导航:首页 > 化学知识 > 氮怎么去除化学法

氮怎么去除化学法

发布时间:2023-03-23 23:29:34

❶ 怎样利用化学法去除氨氮

折点氯化法去除氨氮折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮污水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。折点氯化法除氨机理如下: Cl2+H2O→HOCl+H++Cl- NH4++HOCl→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl- NHCl2+NaOH→N2+HOCl+H++Cl- 折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。 2. 选择性离子交换化去除氨氮离子交换是指在固体颗粒和液体的界面上发生的离子交换过程。离子交换法选用对NH4+离子有很强选择性的沸石作为交换树脂,从而达到去除氨氮的目的。沸石具有对非离子氨的吸附作用和与离子氨的离子交换作用,它是一类硅质的阳离子交换剂,成本低,对NH4+有很强的选择性。 O.Lahav等用沸石作为离子交换材料,将沸石作为一种把氨氮从废水中分离出来的分离器以及硝化细菌的载体。该工艺在一个简单的反应器中分吸附阶段和生物再生阶段两个阶段进行。在吸附阶段,沸石柱作为典型的离子交换柱;而在生物再生阶段,附在沸石上的细菌把脱附的氨氮氧化成硝态氮。研究结果表明,该工艺具有较高的氨氮去除率和稳定性,能成功地去除原水和二级出水中的氨氮。沸石离子交换与pH的选择有很大关系,pH在4~8的范围是沸石离子交换的最佳区域。当pH<4时,H+与NH4+发生竞争;当pH>8时,NH4+变为NH3而失去离子交换性能。用离子交换法处理含氨氮10~20mg/L的城市污水,出水浓度可达1mg/L以下。离子交换法具有工艺简单、投资省去除率高的特点,适用于中低浓度的氨氮废水(<500mg/L),对于高浓度的氨氮废水会因树脂再生频繁而造成操作困难。但再生液为高浓度氨氮废水,仍需进一步处理。 3. 空气吹脱法与汽提法去除氨氮空气吹脱法是将废水与气体接触,将氨氮从液相转移到气相的方法。该方法适宜用于高浓度氨氮废水的处理。吹脱是使水作为不连续相与空气接触,利用水中组分的实际浓度与平衡浓度之间的差异,使氨氮转移至气相而去除废水中的氨氮通常以铵离子(NH4+)和游离氨(NH3)的状态保持平衡而存在。将废水pH值调节至碱性时,离子态铵转化为分子态氨,然后通入空气将氨吹脱出。吹脱法除氨氮,去除率可达60%~95%,工艺流程简单,处理效果稳定,吹脱出的氨气用盐酸吸收生成氯化铵可回用于纯碱生产作母液,也可根据市场需求,用水吸收生产氨水或用硫酸吸收生产硫酸铵副产品,未收尾气返回吹脱塔中。但水温低时吹脱效率低,不适合在寒冷的冬季使用。用该法处理氨氮时,需考虑排放的游离氨总量应符合氨的大气排放标准,以免造成二次污染。低浓度废水通常在常温下用空气吹脱,而炼钢、石油化工、化肥、有机化工、有色金属冶炼等行业的高浓度废水则常用蒸汽进行吹脱。该方法比较适合处理高浓度氨氮废水,但吹脱效率影响因子多,不容易控制,特别是温度影响比较大,在北方寒冷季节效率会大大降低,现在许多吹脱装置考虑到经济性,没有回收氨,直接排放到大气中,造成大气污染。汽提法是用蒸汽将废水中的游离氨转变为氨气逸出,处理机理与吹脱法一样是一个传质过程,即在高pH值时,使废水与气体密切接触,从而降低废水中氨浓度的过程。传质过程的推动力是气体中氨的分压与废水中氨的浓度相当的平衡分压之间的差。延长气水间的接触时间及接触紧密程度可提高氨氮的处理效率,用填料塔可以满足此要求。塔的填料或充填物可以通过增加浸润表面积和在整个塔内形成小水滴或生成薄膜来增加气水间的接触时间汽提法适用于处理连续排放的高浓度氨氮废水,操作条件与吹脱法类似,对氨氮的去除率可达97%以上。但汽提塔内容易生成水垢,使操作无法正常进行。吹脱和汽提法处理废水后所逸出的氨气可进行回收:用硫酸吸收作为肥料使用;冷凝为1%的氨溶液。 4. 生物法去除氨氮生物法去除氨氮是在指废水中的氨氮在各种微生物的作用下,通过硝化和反硝化等一系列反应,最终形成氮气,从而达到去除氨氮的目的。生物法脱氮的工艺有很多种,但是机理基本相同。都需要经过硝化和反硝化两个阶段。硝化反应是在好氧条件下通过好氧硝化菌的作用将废水中的氨氮氧化为亚硝酸盐或硝酸盐,包括两个基本反应步骤:由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应。由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应。亚硝酸菌和硝酸菌都是自养菌,它们利用废水中的碳源,通过与NH3-N的氧化还原反应获得能量。反应方程式如下:亚硝化: 2NH4++3O2→2NO2-+2H2O+4H+ 硝化 : 2NO2-+O2→2NO3- 硝化菌的适宜pH值为8.0~8.4,最佳温度为35℃,温度对硝化菌的影响很大,温度下降10℃,硝化速度下降一半;DO浓度:2~3mg/L;BOD5负荷:0.06-0.1kgBOD5/(kgMLSS?d);泥龄在3~5天以上。在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从废水中逸出由于兼性脱氮菌(反硝化菌)的作用,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程,称为反硝化。反硝化过程中的电子供体是各种各样的有机底物(碳源)。以甲醇为碳源为例,其反应式为: 6NO3-+2CH3OH→6NO2-+2CO2+4H2O 6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH- 反硝化菌的适宜pH值为6.5~8.0;最佳温度为30℃,当温度低于10℃时,反硝化速度明显下降,而当温度低至3℃时,反硝化作用将停止;DO浓度<0.5mg/L;BOD5/TN>3~5。生物脱氮法可去除多种含氮化合物,总氮去除率可达70%~95%,二次污染小且比较经济,因此在国内外运用最多。其缺点是占地面积大,低温时效率低。常见的生物脱氮流程可以分为3类: ⑴多级污泥系统多级污泥系统通常被称为传统的生物脱氮流程。此流程可以得到相当好的BOD5去除效果和脱氮效果,其缺点是流程长,构筑物多,基建费用高,需要外加碳源,运行费用高,出水中残留一定量甲醇; ⑵单级污泥系统单级污泥系统的形式包括前置反硝化系统、后置反硝化系统及交替工作系统。前置反硝化的生物脱氮流程,通常称为A/O流程。与传统的生物脱氮工艺流程相比,该工艺特点:流程简单、构筑物少,只有一个污泥回流系统和混合液回流系统,基建费用可大大节省;将脱氮池设置在去碳源,降低运行费用;好氧池在缺氧池后,可使反硝化残留的有机污染物得到进一步去除,提高出水水质;缺氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其后好氧池的有机负荷。此外,后置式反硝化系统,因为混合液缺乏有机物,一般还需要人工投加碳源,但脱氮的效果高于前置式,理论上可接近100%的脱氮效果。交替工作的生物脱氮流程主要由两个串联池子组成,通过改换进水和出水的方向,两个池子交替在缺氧和好氧的条件下运行。它本质上仍是A/O系统,但利用交替工作的方式,避免了混合液的回流,其脱氮效果优于一般A/O流程。其缺点是运行管理费用较高,必须配置计算机控制自动操作系统; ⑶生物膜系统将上述A/O系统中的缺氧池和好氧池改为固定生物膜反应器,即形成生物膜脱氮系统。此系统中应有混合液回流,但不需污泥回流,在缺氧的好氧反应器中保存了适应于反硝化和好氧氧化及硝化反应的两个污泥系统。由于常规生物处理高浓度氨氮废水还存在以下: ?为了能使微生物正常生长,必须增加回流比来稀释原废水; ?硝化过程不仅需要大量氧气,而且反硝化需要大量的碳源,一般认为COD/TKN至少为9。 5. 化学沉淀法去除氨氮化学沉淀法是根据废水中污染物的性质,必要时投加某种化工原料,在一定的工艺条件下(温度、催化剂、pH值、压力、搅拌条件、反应时间、配料比例等等)进行化学反应,使废水中污染物生成溶解度很小的沉淀物或聚合物,或者生成不溶于水的气体产物,从而使废水净化,或者达到一定的去除率。化学沉淀法处理NH3-N是始于20世纪60年代,在90年代兴起的一种新的处理方法,其主要原理就是NH4+、Mg2+、PO43-在碱性水溶液中生成沉淀。在氨氮废水中投加化学沉淀剂Mg(OH)2、H3PO4与NH4+反应生成MgNH4PO4?6H2O(鸟粪石)沉淀,该沉淀物经造粒等过程后,可开发作为复合肥使用。整个反应的pH值的适宜范围为9~11。pH值<9时,溶液中PO43-浓度很低,不利于MgNH4PO4?6H2O沉淀生成,而主要生成Mg(H2PO4)2;如果pH值>11,此反应将在强碱性溶液中生成比MgNH4PO4?6H2O更难溶于水的Mg3(PO4)2的沉淀。同时,溶液中的NH4+将挥发成游离氨,不利于废水中氨氮的去除。利用化学沉淀法,可使废水中氨氮作为肥料得以回收。

❷ 如何消除水中的总氮

废水中总氮主要由氨氮、有机氮、硝态氮、亚硝态氮组成,其中氨氮主要来自于氨水以及诸如氯化铵等无机物,要去除水中的总氮,首先要明确哪一组吵帆销分是导致总氮超标的原因,再进行针对性解决。

(1)氨氮的去除:折点加氯氧化法、生物法。

(2)有机氮的去除:生物升游法、化轿胡学法。

(3)硝态氮的去除:生物法、HDN-FT高效脱氮设备、IDN-BMP总氮处理富增集成装备。

❸ 污水中总氮怎么去除

总氮超标怎么解决?甘度jun分享给你,希望能帮助到你。

一、总氮超标的来源

废水中的总氮是水中各种形态的有机氮和无机氮的总量,主要包括氨氮、硝态氮、亚硝态氮、蛋白质、氨基酸等。

二、总氮超标的处理方法

1、有机氮的降解

有机氮是指植物、土壤和肥料中与碳结合的含氮物质的总称.如蛋白质、氨基酸等。

生物法;氮化合物在生物作用下可实现向氮气的转化:

化学法;通过强氧化使氮化合物直接从有机氮、氨氮直接转化为氮气:

生物法成本较低,效果稳定,但工艺复杂,操作困难,且占地面积较大,运行时间较长;化学法省去中间转化步骤,更快速直接,但成本较高,折点加氯法控制难度大,效果不稳定。

2、硝态氮的降解

硝态氮主要是指硝酸根离子,常用的方法有离子交换、膜渗透、吸附以及生物脱氮等。离子交换法、膜渗透法以及吸附法都只是硝酸根离子的浓缩与转移,无法真正去除总氮,浓缩以后的硝酸根废液需要进一步处理。

生物法:主要是指硝酸根离子通过反硝化细菌降解转化为氮气的过程。

❹ 氨氮怎么去除

方法一:生物膜法


生物膜法是指以天然材料、合成材料(如纤维)为载体,其表面的生物膜为微生物提供附着面,微生物通过分泌的酵素和催化剂降解污水中的物质,同时代谢生成物排出生物膜。生物膜法具有较高的处理效率,对于受有机物及氨氮轻度污染水体有明显的净化效果。


方法二:人工湿地法





人工湿地处理系统是在人工铺的基质上种植水生植物,利用湿地构成的土壤、植物,水生动物和微生物共同过滤、吸收污染物的工艺。湿地的基质、植物和水中微生物是净化污水的主体,植物起消耗营养物质和输氧的功能。植物的人工湿地的硝化能力明显高于无植物的人工湿地。


方法三:化学法


利用氨氮去除剂把氨氮直接氧化成氮谨厅逗气,此方法可选择人工投加无需增加高额工艺设备,投加具有强烈的灵活性,环保无二次污染且反应快速只需5~6分钟,对于农村生活污水集中处理来说是一个好选择。


综上所述便是小班对“水中氨氮的测定方法及步骤,污水中的氨氮如何处理?”的解答,大家都明白了吗?氨氮含量是检测水质安全的一个指标,它的测定方法也是大家需要了解且需要学会的,学好后对大家来说是非常具有实用性的。

方法四:树脂吸附法

氨氮在水祥卖中以游离氨和铵根离子的形式存在,根据一水合氨与铵根的平衡关系可知,利用离子交换工艺除氨氮时pH值尽量在偏酸性(pH值6左右)环境效果更佳。

随着环保形势越来越严,对于总氮的深度处理标准也越来越严,因为地域性伏庆限制,有些污水(如:垃圾渗滤液DTRO膜产水)或者净水(如:蒸发冷凝水)的处理需达到地表三类或者地表四类水质标准,在此情况下,我司T-42H特种除氨氮树脂应运而生,对于中低浓度(500mg/l以内)的氨氮的深度去除以及浓度氨氮(500-5000mg/l)的浓缩回收利用方面具有极佳的效果和极大的优势。

产品优势

1、处理精度,氨氮含量可以做到0.02ppm以下;

2、交换容量大,大实际交换容量可达30-40g/l;

3、化肥行业氨氮浓缩蒸发回收更具优势,树脂浓缩倍数大;

4、RO膜及DTRO膜后氨氮达标的保障措施;

5、蒸发冷凝水氨氮深度处理的佳选择(在投资成本、运行成本、占地面积等等方面综合考虑为佳首选工艺)。

❺ 如何去除空气中的n2

N2和氧气可尘丛伍以产生化学反应派或
在雷电反应下郑脊和氧气发生化学反应生成化学物质NO2,NO2+H2O生成弱硝酸

❻ 废水中氨氮去除,有什么方法

化学法——废水中氨氮的去除方法
废水中氨氮的去除在污水中直接投加一种可以降低氨氮的浓度的药剂——氨氮去除剂;氨氮去除剂是一种含有特殊架状结构的高分子无机化合物,通过强氧化作用,分解水中的氨氮;加药后不会产生沉淀物,对氨氮的去除率达96%以上,无2次污染。
生物反硝化——废水中氨氮的去除方法
生物反硝化在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。
生物硝化——废水中氨氮的去除方法
在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 7.lg。

❼ 怎样利用化学法除氨氮

或者生成不溶于水的气体产物,但由此引起的pH值下降一般可以忽略。前置反硝化的生物脱氮流程,基建费用可大大节省,不受水温影响。 2. 选择性离子交换化去除氨氮离子交换是指在固体颗粒和液体的界面上发生的离子交换过程,没有回收氨。吹脱法除氨氮;11;L以下。此系统中应有混合液回流。但再生液为高浓度氨氮废水。对于氨氮浓度低(小于50mg/.5mg/;如果pH值>: ⑴多级污泥系统多级污泥系统通常被称为传统的生物脱氮流程,去除率可达60%~95%。将废水pH值调节至碱性时,或者达到一定的去除率,通过改换进水和出水的方向,成本低。其缺点是运行管理费用较高,将沸石作为一种把氨氮从废水中分离出来的分离器以及硝化细菌的载体,通过与NH3-N的氧化还原反应获得能量.4:2~3mg/; ⑵单级污泥系统单级污泥系统的形式包括前置反硝化系统。当氯气通入量超过该点时。 O.Lahav等用沸石作为离子交换材料、pH值及氨氮浓度,将硝化过程中产生的硝酸盐或亚硝酸盐还原成N2的过程、化肥,出水中残留一定量甲醇,低温时效率低;硝化过程不仅需要大量氧气,溶液中PO43-浓度很低,理论上可接近100%的脱氮效果,使废水中污染物生成溶解度很小的沉淀物或聚合物,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从废水中逸出由于兼性脱氮菌(反硝化菌)的作用。塔的填料或充填物可以通过增加浸润表面积和在整个塔内形成小水滴或生成薄膜来增加气水间的接触时间汽提法适用于处理连续排放的高浓度氨氮废水。研究结果表明,而主要生成Mg(H2PO4)2,而当温度低至3℃时。硝化反应是在好氧条件下通过好氧硝化菌的作用将废水中的氨氮氧化为亚硝酸盐或硝酸盐;6H2O沉淀生成、Mg2+。整个反应的pH值的适宜范围为9~11,通过硝化和反硝化等一系列反应.06-0,对氨氮的去除率可达97%以上,处理效果稳定,用水吸收生产氨水或用硫酸吸收生产硫酸铵副产品,沸石柱作为典型的离子交换柱,提高出水水质,不利于MgNH4PO4?,该状态下的氯化称为折点氯化。离子交换法具有工艺简单,离子态铵转化为分子态氨、有色金属冶炼等行业的高浓度废水则常用蒸汽进行吹脱。该工艺在一个简单的反应器中分吸附阶段和生物再生阶段两个阶段进行、催化剂,处理效果稳定,从而达到去除氨氮的目的,能成功地去除原水和二级出水中的氨氮。交替工作的生物脱氮流程主要由两个串联池子组成、反应时间。离子交换法选用对NH4+离子有很强选择性的沸石作为交换树脂.0。pH值<9时,使操作无法正常进行,但脱氮的效果高于前置式,H+与NH4+发生竞争、投资省去除率高的特点;好氧池在缺氧池后,必须配置计算机控制自动操作系统,当温度低于10℃时。 5. 化学沉淀法去除氨氮化学沉淀法是根据废水中污染物的性质,可开发作为复合肥使用,包括两个基本反应步骤,基建费用高,因为混合液缺乏有机物,以去除水中残留的氯,避免了混合液的回流,现在许多吹脱装置考虑到经济性:0,一般认为COD/,必须增加回流比来稀释原废水; ?。因此该点称为折点,而炼钢,但是机理基本相同;为了能使微生物正常生长。当pH<4时。该方法比较适合处理高浓度氨氮废水。吹脱是使水作为不连续相与空气接触;L).5~2小时,接触时间为0,需要外加碳源、构筑物少,该沉淀物经造粒等过程后、搅拌条件。由于常规生物处理高浓度氨氮废水还存在以下。在氨氮废水中投加化学沉淀剂Mg(OH)2;6H2O(鸟粪石)沉淀;最佳温度为30℃、pH值,使废水与气体密切接触。用离子交换法处理含氨氮10~20mg/,可使反硝化残留的有机污染物得到进一步去除;L的城市污水,然后通入空气将氨吹脱出,最佳温度为35℃,反硝化速度明显下降,温度对硝化菌的影响很大,从而达到去除氨氮的目的: 2NH4++3O2→2NO2-+2H2O+4H+ 硝化 。传质过程的推动力是气体中氨的分压与废水中氨的浓度相当的平衡分压之间的差,操作条件与吹脱法类似。折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,不容易控制,以免造成二次污染、H3PO4与NH4+反应生成MgNH4PO4?,一般还需要人工投加碳源;冷凝为1%的氨溶液。同时。在吸附阶段,即在高pH值时,它是一类硅质的阳离子交换剂,适用于中低浓度的氨氮废水(<500mg/。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,运行费用高;O流程;O系统中的缺氧池和好氧池改为固定生物膜反应器。与传统的生物脱氮工艺流程相比。当氯气通入废水中达到某一点时水中游离氯含量最低,总氮去除率可达70%~95%。氧化每克氨氮需要9~10mg氯气,但不需污泥回流: ?,其主要原理就是NH4+、后置反硝化系统及交替工作系统,污水中的有机碳被反硝化菌所利用,直接排放到大气中,NH4+变为NH3而失去离子交换性能,通常称为A/,在90年代兴起的一种新的处理方法: 6NO3-+2CH3OH→6NO2-+2CO2+4H2O 6NO2-+3CH3OH→3N2+3CO2+3H2O+6OH- 反硝化菌的适宜pH值为6。沸石具有对非离子氨的吸附作用和与离子氨的离子交换作用。化学沉淀法处理NH3-N是始于20世纪60年代;DO浓度。此外,吹脱出的氨气用盐酸吸收生成氯化铵可回用于纯碱生产作母液。但水温低时吹脱效率低,水中的游离氯就会增多,在北方寒冷季节效率会大大降低,未收尾气返回吹脱塔中。氯化法的处理率达90%~100%,特别是温度影响比较大,二次污染小且比较经济,硝化速度下降一半,但运行费用高,但吹脱效率影响因子多,对于高浓度的氨氮废水会因树脂再生频繁而造成操作困难,从而使废水净化,在一定的工艺条件下(温度,用这种方法较为经济,仍需进一步处理、有机化工、配料比例等等)进行化学反应。都需要经过硝化和反硝化两个阶段。生物脱氮法可去除多种含氮化合物;将脱氮池设置在去碳源,而且反硝化需要大量的碳源;BOD5负荷,使氨氮转移至气相而去除废水中的氨氮通常以铵离子(NH4+)和游离氨(NH3)的状态保持平衡而存在、压力.1kgBOD5/。 4. 生物法去除氨氮生物法去除氨氮是在指废水中的氨氮在各种微生物的作用下,其反应式为,该工艺特点;6H2O更难溶于水的Mg3(PO4)2的沉淀,温度下降10℃,称为反硝化,同时使废水达到消毒的目的。此流程可以得到相当好的BOD5去除效果和脱氮效果。1mg残留氯大约需要0,此反应将在强碱性溶液中生成比MgNH4PO4?,从而降低废水中氨浓度的过程:亚硝化。折点氯化法除氨机理如下。汽提法是用蒸汽将废水中的游离氨转变为氨气逸出,在缺氧的好氧反应器中保存了适应于反硝化和好氧氧化及硝化反应的两个污泥系统。常见的生物脱氮流程可以分为3类,即形成生物膜脱氮系统;缺氧池在前。但汽提塔内容易生成水垢。吹脱和汽提法处理废水后所逸出的氨气可进行回收。在反氯化时会产生氢离子: Cl2+H2O→HOCl+H++Cl- NH4++HOCl→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl- NHCl2+NaOH→N2+HOCl+H++Cl- 折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化.9~1;O系统,因此在国内外运用最多; ⑶生物膜系统将上述A/,其脱氮效果优于一般A/,需考虑排放的游离氨总量应符合氨的大气排放标准,不适合在寒冷的冬季使用。沸石离子交换与pH的选择有很大关系,反硝化作用将停止:由亚硝酸菌参与的将氨氮转化为亚硝酸盐的反应,也可根据市场需求;TN>3~5,但利用交替工作的方式;(kgMLSS?,用填料塔可以满足此要求。它本质上仍是A/,利用水中组分的实际浓度与平衡浓度之间的差异,先硝化再除微量残留氨氮;d)。处理氨氮污水所需的实际氯气量取决于温度。在缺氧条件下。其缺点是占地面积大;L)的废水来说;BOD5/,两个池子交替在缺氧和好氧的条件下运行,该工艺具有较高的氨氮去除率和稳定性.5~8、PO43-在碱性水溶液中生成沉淀,它们利用废水中的碳源,在寒冷地区此法特别有吸引力,可减轻其后好氧池的有机负荷,必要时投加某种化工原料。生物法脱氮的工艺有很多种。投资较少,pH在4~8的范围是沸石离子交换的最佳区域,因此去除1mg残留氯只消耗2mg左右(以CaCO3计),只有一个污泥回流系统和混合液回流系统,对NH4+有很强的选择性:流程简单;O流程,溶液中的NH4+将挥发成游离氨,副产物氯胺和氯化有机物会造成二次污染,使废水中全部氨氮降为零。延长气水间的接触时间及接触紧密程度可提高氨氮的处理效率,其缺点是流程长。反硝化过程中的电子供体是各种各样的有机底物(碳源)。用该法处理氨氮时;泥龄在3~5天以上;L,不利于废水中氨氮的去除.0~8,附在沸石上的细菌把脱附的氨氮氧化成硝态氮,出水浓度可达1mg/;而在生物再生阶段。以甲醇为碳源为例。低浓度废水通常在常温下用空气吹脱,常将此法与生物硝化连用;L。pH值在6~7时为最佳反应区间:用硫酸吸收作为肥料使用: 2NO2-+O2→2NO3- 硝化菌的适宜pH值为8。反应方程式如下,后置式反硝化系统;当pH>8时。由硝酸菌参与的将亚硝酸盐转化为硝酸盐的反应,构筑物多,处理机理与吹脱法一样是一个传质过程,工艺流程简单,造成大气污染、石油化工。 3. 空气吹脱法与汽提法去除氨氮空气吹脱法是将废水与气体接触.0mg的二氧化硫。该方法适宜用于高浓度氨氮废水的处理,降低运行费用,氯化法只适用于处理低浓度氨氮废水,氨的浓度降为零折点氯化法去除氨氮折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺;DO浓度<0。利用化学沉淀法,最终形成氮气,将氨氮从液相转移到气相的方法;TKN至少为9。亚硝酸菌和硝酸菌都是自养菌,可使废水中氨氮作为肥料得以回收

物理化学脱氮有哪些方法

废水深度处理的方法有:
絮凝沉淀法、砂滤法、活性炭法、臭氧氧化法、膜分离法、离子交换法、电解处理、湿式氧化法、催化氧化法、蒸发浓缩法等物理化学方法与生物脱氮、脱磷法等。深度处理方法费用昂贵,管理较复杂,处理每吨水的费用约为一级处理费用的4-5倍以上。

污水深度处理是指城市污水或工业废水经一级、二级处理后,为了达到一定的回用水标准使污水作为水资源回用于生产或生活的进一步水处理过程。针对污水(废水)的原水水质和处理后的水质要求可进一步采用三级处理或多级处理工艺。常用于去除水中的微量COD和BOD有机污染物质,SS及氮、磷高浓度营养物质及盐类。

❾ 氨氮超标该用什么方法才能更好的去除

氨氮超标处理方法常分为两类:化学法处理和生物法处理
生物处理法就是我们常说的生物脱氮,主要包括氨化、硝化、反硝化最终以氮气从水中脱出。生物脱氮现在又很多成熟的工艺比如HNF-MP高效硝化工艺,在水处理中非常常见。
化学法处理包括:①吹脱法,利用氨氮在水中的平衡关系,调节pH到碱性,使得氨氮以非离子态存NH3-N存在,最后利用空气把其吹脱出来。
②折点加氯法,利用氨氮和氯反应最终生成氮气从水中脱除。氯的投加量依照加氯曲线。
③离子交换法,一般选用阳离子交换树脂。

❿ 氨氮如何去除

氨氮处理方法常分为两类:化学法处理和生物法处理
化学法处理包括:
①吹脱法,润群化工利用氨氮在水中的平衡关系,调节pH到碱性,使得氨氮以非离子态存NH3-N存在,最后利用空气把其吹脱出来。
②折点加氯法,折点氯化法是投加过量的氯或次氯酸钠,使废水中的氨氮氧化成氮气的化学脱氮工艺。该方法的处理效率可达到90% -100%,处理效果稳定,不受水温影响。但运行费用高,副产物氯胺和氯代有机物会造成二次污染。
③离子交换法,利用不溶性离子化合物(离子交换剂)上的可交换离子与溶液中的其它同性离子(NH4+)发生交换反应,从而将废水中的NH4+牢固地吸附在离子交换剂表面,达到脱除氨氮的目的。
生物处理法就是我们常说的生物脱氮,主要包括氨化、硝化、反硝化,在多种细菌作用下最终以氮气从水中脱出。生物脱氮现在有很多成熟的工艺,在水处理中很常见。

阅读全文

与氮怎么去除化学法相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:734
乙酸乙酯化学式怎么算 浏览:1397
沈阳初中的数学是什么版本的 浏览:1343
华为手机家人共享如何查看地理位置 浏览:1036
一氧化碳还原氧化铝化学方程式怎么配平 浏览:877
数学c什么意思是什么意思是什么 浏览:1401
中考初中地理如何补 浏览:1290
360浏览器历史在哪里下载迅雷下载 浏览:693
数学奥数卡怎么办 浏览:1380
如何回答地理是什么 浏览:1014
win7如何删除电脑文件浏览历史 浏览:1048
大学物理实验干什么用的到 浏览:1478
二年级上册数学框框怎么填 浏览:1692
西安瑞禧生物科技有限公司怎么样 浏览:951
武大的分析化学怎么样 浏览:1241
ige电化学发光偏高怎么办 浏览:1330
学而思初中英语和语文怎么样 浏览:1642
下列哪个水飞蓟素化学结构 浏览:1418
化学理学哪些专业好 浏览:1479
数学中的棱的意思是什么 浏览:1050