导航:首页 > 化学知识 > 质谱能完成的化学任务有哪些

质谱能完成的化学任务有哪些

发布时间:2023-04-13 18:08:07

1. 什么是质谱仪它的主要功能有哪些

分离和检测不同同位素的仪器。即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分岩核子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。质谱仪以离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/z大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。离子源、质量分析器和离子检测器都各有多种类型。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪;按分辨本领分为高分辨、中分辨和低分辨质谱仪;按工作原理分为静态仪器和动态仪器。 分离和检测不同同位素的仪器。仪器的主要装置放在真空中。将物质气化、电离成离子束,经电压加速和聚焦,然后通过磁场电场区,不同质量的离子受到磁场电场的偏转不同,聚焦在不同的位置,从而获得不同同位素的质量谱。质谱方法最早于1913年由J.J.汤姆孙确定,以后经 F.W.阿斯顿等培枣派人改进完善。现代质谱仪经过不断改进,仍然利用电磁学原理,使离子束按荷质比分离。质谱仪的性能指标是它的分辨率,如果质谱仪恰能分辨质量m和m+Δm,分辨率定义为m/Δm。现代质谱仪的分辨率达 105 ~106 量级,可测量原子质量精确到小数点后7位数字。 质谱仪最重要的应用是分离同位素并测定它们的原子质量及相对丰度。测定原子质量的精度超过化学测量方法,大约2/3以上的原子的精确质量是用质谱方法测定的。由于质量和能量的当量关系,由此可得到有关核结构与核结合能的知识。对于可通过矿石中提取的放射性衰变产物元素的分析测量,可确定矿石的地质年代。质谱方法还可用于有机化学分析,特别是微量杂质分析,测量分子的分子量,为确定化合物的分子式和分子结构提供可靠的依据。由于化合物有着像指纹一样的独特质谱,质谱仪在工业生产中也得到广泛应用。 固体火花源质谱:对高纯材料进行杂质分析。可应用于半导体材料有色金属、建材部门;气体同位素质谱:对稳定同位素C、H、N、O、S及放射性同位素Rb、Sr、U、Pb、K、Ar测定,可应用于地质石油、医学、环保、农业等部门 [编辑本段]有机质谱仪 有机质谱仪基本工作原理:以电子轰击或其他的方式使被测物质离子化,形成各种质荷比(m/e)的离子,然后利用电磁学原理使离子按不同的质荷比分离并测量各种离子的强度,从而确定被测物质的分子量和结构。 有机质谱仪主要用于有机化合物的结构鉴定,它能提供化合物的分子量、元素组成以及官能团等结构信息。分为四极杆质谱仪、离子阱质谱仪、飞行时间质谱仪和磁质谱仪等。 有机质谱仪的发展很重要的方面是与各种联用仪(气相色谱、液相色谱、热分析等)的使用。它的基本工作原理是:利用一种具有分离技术的仪器,作为质谱仪的"进样器",将有机混合物分离成纯组分进入质谱仪,充分发挥质谱仪的分析特长,为每个组分提供分子量和分子结构信息。 可广泛用于有机化学、生物学、地球化学、核工业、材料科学、环境科学、医学卫生、食品化学、石油化工等领域以及空间技术和公安工作等特种分析方面。 [编辑本段]无机质谱仪 无机质谱仪与有机质谱仪工作原理不同的是物质离子化的方式不一样,无机质谱仪是以电感耦合高频放电 (ICP)或其他的方式使被测物质离子化。 无机质谱仪主要用于无机元素微量分析和同位素分析等方面。分为火花源质谱仪、离子探针质谱仪、激光探针质谱仪、辉光放电质谱仪、电感耦合等离子体质谱仪。配贺火花源质谱仪不仅可以进行固体样品的整体分析,而且可以进行表面和逐层分析甚至液体分析;激光探针质谱仪可进行表面和纵深分析;辉光放电质谱仪分辨率高,可进行高灵敏度,高精度分析,适用范围包括元素周期表中绝大多数元素,分析速度快,便于进行固体分析;电感耦合等离子体质谱,谱线简单易认,灵敏度与测量精度很高。 质谱分析法的特点是测试速度快,结果精确。广泛用于地质学、矿物学、地球化学、核工业、材料科学、环境科学、医学卫生、食品化学、石油化工等领域以及空间技术和公安工作等特种分析方面。 [编辑本段]同位素质谱仪 同位素质谱分析法的特点是测试速度快,结果精确,样品用量少(微克量级)。能精确测定元素的同位素比值。广泛用于核科学,地质年代测定,同位素稀释质谱分析,同位素示踪分析。 [编辑本段]离子探针 离子探针是用聚焦的一次离子束作为微探针轰击样品表面,测射出原子及分子的二次离子,在磁场中按质荷比(m/e)分开,可获得材料微区质谱图谱及离子图像,再通过分析计算求得元素的定性和定量信息。测试前对不同种类的样品须作不同制备,离子探针兼有电子探针、火花型质谱仪的特点。可以探测电子探针显微分析方法检测极限以下的微量元素,研究其局部分布和偏析。可以作为同位素分析。可以分析极薄表面层和表面吸附物,表面分析时可以进行纵向的浓度分析。成像离子探针适用于许多不同类型的样品分析,包括金属样品、半导体器件、非导体样品,如高聚物和玻璃产品等。广泛应用于金属、半导体、催化剂、表面、薄膜等领域中以及环保科学、空间科学和生物化学等研究部门。

2. 什么是质谱,质谱分析原理是什么

质谱(又叫质谱法)是一种与光谱并列的谱学方法,通常意义上是指广泛应用于各个学科领域中通过制备、分离、检测气相离子来鉴定化合物的一种专门技术。

质谱分析原理:将被测物质离子化,按离子的质荷比分离,测量各种离子谱峰的强度而实现分析目的的一种分析方法。

质量是物质的固有特征之一,不同的物质有不同的质量谱——质谱,利用这一性质,可以进行定性分析(包括分子质量和相关结构信息);谱峰强度也与它代表的化合物含量有关,可以用于定量分析。

(2)质谱能完成的化学任务有哪些扩展阅读

相关仪器:

质谱仪一般由四部分组成:

进样系统——按电离方式的需要,将样品送入离子源的适当部位;

离子源——用来使样品分子电离生成离子,并使生成的离子会聚成有一定能量和几何形状的离子束。

质量分析器——利用电磁场(包括磁场、磁场和电场的组合、高频电场、和高频脉冲电场等)的作用将来自离子源的离子束中不同质荷比的离子按空间位置,时间先后或运动轨道稳定与否等形式进行分离;

检测器——用来接受、检测和记录被分离后的离子信号。

一般情况下,进样系统将待测物在不破坏系统真空的情况下导入离子源(10-6~10-8mmHg),离子化后由质量分析器分离再检测;计算机系统对仪器进行控制、采集和处理数据,并可将质谱图与数据库中的谱图进行比较。

3. 质谱的作用是什么 有什么用途呢

原理 待测化合物分子吸收能量(在离子源的电离室中)后产生电离,生成分子离子,分子离子由于具有较高的能量,会进一步按化合物自身特有的碎裂规律分裂,生成一系列确定咐空隐组成的碎片离子,将所有不同质量的离子和各离子的多少按质荷比记录下来,就得到一张质谱图。由于在相同实验条件下每种化合物都有其确定的质谱图,因此将所得谱图与已知谱图对照,就可确定待测化合物 应用 质谱中出现的离子有分子离亏燃子、同衡厅位素离子、碎片离子、重排离子、多电荷离子、亚稳离子、负离子和离子-分子相互作用产生的离子。综合分析这些离子,可以获得化合物的分子量、化学结构、裂解规律和由单分子分解形成的某些离子间存在的某种相互关系等信息。 质谱法特别是它与色谱仪及计算机联用的方法,已广泛应用在有机化学、生化、药物代谢、临床、毒物学、农药测定、环境保护、石油化学、地球化学、食品化学、植物化学、宇宙化学和国防化学等领域。近年的仪器都具有单离子和多离子检测的功能,提高了灵敏度及专一性,灵敏度可提高到10(克水平。用质谱计作多离子检测,可用于定性分析,例如,在药理生物学研究中能以药物及其代谢产物在气相色谱图上的保留时间和相应质量碎片图为基础,确定药物和代谢产物的存在;也可用于定量分析,用被检化合物的稳定性同位素异构物作为内标,以取得更准确的结果。 在无机化学和核化学方面,许多挥发性低的物质可采用高频火花源由质谱法测定。该电离方式需要一根纯样品电极。如果待测样品呈粉末状,可和镍粉混合压成电极。此法对合金、矿物、原子能和半导体等工艺中高纯物质的分析尤其有价值,有可能检测出含量为亿分之一的杂质。 利用存在寿命较长的放射性同位素的衰变来确定物体存在的时间,在考古学和地理学上极有意义。例如,某种放射性矿物中有放射性铀及其衰变产物铅的存在,铀238和铀235的衰变速率是已知的,则由质谱测出铀和由于衰变产生的铅的同位素相对丰度,就可估计该轴矿物生成的年代。

4. 质谱在化合物结构解析当中有什么功用,能够提供哪些信息

最重要最主要的作用就是 提供化合物的准确分子量,以及姿虚确高巧定分子式迹念燃.
简单分子可以根据裂解规律得到结构式.

5. 质谱仪可以检测哪些项目

质谱仪可以测分子或者离子还有一些中间体的相对分子量。

质谱仪作昌戚用是为校验各种压力变送器﹑压力传感器﹑压力开关﹑而设计简迅陪的一款质谱仪器,在测量压力的同时,也可测量电流,所拦蠢测压力与设定的压力百分数及测量电流同屏显示,电流及电流百分数可通过显示菜单选择。

质谱仪不仅解决了标准压力的校验,而且更好的满足了现场综合的测试需要。现在有有许多厂家为了方便客户,已经将整个仪器微型化智能化,从而使质谱仪具备了多量程和记录等功能。

质谱仪又称质谱计。分离和检测不同同位素的仪器。即根据带电粒子在电磁场中能够偏转的原理,按物质原子、分子或分子碎片的质量差异进行分离和检测物质组成的一类仪器。质谱仪按应用范围分为同位素质谱仪、无机质谱仪和有机质谱仪。

按分辨本领分为高分辨、中分辨和低分辨质谱仪。按工作原理分为静态仪器和动态仪器。

质谱仪特点是软件内容丰富,操作简单、明了,采用薄膜面板及进口轻触开头,款式新颖,按键寿命长。LCD背光,压力、电流显示、直观、清晰、结构紧凑合理。全量程压力校验,配置进口压力传感器及全量程压力泵。

一台主机与多个压力模块可方便拆卸,配合完成全量程测量。主机自动识别各个压力模块的测量范围。

6. 质谱技术有哪些应用

近年来质谱技术发展很快。随着质谱技术的发展,质谱技术的应用领域也越来越广。由于质谱分析具有灵敏度高,分析速度快,样品用量少,分答早离和鉴定同时进行等优点,因此,质谱技术广泛的应用于化学、能源、运动医学、刑侦科学、医药、化工、环境、生命科学、材料科学等各个领域。
质谱仪种类繁多,不同仪器应用特点也不同,一般来说,野举宽在300C左右能汽化的样品,可以优先考虑用质谱进行分析,得到的质谱信息多,可以进行库检索。毛细管柱的分离效果也好。质谱仪的分辨率是一项重要技术指标,高分辨质谱仪可以提供化合物组成式,这对于结构测定是非常重要的。
质谱分析法对样品有一定的要求。进行质谱分析的样品应是有机溶液,水溶液中的有机物一般不能测定,须进行萃取分离变为有机溶液,或采用顶空进样技术。有些化合物极性太强,在加热过程中易分解,例如有机颂亮酸类化合物,此时可以进行酯化处理,将酸变为酯再进行GC-MS分析,由分析结果可以推测酸的结构。如果样品不能汽化也不能酯化,那就只能进行LC-MS分析了。进行LC-MS分析的样品最好是水溶液或甲醇溶液,LC流动相中不应含不挥发盐。

7. 质谱有哪些部分各个部分的功能作用是什么

质谱仪:离子源、质量分析器和离子检测器为核心。离子源是使试样分子在高真空条件下离子化的装置。电离后的分子因接受了过多的能量会进一步碎裂成较小质量的多种碎片离子和中性粒子。它们在加速电场作用下获取具有相同能量的平均动能而进入质量分析器。质量分析器是将同时进入其中的不同质量的离子,按质荷比m/z大小分离的装置。分离后的离子依次进入离子检测器,采集放大离子信号,经计算机处理,绘制成质谱图。

阅读全文

与质谱能完成的化学任务有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:660
乙酸乙酯化学式怎么算 浏览:1330
沈阳初中的数学是什么版本的 浏览:1267
华为手机家人共享如何查看地理位置 浏览:954
一氧化碳还原氧化铝化学方程式怎么配平 浏览:805
数学c什么意思是什么意思是什么 浏览:1321
中考初中地理如何补 浏览:1217
360浏览器历史在哪里下载迅雷下载 浏览:627
数学奥数卡怎么办 浏览:1297
如何回答地理是什么 浏览:949
win7如何删除电脑文件浏览历史 浏览:981
大学物理实验干什么用的到 浏览:1402
二年级上册数学框框怎么填 浏览:1611
西安瑞禧生物科技有限公司怎么样 浏览:752
武大的分析化学怎么样 浏览:1169
ige电化学发光偏高怎么办 浏览:1259
学而思初中英语和语文怎么样 浏览:1553
下列哪个水飞蓟素化学结构 浏览:1348
化学理学哪些专业好 浏览:1414
数学中的棱的意思是什么 浏览:970