且将此点平行于路径方向的势能力分量的符号反转,促使此点沿着路径往能量升高的方向上爬到过渡态。这个方法只需要很少的点,比如包含初、末态总共5个甚至3个点就能准确定位过渡态,是最有效率的寻找过渡态的方法之一。如果还需要精确描述MEP,可以在此过渡态上使用Stepwise descent方法、最陡下降法、RK4等方法沿势能面下坡走出MEP,整个过程比直接使用很多点的NEB方法能在更短时间内得到更准确的MEP。
6.10.2 ANEBA方法(adaptive nudged elastic band approach)
这个方法也是基于NEB,专用来快速寻找过渡态。一般想得到高精度的过渡态区域,NEB的链子上必须包含很多点,耗费计算时间。而ANEBA方法中链子两端的位置不是固定的,而是不断地将它们移动到离过渡态更近的位置,仅用很少几个点的链子就可以达到同样的精度。具体来说,设链子两端的点分别叫A点和B点(对于第一步就是反应物和产物位置),先照常做NEB,收敛至一定精度后(不需要精度太高),改变A和B的位置为链子中能量最高点相邻的两个点,然后再优化并收敛至一定精度,再如此改变A和B的位置,反复经历这一步骤,最终链子上能量最高点就是精确的过渡态。ANEBA相当于不断增加原先NEB链子的过渡态附近的点数,但实际上点数没有变。有研究表明ANEBA比CI-NEB效率更高,如果结合ANEBA与CI(称CI-ANEBA),即先用ANEBA方法经上述步骤移动几次A、B点,使之聚焦到过渡态附近,再用CI-NEB方法,效率可以进一步提高。

B. 在计算过渡态时要形成的键的键长定义为多少

“对于没有过渡态的反应,一是从化学背景上可以判断是没有过渡态的,二是计算中确实找不到,若满足这两个条件,则可以肯定其是没有过渡态了。这时就不用作 IRC 了!用 SCAN 直接对断裂的键(比如稳定分子分解为两个自由基的反应)进行扫描。”那在键断裂的过程中是不是压根就没有过渡态的存在?而我在实际计算中用TS计算(把键拉长20%)是可以得到一个虚频的过渡态,。

C. 过渡态计算求助

1. 同一种反应物,同样的反应条件,可以有单一过渡态,也可以有多个连续过渡态,形成多个中间产物,这取决与反应物本身的物理化学特性。2. 同一种反应物,不同的反应条件,具有不同的过渡态。3. 反应物相同,生成物不同,说明反应条件不同,当然具有不同的过渡态;既可以是不同的单一过渡态,也可以是不同的多个过渡态的连续。

D. 什么是过渡状态能量 高二化学

过渡状态理论 :是研究有机化学反应中由反应物到产物过程中所产生的一种“过渡状态”的理论。过渡状态是沿着一定反应途径所出现的一种状态,其特征是比在该途径上与之相邻的其他状态有较高的势能。在过渡态的势能图线上、过渡状态对应着一个极大值。过渡状态理论认为,对于一步反应(协同反应),在反应物和产物之间只存在有过渡状态,没有活性中间体;而在分步反应中,即存在有过渡状态,又有活性中间体。过渡状态和活性中间体是两个不同的概念,不可混淆。由于过渡状态能量高,不稳定,不能分离出来,又称为活化络合物。因此,过渡状态理论也可称为活化络合物理论。通过对过渡状态和反应中间体类型的研究,以及用动力学方法确定反应速率决定步骤和产物决定步骤,就可推知整个反应的机理。

E. 简述化学反应的过渡态理论原理

一般认为化学反应的过程是分子之间碰撞的结果,具有一定能量的反应物分子才能发生碰撞,只有恰当的碰撞角度才能生成产物。
过渡状态理论对碰撞这一模型进行更深化的描述,应用了统计热力学和量子力学来处理问题。该理论认为反应并不是由简单的碰撞来完成的。分子发生碰撞首先形成一种过渡态的络合物,形成络合物的过程是需要一定能量的。因此络合物又称活化络合物。在碰撞过程中,不只将分子考虑成为一个硬球,而是要考虑分子之间及其内部的相互作用,而且这种作用并不是只存在于碰撞的瞬间,而是整个碰撞的过程都有这种作用。从而整个体系的势能也就随着碰撞的过程发生变化。形成的过渡态络合物是可逆地转化为产物。通过这个理论,我们可以仅有反应分子的本身属性就可以判断一个反应的速率常数。

F. 化学反应中过渡态和中间产物的区别

过渡态是反应发生过程中经历的一个中间反应过程,指的是一个状态,这个状态不一定生成确切的物质。
中间产物是在反应中生产的一个确切的物质。
个人理解!希望有帮助。

G. 如何判断某一个极值点是否为过渡态

用量子化学方法判断。
单原子分子肯定是稳定的,具体看分子结构是极性还是非极性等等条件了。先看一阶导数,确定是极值点或者鞍点,再看频率分析,确定没有虚频。那就是局域稳定结构了。至于全局能量最低点对于简单分子还好,对于复杂分子,又要具体问题具体分析。
过渡态是指反应物体系转变成产物体系过程中,经过的能量最高状态或称活化络合物。过渡态键的状况是:旧键未完全断裂,新键未完全角成。过渡态是不稳定的,不能分离出来。过渡态和反应物的能量差,称为活化能。不同的反应体系有不同的活化能,活化能愈大反应愈困难。

H. 关于Hyperchem计算反应过渡态

5、计算过渡态理论上预测化学反应的过渡结构,活化能可由实验测定,用于说明化学键的形成和断裂过程。过渡态是沿反应途径势能面的最高点,相应的结构有一个负

I. 计算化学过渡态不是能量最低

不是
过渡态是基元反应反应坐标中能量最高的一点所对应的分子构型。

处于过渡态的分子也称为活化络合物。理论上,活化络合物是极不稳定的,它向反应物和产物转化的概率相等;绝对的不可逆反应中,在过渡态这一时刻,所有的碰撞分子都会转化为产物。根据量子力学理论,活化络合物布居为零,过渡态是能量最高的一点,任何扰动都会导致它的改变,故无法分离出来,也是无法观测到的。

J. 过渡态理论的过渡态和活性中间体

例如氯代叔丁烷的水解反应分两步进行:
(CH3)3CCl→(CH3)3C++Cl-
(CH3)3C++H2O→(CH3)3COH+H+
其间出现两个过渡态、一个中间体——正碳离子(CH3)3C+。这两步反应分别经过两个势垒ΔE1和ΔE2,过渡态1——(CH3)3C…Cl和过渡态2——(CH3)3C…OH2分别出现于每步的势能顶峰处,而活性中间体处于两峰之间的凹谷处。活性中间体与两个过渡态的结构和性质相近,但不相同。一般,中间体很活泼,寿命很短,但比过渡态要稳定,故可用各种现代物理化学方法测定其结构。两个过渡态之间的中间体的势能越低,则中间体越稳定。利用中间体结构和性能的知识 ,可大致推断出过渡态的结构、性能,以阐明反应机理。

阅读全文

与计算化学如何确定过渡态相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:705
乙酸乙酯化学式怎么算 浏览:1372
沈阳初中的数学是什么版本的 浏览:1318
华为手机家人共享如何查看地理位置 浏览:1011
一氧化碳还原氧化铝化学方程式怎么配平 浏览:849
数学c什么意思是什么意思是什么 浏览:1371
中考初中地理如何补 浏览:1260
360浏览器历史在哪里下载迅雷下载 浏览:671
数学奥数卡怎么办 浏览:1351
如何回答地理是什么 浏览:989
win7如何删除电脑文件浏览历史 浏览:1023
大学物理实验干什么用的到 浏览:1449
二年级上册数学框框怎么填 浏览:1659
西安瑞禧生物科技有限公司怎么样 浏览:836
武大的分析化学怎么样 浏览:1213
ige电化学发光偏高怎么办 浏览:1301
学而思初中英语和语文怎么样 浏览:1608
下列哪个水飞蓟素化学结构 浏览:1388
化学理学哪些专业好 浏览:1453
数学中的棱的意思是什么 浏览:1017