导航:首页 > 化学知识 > 半导体有哪些化学键构成

半导体有哪些化学键构成

发布时间:2023-01-08 12:00:33

A. 什么是半导体材料

半导体材料是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)、可用来制作半导体器件和集成电路的电子材料。

自然界的物质、材料按导电能力大小可分为导体、半导体和绝缘体三大类。半导体的电阻率在1mΩ·cm~1GΩ·cm范围(上限按谢嘉奎《电子线路》取值,还有取其1/10或10倍的;因角标不可用,暂用当前描述)。在一般情况下,半导体电导率随温度的升高而升高,这与金属导体恰好相反。

凡具有上述两种特征的材料都可归入半导体材料的范围。反映半导体内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。半导体的基本化学特征在于原子间存在饱和的共价键。作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。

由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~99.9999999%) 的锗开始的。采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。以砷化镓(GaAs)为代表的Ⅲ-Ⅴ族化合物的发现促进了微波器件和光电器件的迅速发展。

半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。

B. 化学键的种类有都哪些

化学键的种类有:离子键、共价键、金属键。
化学键是纯净物分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。使离子相结合或原子相结合的作用力通称为化学键。
离子键、共价键、金属键各自有不同的成因,离子键是通过原子间电子转移,形成正负离子,由静电作用形成的。共价键的成因较为复杂,路易斯理论认为,共价键是通过原子间共用一对或多对电子形成的,其他的解释还有价键理论,价层电子互斥理论,分子轨道理论和杂化轨道理论等。金属键是一种改性的共价键,它是由多个原子共用一些自由流动的电子形成的。
化学键主要有三种基本类型,即离子键、共价键和金属键。
一、离子键
离子键是由电子转移(失去电子者为阳离子,获得电子者为阴离子)形成的。即正离子和负离子之间由于静电引力所形成的化学键。离子既可以是单离子,如Na+、CL-;也可以由原子团形成;如SO4 2-,NO3-等。
离子键的作用力强,无饱和性,无方向性。离子键形成的矿物总是以离子晶体的形式存在。
二、共价键
共价键的形成是相邻两个原子之间自旋方向相反的电子相互配对,此时原子轨道相互重叠,两核间的电子云密度相对地增大,从而增加对两核的引力。共价键的作用力很强,有饱和性与方向性。因为只有自旋方向相反的电子才能配对成键,所以共价键有饱和性;另外,原子轨道互相重叠时,必须满足对称条件和最大重叠条件,所以共价键有方向性。共价键又可分为三种:
(1)非极性共价键 形成共价键的电子云正好位于键合的两个原子正中间,如金刚石的C—C键。
(2)极性共价键 形成共价键的电子云偏于对电子引力较大的一个原子,如Pb—S 键,电子云偏于S一侧,可表示为Pb→S。
(3)配价键 共享的电子对只有一个原子单独提供。如Zn—S键,共享的电子对由锌提供,Z:+ ¨..S:=Z n→S
共价键可以形成两类晶体,即原子晶体共价键与分子晶体。原子晶体的晶格结点上排列着原子。原子之间有共价键联系着。在分子晶体的晶格结点上排列着分子(极性分子或非极性分子),在分子之间有分子间力作用着,在某些晶体中还存在着氢键。关于分子键精辟氢键后面要讲到。
三、金属键
由于金属晶体中存在着自由电子,整个金属晶体的原子(或离子)与自由电子形成化学键。这种键可以看成由多个原子共用这些自由电子所组成,所以有人把它叫做改性的共价键。对于这种键还有一种形象化的说法:“好象把金属原子沉浸在自由电子的海洋中”。金属键没有方向性与饱和性。
和离子晶体、原子晶体一样,金属晶体中没独立存在的原子或分子;金属单质的化学式(也叫分子式)通常用化学符号来表示。
上述三种化学键是指分子或晶体内部原子或离子间的强烈作用力。但它没有包括所有其他可
分类:在一个水分子中2个氢原子和1个氧原子就是通过化学键结合成水分子。由于原子核带正电,电子带负电,所以我们可以说,所有的化学键都是由两个或多个原子核对电子同时吸引的结果所形成。化学键有3种类型 ,即离子键、共价键、金属键(氢键不是化学键,它是分子间力的一种)。
离子键(ionic bond)
带相反电荷离子之间的互相作用叫做离子键,成键的本质是阴阳离子间的静电作用。两个原子间的电负性相差极大时,一般是金属与非金属。例如氯和钠以离子键结合成氯化钠。电负性大的氯会从电负性小的钠抢走一个电子,以符合八隅体。之后氯会以-1价的方式存在,而钠则以+1价的方式存在,两者再以库仑静电力因正负相吸而结合在一起,因此也有人说离子键是金属与非金属结合用的键结方式。而离子键可以延伸,所以并无分子结构。
离子键亦有强弱之分。其强弱影响该离子化合物的熔点、沸点和溶解性等性质。离子键越强,其熔点越高。离子半径越小或所带电荷越多,阴、阳离子间的作用就越强。例如钠离子的微粒半径比钾离子的微粒半径小,则氯化钠NaCl中的离子键较氯化钾KCl中的离子键强,所以氯化钠的熔点比氯化钾的高。
定义:离子键是由正负离子之间通过静电作用而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。
离子键概念:带相反电荷离子之间的相互作用称为离子键。
成键微粒:阴离子、阳离子。
成键本质:静电作用。静电作用包括阴、阳离子间的静电吸引作用和电子与电子之间、原子核与原子核之间的静电排斥作用。(一吸,两斥)
成键原因:①原子相互得失电子形成稳定的阴、阳离子。②离子间吸引与排斥处于平衡状态。③体系的总能量降低。
存在范围:离子键存在于大多数强碱、盐及金属氧化物中。
一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Cl-直接作用),但是这是由于空间因素造成的。在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。开始时,人们在相互结合的两个原子之间画一根短线作为化学键的符号 ;电子发现以后 ,1916年G.N.路易斯提出通过填满电子稳定壳层形成离子和离子键或者通过两个原子共有一对电子形成共价键的概念,建立化学键的电子理论。

量子理论建立以后,1927年 W.H.海特勒和F.W.伦敦通过氢分子的量子力学处理,说明了氢分子稳定存在的原因 ,原则上阐明了化学键的本质。通过以后许多人 ,特别是L.C.鲍林和R.S.马利肯的工作,化学键的理论解释已日趋完善。
化学键在本质上是电性的,原子在形成分子时,外层电子发生了重新分布(转移、共用、偏移等),从而产生了正、负电性间的强烈作用力。但这种电性作用的方式和程度有所不同,所以又可将化学键分为离子键、共价键和金属键等。离子键是原子得失电子后生成的阴阳离子之间靠静电作用而形成的化学键。离子键的本质是静电作用。由于静电引力没有方向性,阴阳离子之间的作用可在任何方向上,离子键没有方向性。只有条件允许,阳离子周围可以尽可能多的吸引阴离子,反之亦然,离子键没有饱和性。不同的阴离子和阳离子的半径、电性不同,所形成的晶体空间点阵并不相同。

共价键:
1、共价键是原子间通过共用电子对(电子云重叠)而形成的相互作用。形成重叠电子云的电子在所有成键的原子周围运动。一个原子有几个未成对电子,便可以和几个自旋方向相反的电子配对成键,共价键饱和性的产生是由于电子云重叠(电子配对)时仍然遵循泡利不相容原理。电子云重叠只能在一定的方向上发生重叠,而不能随意发生重叠。共价键方向性的产生是由于形成共价键时,电子云重叠的区域越大,形成的共价键越稳定,所以,形成共价键时总是沿着电子云重叠程度最大的方向形成(这就是最大重叠原理)。共价键有饱和性和方向性。
2、原子通过共用电子对形成共价键后,体系总能量降低。
共价键的形成是成键电子的原子轨道发生重叠,并且要使共价键稳定,必须重叠部分最大。由于除了s轨道之外,其他轨道都有一定伸展方向,因此成键时除了s-s的σ键(如H2)在任何方向都能最大重叠外,其他轨道所成的键都只有沿着一定方向才能达到最大重叠。
共价键的分类:共价键有不同的分类方法。
(1) 按共用电子对的数目分,有单键(Cl—Cl)、双键(C=C)、三键(N≡N,C≡C)等。
(2) 按共用电子对是否偏移分类,有极性键(H—Cl)和非极性键(Cl—Cl)。
(3) 按提供电子对的方式分类,有正常的共价键和配位键(共用电子对由一方提供,另一方提供空轨道。
如铵根离子中的N—H键中有一个属于配位键)。
(4) 按电子云重叠方式分,有σ键(电子云沿键轴方向,以“头碰头”方式成键。如C—C。)和π键(电子云沿键轴两侧方向,以“肩并肩”方向成键。如C=C中键能较小的键,C=C中有一个σ键与一个π键。)等
3、旧理论:共价键形成的条件是原子中必须有成单电子,自旋方向必须相反,由于一个原子的一个成单电子只能与另一个成单电子配对,因此共价键有饱和性。如H原子与Cl原子形成HCl分子后,不能再与另外一个Cl形成HCl2了。
4、新理论:共价键形成时,成键电子所在的原子轨道发生重叠并分裂,成键电子填入能量较低的轨道即成键轨道。如果还有其他的原子参与成键的话,其所提供的电子将会填入能量较高的反键轨道,形成的分子也将不稳定。 像HCl这样的共用电子对形成分子的化合物叫做共价化合物。

化合物分类:
1.离子化合物:由阳离子和阴离子构成的化合物。
大部分盐(包括所有铵盐),强碱,大部分金属氧化物,金属氢化物。 活泼的金属元素与活泼非金属元素形成的化合物中不一定都是以离子键结合的,如AICI3、FeCl3、BeCl2等不是通过离子键结合的。非金属元素之间也可形成离子化合物,如铵盐都是离子化合物。
2、共价化合物:主要以共价键结合形成的化合物,叫做共价化合物。
非金属氧化物,酸,弱碱,少部分盐,非金属氢化物。
3、在离子化合物中一定含有离子键,可能含有共价键。在共价化合物中一定不存在离子键。

金属键:
1、概述:化学键的一种,主要在金属中存在。由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成。由于电子的自由运动,金属键没有固定的方向,因而是非极性键。金属键有金属的很多特性。例如一般金属的熔点、沸点随金属键的强度而升高。其强弱通常与金属离子半径成逆相关,与金属内部自由电子密度成正相关(便可粗略看成与原子外围电子数成正相关)。
2、改性共价键理论:在金属晶体中,自由电子作穿梭运动,它不专属于某个金属离子而为整个金属晶体所共有。这些自由电子与全部金属离子相互作用,从而形成某种结合,这种作用称为金属键。由于金属只有少数价电子能用于成键,金属在形成晶体时,倾向于构成极为紧密的结构,使每个原子都有尽可能多的相邻原子(金属晶体一般都具有高配位数和紧密堆积结构),这样,电子能级可以得到尽可能多的重叠,从而形成金属键。上述假设模型叫做金属的自由电子模型,称为改性共价键理论。这一理论是1900年德鲁德(drude)等人为解释金属的导电、导热性能所提出的一种假设。这种理论先后经过洛伦茨和佐默费尔德等人的改进和发展,对金属的许多重要性质都给予了一定的解释。但是,由于金属的自由电子模型过于简单化,不能解释金属晶体为什么有结合力,也不能解释金属晶体为什么有导体、绝缘体和半导体之分。随着科学和生产的发展,主要是量子理论的发展,建立了能带理论。

定域键:只存在于两个原子之间的共价键。只包含定域键的多原子分子可以看成是由相对独立的两个原子之间的化学键把原子连接起来形成的,这是忽略了相邻化学键的影响,而把描述双原子分子中化学键的方法用到多原子分子的定域键上。如乙烯中有一个C-C和四个C-H σ键、一个C-C π键。定域键具有比较恒定的键性质。例如一定类型定域键的键长、键偶极矩、键极化度、键力常数、键能等在不同分子中近似保持不变。因此,分子的有关广延性质可近似表示为相应的键性质之和。定域键的这种特点在化学中得到广泛的应用,例如从键能计算分子的原子化能近似值。这种模型较好地反映了由键上电子云所确定的分子性质如键能、键长、键角、键偶极、键极化度等。 这种围绕两个原子的分子轨道成为定域轨道。

极性键:在化合物分子中,不同种原子形成的共价键,由于两个原子吸引电子的能力不同,共用电子对必然偏向吸引电子能力较强的原子一方,因而吸引电子能力较弱的原子一方相对的显正电性。这样的共价键叫做极性共价键,简称极性键。

举例:HCl分子中的H-Cl键属于极性键
有一个简单的判断极性键与非极性键的方法,比较形成该化合物中各原子的原子量,一般来说,相对原子质量越大的原子吸引电子能力更强。但是要注意,有极性键构成的化合物,不一定是极性化合物,例如甲烷,它就是有极性键的非极性分子(原因是正负电荷中心重合)。

非极性键:由同种元素的原子间形成的共价键,叫做非极性共价键。同种原子吸引共用电子对的能力相等,成键电子对匀称地分布在两核之间,不偏向任何一个原子,成键的原子都不显电性。非极性键可存在于单质分子中(如H2中H—H键、O2中O=O键、N2中N≡N键),也可以存在于化合物分子中(如C2H2中的C—C键)。非极性键的键偶极矩为0。以非极性键结合形成的分子都是非极性分子。存在于非极性分子中的键并非都是非极性键,如果一个多原子分子在空间结构上的正电荷几何中心和负电荷几何中心重合,那么即使它由极性键组成,那么它也是非极性分子。由非极性键结合形成的晶体可以是原子晶体,也可以是混合型晶体或分子晶体。例如,碳单质有三类同素异形体:依靠C—C非极性键可以形成正四面体骨架型金刚石(原子晶体)、层型石墨(混合型晶体),也可以形成球型碳分子富勒烯C60(分子晶体)。
举例:Cl2分子中的Cl-Cl键属于非极性键

C. 半导体常见的晶体结构

决定半导体材料的基本物理特性,即原子或离子的长程有序的周期性排列。按空间点阵学说,晶体的内在结构可概括为一些相同点在空间有规则地作周期性的无限分布。点子的总体称为点阵,通过点阵的结点可作许多平行的直线组和平行的晶面组。这样,点阵就成网格,称为晶格。由于晶格的周期性,可取一个以格点为顶点、边长等于该方向上的周期的六面体作为重复单元,来概括晶格的特征。固体物理学取最小的重复单元,格点只在顶角上。这样的重复单元只反映晶体结构的周期性,称为原胞。结晶学取较大的重复单元,格点不仅在顶角上,还可在体心和面心上,这样的重复单元既反映晶格的周期性,也反映了晶体的对称性。

常见的半导体的晶体结构有金刚石型、闪锌矿型、纤锌矿型和氯化钠型4种,如图和表所示。在三元化合物半导体中有部分呈黄铜矿型结构,金刚石型、闪锌矿型和氯化钠型结构可看成是由两套面心立方格子套构而成。不同的是,金刚石型和闪锌矿型是两套格子沿体

对角线的1/4方向套构,而氯化钠型则是沿1/2[100]方向套构;金刚石晶格中所有原子同种,而闪锌矿和氯化钠晶格中有两种原子;闪锌矿型各晶面的原子排布总数目与金刚石型相同,但在同一晶面或同一晶向上,两种原子的排布却不相同。纤锌矿型属六方晶系,其中硫原子呈六方密堆集,而锌原子则占据四面体间隙的一半,与闪锌矿相似,它们的每一个原子场处于异种原子构成的正四面体中心。但闪锌矿结构中,次近邻异种原子层的原子位置彼此错开60°,而在纤锌矿型中,则是上下相对的。采取这种方式使次近邻异种原子的距离更近,会增强正负离子的相互吸引作用,因此,纤锌矿型多出现于两种原子间负电性差大、化学键中离子键成分高的二元化合物中。

D. 半导体的种类都有哪些

(1)元素半导体。元素半导体是指单一元素构成的半导体,其中对硅、硒的研究比较早。它是由相同元素组成的具有半导体特性的固体材料,容易受到微量杂质和外界条件的影响而发生变化。目前, 只有硅、锗性能好,运用的比较广,硒在电子照明和光电领域中应用。硅在半导体工业中运用的多,这主要受到二氧化硅的影响,能够在器件制作上形成掩膜,能够提高半导体器件的稳定性,利于自动化工业生产。[2]
(2)无机合成物半导体。无机合成物主要是通过单一元素构成半导体材料,当然也有多种元素构成的半导体材料,主要的半导体性质有I族与V、VI、VII族;II族与IV、V、VI、VII族;III族与V、VI族;IV族与IV、VI族;V族与VI族;VI族与VI族的结合化合物,但受到元素的特性和制作方式的影响,不是所有的化合物都能够符合半导体材料的要求。这一半导体主要运用到高速器件中,InP制造的晶体管的速度比其他材料都高,主要运用到光电集成电路、抗核辐射器件中。 对于导电率高的材料,主要用于LED等方面。[2]
(3)有机合成物半导体。有机化合物是指含分子中含有碳键的化合物,把有机化合物和碳键垂直,叠加的方式能够形成导带,通过化学的添加,能够让其进入到能带,这样可以发生电导率,从而形成有机化合物半导体。这一半导体和以往的半导体相比,具有成本低、溶解性好、材料轻加工容易的特点。可以通过控制分子的方式来控制导电性能,应用的范围比较广,主要用于有机薄膜、有机照明等方面。[2]
(4)非晶态半导体。它又被叫做无定形半导体或玻璃半导体,属于半导电性的一类材料。非晶半导体和其他非晶材料一样,都是短程有序、长程无序结构。它主要是通过改变原子相对位置,改变原有的周期性排列,形成非晶硅。晶态和非晶态主要区别于原子排列是否具有长程序。非晶态半导体的性能控制难,随着技术的发明,非晶态半导体开始使用。这一制作工序简单,主要用于工程类,在光吸收方面有很好的效果,主要运用到太阳能电池和液晶显示屏中。[2]
(5)本征半导体:不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带,受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。空穴导电并不是实际运动,而是一种等效。电子导电时等电量的空穴会沿其反方向运动。[5] 它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子-空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子-空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯净半导体的电阻率较大,实际应用不多。[6]

E. 半导体的共价键是怎么定义的

共价键是化学键的一种,两个或多个原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比较稳定和坚固的化学结构叫做共价键。与离子键不同的是进入共价键的原子向外不显示电荷,因为它们并没有获得或损失电子。共价键的强度比氢键要强,与离子键差不太多或甚至比离子键强。

F. 半导体有哪些

锗、硅、硒、砷化镓、许多金属氧化物和金属硫化物等。其导电性介于导体和绝缘体之间的半导体称为半导体。
半导体有一些特殊的性质。例如,可以利用半导体的电阻率与温度的关系来制作热敏元件(热敏电阻),用于自动控制;利用其光敏特性,可制成光敏元件用于自动控制,如光电池、光电池、光敏电阻等。
半导体还有一个最重要的特性。如果在纯半导体物质中适当掺入少量杂质,其电导率将增加数百万倍。这一特性可用于制造各种半导体器件,如半导体二极管、三极管等。
当半导体的一面做成P型区,另一面做成N型区时,在结附近形成一层具有特殊性质的薄层,一般称为PN结。图的上半部分分为P型半导体和N型半导体界面两侧的载流子扩散(用黑色箭头表示)。中间部分是PN结的形成过程,表示载流子的扩散效应大于漂移效应(蓝色箭头表示,红色箭头表示内建电场方向)。下部是PN结的形成。代表扩散和漂移之间的动态平衡。

G. 关于半导体

分类: 资源共享
问题描述:

我要写一篇课程结课文章,题目是“非晶态半导体的电学性质”,谁能提供点资料啊?!

解析:

以非晶态半导体材料为主体制成的固态电子器件。非晶态半导体虽然在整体上分子排列无序,但是仍具有单晶体的微观结构,因此具有许多特殊的性质。1975年,英国W.G.斯皮尔在辉光放电分解硅烷法制备的非晶硅薄膜中掺杂成功,使非晶硅薄膜的电阻率变化10个数量级,促进非晶态半导体器件的开发和应用。同单晶材料相比,非晶态半导体材料制备工艺简单,对衬底结构无特殊要求,易于大面积生长,掺杂后电阻率变化大,可以制成多种器件。非晶硅太阳能电池吸收系数大,转换效率高,面积大,已应用到计算器、电子表等商品中。非晶硅薄膜场效应管阵列可用作大面积液晶平面显示屏的寻址开关。利用某些硫系非晶态半导体材料的结构转变来记录和存储光电信息的器件已应用于计算机或控制系统中。利用非晶态薄膜的电荷存储和光电导特性可制成用于静态图像光电转换的静电复印机感光体和用于动态图像光电转换的电视摄像管的靶面。

具有半导体性质的非晶态材料。非晶态半导体是半导体的一个重要部分。50年代B.T.科洛米耶茨等人开始了对硫系玻璃的研究,当时很少有人注意,直到1968年S.R.奥弗申斯基关于用硫系薄膜制作开关器件的专利发表以后,才引起人们对非晶态半导体的兴趣。1975年W.E.斯皮尔等人在硅烷辉光放电分解制备的非晶硅中实现了掺杂效应,使控制电导和制造PN结成为可能,从而为非晶硅材料的应用开辟了广阔的前景。在理论方面,P.W.安德森和莫脱,N.F.建立了非晶态半导体的电子理论,并因而荣获1977年的诺贝尔物理学奖。目前无论在理论方面,还是在应用方面,非晶态半导体的研究正在很快地发展着。

分类 目前主要的非晶态半导体有两大类。

硫系玻璃。含硫族元素的非晶态半导体。例如As-Se、As-S,通常的制备方法是熔体冷却或汽相沉积。

四面体键非晶态半导体。如非晶Si、Ge、GaAs等,此类材料的非晶态不能用熔体冷却的办法来获得,只能用薄膜淀积的办法(如蒸发、溅射、辉光放电或化学汽相淀积等),只要衬底温度足够低,淀积的薄膜就是非晶态结构。四面体键非晶态半导体材料的性质,与制备的工艺方法和工艺条件密切相关。图1 不同方法制备非晶硅的光吸收系数 给出了不同制备工艺的非晶硅光吸收系数谱,其中a、b制备工艺是硅烷辉光放电分解,衬底温度分别为500K和300K,c制备工艺是溅射,d制备工艺为蒸发。非晶硅的导电性质和光电导性质也与制备工艺密切相关。其实,硅烷辉光放电法制备的非晶硅中,含有大量H,有时又称为非晶的硅氢合金;不同工艺条件,氢含量不同,直接影响到材料的性质。与此相反,硫系玻璃的性质与制备方法关系不大。图2 汽相淀积溅射薄膜和熔体急冷成块体AsSeTe的光吸收系数谱 给出了一个典型的实例,用熔体冷却和溅射的办法制备的AsSeTe样品,它们的光吸收系数谱具有相同的曲线。

非晶态半导体的电子结构 非晶态与晶态半导体具有类似的基本能带结构,也有导带、价带和禁带(见固体的能带)。材料的基本能带结构主要取决于原子附近的状况,可以用化学键模型作定性的解释。以四面体键的非晶Ge、Si为例,Ge、Si中四个价电子经sp杂化,近邻原子的价电子之间形成共价键,其成键态对应于价带;反键态对应于导带。无论是Ge、Si的晶态还是非晶态,基本结合方式是相同的,只是在非晶态中键角和键长有一定程度的畸变,因而它们的基本能带结构是相类似的。然而,非晶态半导体中的电子态与晶态比较也有着本质的区别。晶态半导体的结构是周期有序的,或者说具有平移对称性,电子波函数是布洛赫函数,波矢是与平移对称性相联系的量子数,非晶态半导体不存在有周期性, 不再是好的量子数。晶态半导体中电子的运动是比较自由的,电子运动的平均自由程远大于原子间距;非晶态半导体中结构缺陷的畸变使得电子的平均自由程大大减小,当平均自由程接近原子间距的数量级时,在晶态半导体中建立起来的电子漂移运动的概念就变得没有意义了。非晶态半导体能带边态密度的变化不像晶态那样陡,而是拖有不同程度的带尾(如图3 非晶态半导体的态密度与能量的关系 所示)。非晶态半导体能带中的电子态分为两类:一类称为扩展态,另一类为局域态。处在扩展态的每个电子,为整个固体所共有,可以在固体整个尺度内找到;它在外场中运动类似于晶体中的电子;处在局域态的每个电子基本局限在某一区域,它的状态波函数只能在围绕某一点的一个不大尺度内显着不为零,它们需要靠声子的协助,进行跳跃式导电。在一个能带中,带中心部分为扩展态,带尾部分为局域态,它们之间有一分界处,如图4 非晶态半导体的扩展态、局域态和迁移率边 中的和,这个分界处称为迁移率边。1960年莫脱首先提出了迁移率边的概念。如果把迁移率看成是电子态能量的函数,莫脱认为在分界处和存在有迁移率的突变。局域态中的电子是跳跃式导电的,依靠与点阵振动交换能量,从一个局域态跳到另一个局域态,因而当温度趋向0K时,局域态电子迁移率趋于零。扩展态中电子导电类似于晶体中的电子,当趋于0K时,迁移率趋向有限值。莫脱进一步认为迁移率边对应于电子平均自由程接近于原子间距的情况,并定义这种情况下的电导率为最小金属化电导率。然而,目前围绕着迁移率边和最小金属化电导率仍有争论。

缺陷 非晶态半导体与晶态相比较,其中存在大量的缺陷。这些缺陷在禁带之中引入一系列局域能级,它们对非晶态半导体的电学和光学性质有着重要的影响。四面体键非晶态半导体和硫系玻璃,这两类非晶态半导体的缺陷有着显着的差别。

非晶硅中的缺陷主要是空位、微空洞。硅原子外层有四个价电子,正常情况应与近邻的四个硅原子形成四个共价键。存在有空位和微空洞使得有些硅原子周围四个近邻原子不足,而产生一些悬挂键,在中性悬挂键上有一个未成键的电子。悬挂键还有两种可能的带电状态:释放未成键的电子成为正电中心,这是施主态;接受第二个电子成为负电中心,这是受主态。它们对应的能级在禁带之中,分别称为施主和受主能级。因为受主态表示悬挂键上有两个电子占据的情况,两个电子间的库仑排斥作用,使得受主能级位置高于施主能级,称为正相关能。因此在一般情况下,悬挂键保持只有一个电子占据的中性状态,在实验中观察到悬挂键上未配对电子的自旋共振。1975年斯皮尔等人利用硅烷辉光放电的方法,首先实现非晶硅的掺杂效应,就是因为用这种办法制备的非晶硅中含有大量的氢,氢与悬挂键结合大大减少了缺陷态的数目。这些缺陷同时是有效的复合中心。为了提高非平衡载流子的寿命,也必须降低缺陷态密度。因此,控制非晶硅中的缺陷,成为目前材料制备中的关键问题之一。

硫系玻璃中缺陷的形式不是简单的悬挂键,而是“换价对”。最初,人们发现硫系玻璃与非晶硅不同,观察不到缺陷态上电子的自旋共振,针对这表面上的反常现象,莫脱等人根据安德森的负相关能的设想,提出了MDS模型。当缺陷态上占据两个电子时,会引起点阵的畸变,若由于畸变降低的能量超过电子间库仑排斥作用能,则表现出有负的相关能,这就意味着受主能级位于施主能级之下。用 D、D、D 分别代表缺陷上不占有、占有一个、占有两个电子的状态,负相关能意味着:

2D —→ D+D

是放热的。因而缺陷主要以D、D形式存在,不存在未配对电子,所以没有电子的自旋共振。不少人对D、D、D缺陷的结构作了分析。以非晶态硒为例,硒有六个价电子,可以形成两个共价键,通常呈链状结构,另外有两个未成键的 p电子称为孤对电子。在链的端点处相当于有一个中性悬挂键,这个悬挂键很可能发生畸变,与邻近的孤对电子成键并放出一个电子(形成D),放出的电子与另一悬挂键结合成一对孤对电子(形成D),如图 5 硫系玻璃的换价对 所示。因此又称这种D、D为换价对。由于库仑吸引作用,使得D、D通常是成对地紧密靠在一起,形成紧密换价对。硫系玻璃中成键方式只要有很小变化就可以形成一组紧密换价对,如图6 换价对的自增强效应 所示,它只需很小的能量,有自增强效应,因而这种缺陷的浓度通常是很高的。利用换价对模型可以解释硫属非晶态半导体的光致发光光谱、光致电子自旋共振等一系列实验现象。

应用 非晶态半导体在技术领域中的应用存在着很大的潜力,非晶硫早已广泛应用在复印技术中,由S.R.奥夫辛斯基首创的 As-Te-Ge-Si系玻璃半导体制作的电可改写主读存储器已有商品生产,利用光脉冲使碲微晶薄膜玻璃化这种性质制作的光存储器正在研制之中。对于非晶硅的应用目前研究最多的是太阳能电池。非晶硅比晶体硅制备工艺简单,易于做成大面积,非晶硅对于太阳光的吸收效率高,器件只需大约1微米厚的薄膜材料,因此,可望做成一种廉价的太阳能电池,现已受到能源专家的重视。最近已有人试验把非晶硅场效应晶体管用于液晶显示和集成电路。

H. 半导体与导体是有什么物质构成的

半导体一般是与硅有关 导体是金属或电解质溶液等

阅读全文

与半导体有哪些化学键构成相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:660
乙酸乙酯化学式怎么算 浏览:1330
沈阳初中的数学是什么版本的 浏览:1268
华为手机家人共享如何查看地理位置 浏览:954
一氧化碳还原氧化铝化学方程式怎么配平 浏览:805
数学c什么意思是什么意思是什么 浏览:1321
中考初中地理如何补 浏览:1218
360浏览器历史在哪里下载迅雷下载 浏览:628
数学奥数卡怎么办 浏览:1297
如何回答地理是什么 浏览:950
win7如何删除电脑文件浏览历史 浏览:981
大学物理实验干什么用的到 浏览:1402
二年级上册数学框框怎么填 浏览:1611
西安瑞禧生物科技有限公司怎么样 浏览:753
武大的分析化学怎么样 浏览:1169
ige电化学发光偏高怎么办 浏览:1259
学而思初中英语和语文怎么样 浏览:1553
下列哪个水飞蓟素化学结构 浏览:1348
化学理学哪些专业好 浏览:1414
数学中的棱的意思是什么 浏览:970