1. 如何解析氢谱
你这个问题太大了,下面是网上找到的,你参考吧。
1、核磁共振氢谱谱图的解析方法 a.检查整个氢谱谱图的外形、信号对称性、分辨率、噪声、被测样品的信 号等。 b.应注意所使用溶剂的信号、旋转边带、C 卫星峰、杂质峰等。 c.确定 TMS 的位置,若有偏移应对全部信号进行校正。 d.根据分子式计算不饱和度 u。 e.从积分曲线计算质子数。 f.解析单峰。对照附图 I 是否有-CH3-O-、CHCOCH3N=、CH3C、RCOCH2Cl、 RO-CH2-Cl 等基团。 g.确定有无芳香族化合物。如果在 6.5-8.5 范围内有信号,则表示有芳香 族质子存在。如出现 AA`BB`的谱形说明有芳香邻位或对位二取代。 h.解析多重峰。按照一级谱的规律,根据各峰之间的相系关系,确定有何 种基团。 如果峰的强度太小, 可把局部峰进行放大测试, 增大各峰的强度。 i.把图谱中所有吸收峰的化学位移值与附图 I 相对照,确定是何官能团, 并预测质子的化学环境。 j.用重水交换确定有无活泼氢。 k.连接各基团,推出结构式,并用此结构式对照该谱图是否合理。再对照 已知化合物的标准谱图。 2、核磁共振氢谱谱图解析举例 例 1:已知某化合物分子式为 C3H7NO2。测定氢谱谱图如下所示,推定其结 构。 解析 计算不饱和度 u=1,可能存在双键,1.50 和 1.59ppm 有小峰, 峰高不大于 1 个质子,故为杂质峰。经图谱可见有三种质子,总积分值扣 除杂质峰按 7 个质子分配。从低场向高场各峰群的积分强度为 2:2:3, 可能有-CH2-、-CH2-、-CH3-基团。各裂分峰的裂距(J),低场三 重峰为 7Hz,高场三重峰为 8Hz,所以这两个三峰没有偶合关系,但它们 与中间六重峰有相互作用。这六重峰的质子为 2 个,所以使两边信号各裂 分为三重峰。 则该化合物具有 CH3-CH2-CH2-结构单元。参考所给定的分 子式应为 CH3-CH2-CH2-NO2,即 1-硝基丙烷。 例 2:已知某化合物分子式为 C7H16O3,其氢谱谱图如下图所示,试求其结 构。 解析 计算不饱和度 u=0,为饱和化合物。从谱图看出有三种质子, 其质子比为 1:6:9,δ 为 1-4 之间有明显 CH3-CH2-的峰形,δ 1.2 为 CH3-CH2-中甲基峰, 个质子三个等价甲基,被邻接-CH2-分裂为三 9 重峰。δ 3.6 处应为-CH2-,有 6 个质子三个等价亚甲基,可能连接氧原 子,所以在较低场共振,同时被邻接甲基分裂为四重峰。更低场 δ 5.2 处为单峰, 含有 1 个质子, 说明无氢核邻接, 是与氧相接的一个次甲基峰。 连接各部分结构应为(CH3-CH2-O)3CH 与标准谱对照相吻合。 例 3:已知某化合物分子式 C8H9Br,其氢谱谱图如下图所示,试求其结构。 解析 由分子式可知不饱和度 u=4,在谱图上 δ 7.3 左右有弱强强弱 四条谱线属于 AA`BB`系统,这是对位二取代苯中质子的吸收峰形。δ 1.3 为甲基的吸收峰, 受相邻碳上二质子的偶合裂分为三重峰。δ 2.6 为-CH2 -的吸收峰,受相邻甲基偶合而裂分为四重峰,所以 δ 1-3 之间的峰为 CH3-CH2-,另外根据分子式可知还有溴,所以化合物分子式为 Br-Ph-CH2-CH3。
2. 化学位移的单位怎么是ppm
化学位移的单位怎么是ppm的原因是:
核磁共振中,化学位移本身的单位并不是ppm,而其单位是Hz,之所以单位为ppm,是因为我们常说的化学位移指的是化学相对位移。
打个比方,当使用200MHz的NMR时,某个位移值为200Hz,这时就采用相对位移,用200Hz去除以200MHz,得到的是百万分之一,也就是1ppm;之所以这么表示是因为,位移值会随着机器的不同而改变,例如刚才的例子,在400MHz的NMR下,位移值是400Hz,只是相对位移不变,仍然是1ppm。
化学位移的公式表示:
现采用相对数值表示法,即选用一个标准物质,以该标准物的共振吸收峰所处位置为零点,其它吸收峰的化学位移值根据这些吸收峰的位置与零点的距离来确定。
化学位移值普遍采用无量纲的δ值表示,其定义为:
(2)如何修改特征峰的化学位移值扩展阅读:
影响因素:
化学位移取决于核外电子云密度,因此影响电子云密度的各种因素都对化学位移有影响,影响最大的是电负性和各向异性效应。
1. 电负性
电负性大的原子(或基团)吸电子能力强,降低了氢核外围的电子云密度,屏蔽效应也就随之降低,其共振吸收峰移向低场,化学位移会变大;反之,给电子基团可增加氢核外围的电子云密度,共振吸收峰移向高场,化学位移会变小。
2. 各向异性效应
当分子中的某些基团的电子云排布不呈球形对称时,它对邻近的1H核产生一个各向异性的磁场,从而使某些空间位置上的核受屏蔽,而另一些空间位置上的核去屏蔽,这一现象称为各向异性效应(anisotropic effect)。各向异性效应是由于成键电子的电子云分布不均匀导致在外磁场中所产生的感应磁场的不均匀所引起的,如苯环上质子的化学位移移向低场,δ在7左右。
3. 氢键
氢键对羟基质子化学位移的影响与氢键的强弱及氢键的电子给予体的性质有关,在大多数情况下,氢键产生去屏蔽效应,使1H的δ值移向低场。
4. 溶剂效应
有时同一种样品使用不同的溶剂也会使化学位移值发生变化,这称为溶剂效应。活泼氢的溶剂效应比较明显。能引起溶剂效应的因素很多,如N,N-二甲基甲酰胺在CDCl3中测定时,δαH>δβH,而在被测物中加入适量苯溶剂后可使δαH<δβH, 这是因为苯能与之形成复合物,而使两种氢处于不同的屏蔽区所致。
5. 范德华效应
当取代基与共振核之间的距离小于范德华半径时,取代基周围的电子云与共振核周围的电子云就互相排斥,共振核周围的电子云密度降低,使质子受到的屏蔽效应明显下降,质子峰向低场移动,这称为范德华效应。
3. 核磁共振的化学位移
氢的核磁共振谱提供了三类极其有用的信息:化学位移、偶合常数、积分曲线。应用这些信 息,可以推测质子在碳胳上的位置。
根据前面讨论的基本原理,在某一照射频率下,只能在某一磁感应强度下发生核磁共振。例如:照射频率为60 MHz,磁感应强度是 14.092 Gs(14.092×10^-4 T),100 MHz—23.486 Gs(23.486×10^-4 T),200 MHz—46.973 Gs(46.973×10^-4 T)。600 MHz—140.920 Gs(140.920×10^-4 T)。但实验证明:当1H在分子中所处化学环境(化学环境是指1H的核外电子以及与1H 邻近的其它原子核的核外电子的运动情况)不同时,即使在相同照射频率下,也将在不同的共振磁场下显示吸收峰。下图是乙酸乙酯的核磁共振图谱,图谱表明:乙酸乙酯中的8个氢,由 于分别处在a,b,c三种不同的化学环境中,因此在三个不同的共振磁场下显示吸收峰。同种核由于在分子中的化学环境不同而在不同共振磁感应强度下显示吸收峰,这称为化学位移(chemical shift)。 化学位移是怎样产生的?分子中磁性核不是完全裸露的,质子被价电子包围着。这些电子 在外界磁场的作用下发生循环的流动,会产生一个感应的磁场,感应磁场应与外界磁场相反(楞次定律),所以,质子实际上感受到的有效磁感应强度应是外磁场感应强度减去感应磁场强度。即
B有效=B0(1-σ)=B0-B0σ=B0-B感应
外电子对核产生的这作用称为屏蔽效应(shielding effect),也叫抗磁屏蔽效应(diamagnetic effect)。称为屏蔽常数(shielding constant)。与屏蔽较少的质子比较,屏蔽多的质子对外磁场感受较少,将在较高的外磁场B0作用下才能发生共振吸收。由于磁力线是闭合的,因此感应磁 场在某些区域与外磁场的方向一致,处于这些区域的质子实际上感受到的有效磁场应是外磁场B0加上感应磁场B感应。这种作用称为去屏蔽效应(deshielding effect)。也称为顺磁去屏蔽效应(paramagnetic effect)。受去屏蔽效应影响的质子在较低外磁场B0作用下就能发生共振吸收。综上所述:质子发生核磁共振实际上应满足:
ν射=γB有效/2π
因在相同频率电磁辐射波的照射下,不同化学环境的质子受的屏蔽效应各不相同,因此它们发生 核磁共振所需的外磁场B0也各不相同,即发生了化学位移。
对1H化学位移产生主要影响的是局部屏蔽效应和远程屏蔽效应。核外成键电子的电子云 密度对该核产生的屏蔽作用称为局部屏蔽效应。分子中其它原子和基团的核外电子对所研究的 原子核产生的屏蔽作用称为远程屏蔽效应。远程屏蔽效应是各向异性的。 化学位移的差别约为百万分之十,要精确测定其数值十分困难。现采用相对数值表示法,即选用一个标准物质,以该标准物的共振吸收峰所处位置为零点,其它吸收峰的化学位移值根据这 些吸收峰的位置与零点的距离来确定。最常用的标准物质是四甲基硅(CH3)4Si简称TMS。选TMS为标准物是因为:TMS中的四个甲基对称分布,因此所有氢都处在相 同的化学环境中,它们只有一个锐利的吸收峰。另外,TMS的屏蔽效应很高,共振吸收在高场出现,而且吸收峰的位置处在一般有机物中的质子不发生吸收的区域内。现规定化学位移用δ来 表示,四甲基硅吸收峰的δ值为零,其峰右边的δ值为负,左边的δ值为正。测定时,可把标准物与样品放在一起配成溶液,这称为内标准法。也可将标准物用毛细管封闭后放人样品溶液中进 行测定,这称为外标准法。此外,还可以利用溶剂峰来确定待测样品各个峰的化学位移。
由于感应磁场与外磁场的B0成正比,所以屏蔽作用引起的化学位移也与外加磁场B0成正 比。在实际测定工作中,为了避免因采用不同磁感应强度的核磁共振仪而引起化学位移的变化,δ一般都应用相对值来表示,其定义为
δ=(ν样-ν标)/ν仪×10^6④
在式④中,ν样和ν标分别代表样品和标准化合物的共振频率,ν仪为操作仪器选用的频率。多数有机物的质子信号发生在0~10处,零是高场,10是低场。 需注意也有一些质子的信号是在小于0的地方出现的。如安扭烯的环内的质子,受到其外芳环磁各向异性的影响,甚至可以达到-2.99。此外,在不同兆数的仪器中,化学位移的值是相同的。 化学位移取决于核外电子云密度,因此影响电子云密度的各种因素都对化学位移有影响,影 响最大的是电负性和各向异性效应。
⑴电负性(诱导效应)
电负性对化学位移的影响可概述为:电负性大的原子(或基团)吸电子能力强,1H核附近的吸电子基团使质子峰向低场移(左移),给电子基闭使质子峰向高场移(右移)。这是因为吸电子基团降低了氢核周围的电子云密度,屏蔽效应也就随之降低,所以质子的化学位 移向低场移动。给电子基团增加了氢核周围的电子云密度,屏蔽效应也就随之增加,所以质子的 化学位移向高场移动。下面是一些实例。
实例一: 电负性 C2.6 N3.0 O3.5 δ C—CH3(0.77~1.88) N—CH3(2.12~3.10) O—CH3(3.24~4.02) 实例二: 电负性 Cl3.1 Br2.9 I2.6 δ CH3—Cl(3.05)
CH2—Cl2(5.30)
CH—Cl3(7.27) CH3—Br(2.68) CH3—I(2.16) 电负性对化学位移的影响是通过化学键起作用的,它产生的屏蔽效应属于局部屏蔽效应。
⑵各向异性效应
当分子中某些基团的电子云排布不呈球形对称时,它对邻近的1H核产 生一个各向异性的磁场,从而使某些空间位置上的核受屏蔽,而另一些空间位置上的核去屏蔽, 这一现象称为各向异性效应(anisotropic effect)。
除电负性和各向异性的影响外,氢键、溶剂效应、van der Waals效应也对化学位移有影响。氢键对羟基质子化学位移的影响与氢键的强弱及氢键的电子给予体的性质有关,在大多数情况 下,氢键产生去屏蔽效应,使1H的δ值移向低场。有时同一种样品使用不同的溶剂也会使化学位移值发生变化,这称为溶剂效应。活泼氢的溶剂效应比较明显。
当取代基与共振核之间的距离小于van der Waals半径时,取代基周围的电子云与共振核周围的电子云就互相排 斥,结果使共振核周围的电子云密度降低,使质子受到的屏蔽效应明显下降,质子峰向低场移动,这称为van der Waals效应。氢键的影响、溶剂效应、van der Waals效应在剖析NMR图谱时很有用。
(3)共轭效应
苯环上的氢若被推电子基取代,由于P-π共轭,使苯环电子云密度增大,质子峰向高场位移。而当有拉电子取代基则反之。对于双键等体系也有类似的效果。
4. 核磁信号归属中双峰的化学位移怎么写
读取核磁共振氢谱氢信号的化学位移,一是为了解析分子结构,一是为了发表文章报道使用. 为解析结构,只需要精确到小数点后2位即可,后面的四舍五入. 发表论文时,也基本上读到小数点后2位即可. 只在解析高级谱图时,才需要读到小数点后4位,以便于计算使用. 对NMR谱图的峰信号,不论信号峰的形状是否规则、是否对称,信号峰的化学位移值总是位于整个信号峰把基线进行添加后构成封闭图形后的质量重心位置的横坐标上. 为此,先对信号峰进行谱峰分组,再求解包括化学位移在内的所有谱图信息参数. 对谱的每一组峰群进行分组,求解出每一个峰组的谱图信息参数:峰形(宽窄),分裂峰数(单峰s,二重峰d,三重峰t,四重峰q,五重峰,六重峰,多重峰M).峰形与图谱公共基线所围峰面积积分比,化学位移δ值,自旋-自旋耦合常数J值(在非NMR专业论文中,一般都简述这些图谱参数)相互不迭加的谱峰容易进行分组,相互迭加的一级谱或复杂谱,解析的过程也是不断调整进行分组的过程.峰形一般较窄,解析时都是按较窄的峰形处理的.如果较宽,至少是底部较宽时,它的峰较宽的信息本身就代表一定的分子结构信息. 化学位移δ值,现在多使用相对值,即以某一个内标准物质,如四甲基硅等,以内标准物质的NMR信号化学位移δ值为0 ppm或0 Hz,测试物质的信号峰相对于内标物的化学位移δ值.如果NMR谱图内标物信号不在0 位,需要校正之. 常规分裂峰数,s,d,t,q,五重,六重,七重峰,此外还有dd(双二重峰),dt(双三重峰),dq(双四重峰),ddd(双双二重峰),ddt(双双三重峰),dddd(双双双二重峰)等峰形,每一种都代表一定的结构信息.有了峰形分组和谱峰组成,才容易求解δ值――峰形质量中心的横坐标.求J值的过程也是不断解析谱图推导分子结构的过程. 单峰s,二重峰d,三重峰t,四重峰q,五重峰,六重峰,多重峰M,如果是左右对称的峰形,化学位移δ值就在对称峰形的中心峰上或中心处横坐标上读出. 对称的dd(双二重峰),dt(双三重峰),dq(双四重峰),ddd(双双二重峰),ddt(双双三重峰),dddd(双双双二重峰)等峰形,化学位移δ值也是在对称峰形的中心位置上读出. 如果是高级谱图,其中,一部分是一级谱图的变形,即由于耦合关系、相互耦合的内侧峰线高于外侧峰线的,其化学位移δ值稍向峰高的那一侧偏移,偏移得多少依据质量重心法则.另一部分的高级谱图峰形较复杂,如要近似地读出化学位移δ值也是如此即可.如果要想求解出精确的化学位移δ值,可以按照各种不同类型的高级谱图自旋体系的成套的解析公式进行解析,这些高级谱图的自旋类型的判断、计算、解析的整个内容都是很好的可发表论文的实质内容和精华部分. 教科书中都有这方面的内容和专门知识,可去学习.
5. 化学位移中数字越大是低场还是高场
化学位移中数字越大是低场,不是高场。因为低场矢量为0的分力越小,而分力越小,越容易产生位移,所以化学位移中数字越大是低场。
核磁共振中,化学位移本身是有单位的,其单位是Hz,之所以最终没有单位,是因为我们常说的化学位移指的是化学相对位移。例如,当使用200MHz的NMR时,某个位移值为200Hz,这时就采用相对位移,用200Hz去除以200MHz,得到的是百万分之一,也就是1ppm;
之所以这么表示是因为,位移值会随着机器的不同而改变,例如,在400MHz的NMR下,位移值是400Hz,只是相对位移不变,仍然是1ppm
由于有机分子中各种质子受到不同程度的屏蔽效应,因此在核磁共振谱的不同位置上出现吸收峰。
某一物质吸收峰的位置与标准质子吸收峰位置之间的差异称为该物质的化学位移(chemicalshift),常以δ表示。
四甲基硅吸收峰的δ值为零,其右边的δ值为负,左边δ值为正。
6. 核磁共振的质子化学位移
由于不同类型的质子化学位移不同,因此化学位移值对于分辨各类质子是重要的,而确定质子类型对于阐明分子结构是十分有意义的。下表列出了一些特征质子的化学位移,表中黑体字的H是要研究的质子。 特征质子的化学位移质子的类型 化学位移 质子的类型 化学位移 RCH3 0.9 ArOH 4.5-4.7(分子内缔合10.5~16) R2CH2 1.3 R3CH 1.5 R2C=CR—OH 15~19(分子内缔合) 0.22 RCH2OH 3.4~4 R2C=CH2 4.5~5.9 ROCH3 3.5~4 R2C=CRH 5.3 RCHO 9~10 R2C=CR—CH3 1.7 RCOCR2—H 2~2.7 RC≡CH 7~3.5 HCR2COOH 2~2.6 ArCR2—H 2.2~3 R2CHCOOR 2~2.2 RCH2F 4~4.5 RCOOCH3 3.7~4 RCH2Cl 3~4 RC≡CCOCH3 2~3 RCH2Br 3.5~4 RNH2或R2NH 0.5~5(峰不尖锐,常呈馒头形) RCH2I 3.2~4 ROH 0.5~5.5(温度、溶剂
、浓度改变时影响很大) RCONRH或ArCONRH 5~9.4 甲烷氢的化学位移值为0.23,其它开链烷烃中,一级质子在高场δ≈0.91处出现,二级质子移向低场在δ≈1.33处出现,三级质子移向更低场在δ≈1.5处出现。例如: 烷烃 CH4 CH3—CH3 CH3—CH2—CH3 (CH3)3CH δ 0.23 0.86 0.86 0.91 1.33 0.91 0.86 1.50 甲基峰一般具有比较明显的特征,亚甲基峰和次甲基峰没有明显的特征,而且常呈很复杂的峰形,不易辨认。当分子中引人其它官能团后,甲基、次甲基及亚甲基的化学位移会发生变化,但其δ值极少超出0.7~4-5这一范围。
环烷烃能以不同构象形式存在,未被取代的环烷烃处在一确定的构象中时,由于碳碳单键的 各向异性屏蔽作用,不同氢的δ值略有差异。例如,在环己烷的椅型构象中,由于C-I上的平伏键氢处于C⑵ — C⑶键及C⑸ — C⑹键的去屏蔽区,而C-I上的直立键氢不处在去屏蔽区,(图环己烷的各向异性屏蔽效应)。所以平伏键氢比直立键氢的化学位移略高0.2~0.5。在低温(-100℃)构象固定时,NMR谱图上可以清晰地看出两个吸收峰,一个代表直立键氢,一个代表平伏键氢。但在常温下,由于构象的迅速转换(图环己烷构象的转换),一般只看到一个吸收峰(见右图)。
其它未取代的环烷烃在常温下也只有一个吸收峰。环丙烷的δ值为0.22,环丁烷的δ值为1.96,别的环烷烃的δ值在1.5左右。取代环烷烃中,环上不同的氢有不同的化学位移,它们的图谱有时呈比较复杂的峰形,不易辨认。 酯中烷基上的质子RCOOCH2R的化学位移δH=3.7~4。酰胺中氮上的质子RCONHR 的化学位移,一般在δ= 5~9.4之间,往往不能给出一个尖锐的峰。
羰基或氮基附近α碳上的质子具有类似的化学位移= 2~3,例如,CH3COCl δH=2.67,CH3COOCH3 δH=2.03, RCH2COOCH3 δH=2.13,CH3CONH2 δH= 2.08,RCH2CONH2 δH=2.23,CH3CN δH=1.98,RCH2CN δH=2.30。 醇的核磁共振谱的特点参见后文。醚α-H的化学位移约在3.54附近。
酚羟基氢的核磁共振的δ值很不固定,受温度、浓度、溶剂的影响很大,只能列出它的大致范 围。一般酚羟基氢的δ值在4~8范围内,发生分子内缔合的酚羟基氢的δ值在10.5~16范 围内。
羧酸H的化学位移在2~2.6之间。羧酸中羧基的质子由于受两个氧的吸电子作用,屏 蔽大大降低,化学位移在低场。R2CHCOOH δH=10~12。
胺中,氮上质子一般不容易鉴定,由于氢键程度不同,改变很大,有时N— H和C一H质子 的化学位移非常接近,所以不容易辨认。一般情况在α-H δH=2.7~3.1,β-H δ=1.1~1.71。N-H δ=0.5~5,RNH2,R2NH的δ值的大致范围在0.4~3.5,ArNH2,ArzNH,ArNHR的δ值的大 致范围在2.9~4.8之间。
7. mestrenova怎样修改化学位移值小数点后位数
双击工作界面。出现对话框,点击peaks,然后在dicimals里面输入你所需要的位数