❶ 反硝化脱氮菌的基本原理是什么
反硝化脱氮菌属于兼性厌氧菌,有氧存在时,以O2为电子受体进行呼吸;在无氧而有NO3-或NO2-时,则以NO3-或NO2-为电子受体,以有机碳为电子供体和营养源进行反硝化,达到污水中总氮去除的目的。
❷ 什么是脱氮菌
硝化者亚硝化毛杆菌和硝化杆菌的活动结果所产生的硝酸,可以被高等植物吸取和进一步代谢掉,此外,然而,硝酸可以转变威氮气或氧化氮,或者两种气体的混和物,这一过程叫脱氮作用.气体回到大气中故脱氮作用代表消耗土壤氮的一种机理。[1]
中文名
脱氮作用
又称
反硝化作用
环境
缺氧条件
解释
还原硝酸盐的过程
参与微生物
反硝化细菌
特点
脱氮有机体的本性,是一种在产能的电子传递中能较氧更自由地利用亚硝酸或硝酸作为末端受氢体的细菌,在无氧条件下,脱氮作用发生得最迅速,这个过程被氧所抑制,因为这个气体作为末端电子受体有效地与亚硝酸或硝酸竞争。
脱氮作用的第一步包含硝酸到亚硝酸的还原,这个反应涉及的酶叫作呼吸的硝酸还原酶,与同化的硝酸还原酶对比一个分子状的酶,分子状的呼吸的或异化的硝酸还原酶曾从各种有机体中制备,而且可以证明硝酸转变为亚硝酸是与发生ATP偶联的,在这些硝酸还原酶中还原剂的传递,似乎介于细胞色素和钼之间。[1]
机理
即为反硝化作用
微生物和植物吸收利用硝酸盐有两种完全不同的用途,一是利用其中的氮作为氮源,称为同化性硝酸还原作用:NO3-→NH4+→有机态氮。许多细菌、放线菌和霉菌能利用硝酸盐做为氮素营养。另一用途是利用NO2-和NO3-为呼吸作用的最终电子受体,把硝酸还原成氮(N2),称为反硝化作用或脱氮作用:NO3-→NO2-→N2↑。能进行反硝化作用的只有少数细菌,这个生理群称为反硝化菌。大部分反硝化细菌是异养菌,例如脱氮小球菌、反硝化假单胞菌等,它们以有机物为氮源和能源,进行无氧呼吸,
少数反硝化细菌为自养菌,如脱氮硫杆菌,它们氧化硫或硝酸盐获得能量,同化二氧化碳,以硝酸盐为呼吸作用的最终电子受体。
影响
反硝化作用使硝酸盐还原成氮气,从而降低了土壤中氮素营养的含量,对农业生产不利。农业上常进行中耕松土,以防止反硝化作用。反硝化作用是氮素循环中不可缺少的环节,可使土壤中因淋溶而流入河流、海洋中的NO3-减少,消除因硝酸积累对生物的毒害作用。
❸ 反硝化反应的方程式
总的反硝化过程可以用以下方程式表示:
2 NO3 + 10 e + 12 H → N2 + 6 H2O
其中包括以下四个还原反应还原反应:
硝酸盐还原为亚硝酸盐:2 NO3 + 4 H + 4 e → 2 NO2 + 2 H2O
亚硝酸盐还原为一氧化氮:2 NO2 + 4 H + 2 e → 2 NO + 2 H2O
一氧化氮还原为一氧化二氮:2 NO + 2 H + 2 e → N2O + H2O
一氧化二氮还原为氮气:N2O + 2 H + 2 e → N2 + H2O
❹ 在污水处理中用乙酸钠作为碳源,反硝化中去除1mgTN需要多少乙酸钠,具体化学方程式是怎样的
利用序批式反应器,以乙酸钠为唯一碳源,对反硝化污泥进行了50d的长期驯化。之后,利用缓冲溶液将反硝化过程中pH值的上升幅度控制在0.5范围内,研究了不同碳氮比下的反硝化规律。
结果表明,无论碳源是否充足,反硝化过程中硝酸盐氮和亚硝酸盐氮的变化趋势基本相同,即反硝化过程中均会出现亚硝酸盐氮积累且随后逐渐消失的现象。
硝酸盐氮还原完毕时,亚硝酸盐氮会出现最大积累量,同时反硝化速率出现拐点,速率开始明显加快。
当碳氮比从1.0增加到3.7时,反硝化速率明显增加。反硝化菌可过量吸附乙酸钠,因此在以乙酸钠为外加碳源进行反硝化时,即使乙酸钠投加过量,出水COD值也能维持在较低水平。
硝化用硝酸或硝酸盐处理,与硝酸或硝酸盐结合,尤指将〖有机化合物〗转化成硝基化合物或硝酸酯(如用硝酸和硫酸的混合物处理)。
反硝化也称脱氮作用反硝化细菌在缺氧条件下。还原硝酸盐,释放出分子态氮或一氧化二氮的过程。
乙酸钠一般以带有三个结晶水的三水合乙酸钠形式存在。三水合乙酸钠为无色透明或白色颗粒结晶,在空气中可被风化,可燃。易溶于水,微溶于乙醇,不溶于乙醚。
❺ 除磷化学药剂有哪些,有人用过吗
主要可分为铝盐除磷,铁盐除磷,除磷剂除磷,钙盐除磷等。
磷的去除有化学除磷、生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到0.5mg/L出水标准的要求,所以常需要采取化学除磷措施来满足稳定达标需求。但是具体采用何种药剂需要综合考虑污水厂的工艺条件、水质条件,同时最重要一点是兼顾经济成本。目前市场上较为常见成本低廉的药剂主要为聚合氯化铝、聚合硫酸铁、三氯化铁、熟石灰(氢氧化钙)。下面就这几种药剂在应用中的反应机理进行分析。
化学除磷药剂添加时在水体中的反应与所需条件如下:
1.铝盐的混凝沉淀
主反应:
Al3+ + PO43-=AlPO4↓
副反应:
Al3++3HCO3-=Al(OH)3↓+3CO2
在pH为6.0—6.5的条件下,每1mol的磷需要加铝1.5-3.0 mol。如果水显碱性,在加铝之前应先降低pH以减少Al(OH)3沉淀。对磷含量为2-5mg/L左右的二级处理水,通过投加100-250mg/L的聚合氯化铝([Al2(OH)nCl6-n]m)就可以得到90%以上的磷去除率。
2.铁盐的混凝沉淀
主反应:
Fe3++PO43-=FePO4↓
副反应:
Fe3++3HCO3-=Fe(OH)3↓+3CO2
当pH=5-5.5时,每1mol磷需要加铁(Fe3+) 1.5-3mol,最佳PH为5.0。对磷含量为2-5mg/L左右的二级处理水,通过投加80-150mg/L的聚合硫酸铁( [Fe2(OH)n(SO4)3-n/2]m)就可以得到90%以上的磷去除率。
3.石灰的混凝沉淀
5Ca2+ + 4OH- + 3HPO42-=Ca5OH(PO4)3 + 3H2O
为使磷的去除率达到90%以上,需要把pH值调到10.5-11.0以上。Ca/P的重量比为2.2:1以上。
沉析过程中,对于不溶解性的磷酸钙的形成起主要作用的不是Ca2+,而是OH-离子,因为随着pH值的提高,磷酸钙的溶解性降低,采用Ca(OH)2除磷要求的pH值为8.5以上。但在pH值为8.5到10.5的范围内,除了会产生磷酸钙沉析外,还会产生碳酸钙,这也许会导致在池壁或渠、管壁上结垢。
其反应式:Ca2++CO32-→CaCO3↓;
与钙进行磷酸盐沉析的反应除了受到PH值的影响,另外还受到碳酸氢根浓度(碱度)的影响。在一定的PH值惰况下,钙的投加量是与碱度成正比的。
对于软或中硬的污水,采用钙沉析时,为了达到所要求的PH值所需要的钙量是很少的,具有强缓冲能力的污水相反则要求较大的钙投加量。
金属氢氧化物会形成大颗粒的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。
沉析效果是受PH值影响的,金属磷酸盐的溶解性同样也受PH的影响。对于铁盐最佳PH值范围为5.0-5.5,对于铝盐为6.0-7.0,因为在以上PH值范围内FePO4或AlPO4的溶解性最小。另外使用金属盐药剂还会给污水和污泥处理带来益处,比如会提升污泥的沉降指数,有利于沼气脱硫等。
投加金属盐药剂后相应会降低污水的碱度,这也许会对净化产生不利影响。当在同步除磷工艺中使用三氯化铁时,必须考虑对硝化反应的影响。
另外,如果污水处理厂污泥用于农业,使用金属盐药剂除磷时必须考虑铝或者铁负荷对农业的影响,以及劣质除磷药剂所带来的重金属污染。
综合上面原理分析,选择除磷药剂时,为达到《城镇污水处理常污染物排放标准》(GB18918-2002)中一级A所规定的排放标准,并具备低成本目的,可以通过如下技术原则选择:
1.受纳管网中污水为纯粹的生活污水,优先考虑选择三价铁系盐作为除磷剂,铁系盐较铝系盐效率更高,成本更低。
2.受纳管网有工业污水进入,二沉池总磷浓度高于一级A标1-2倍;水质碱度较低(pH<7),需要考虑基准加药量下水质pH值是否会影响脱氮功能以及排放标准,此时选择除磷剂多考虑用铝盐(聚铝)或者铝含量较高的铝铁复合盐。
3.与2相反,进水水质碱度稍高(7.5<pH<8.5),优先考虑铁系盐作为除磷药剂,因为铁系盐的酸度通常高于铝系盐,在不影响出水指标情况下,其会自带调节水质pH到更合理的反应条件。
4.采用前置除磷和后置除磷的工艺,优先选择铁系盐,对于高浓度污水,需配合使用氢氧化钙,以保证pH指标的正常
以上就是集中常见的除磷原理分析,希望对你有所帮助。
❻ 物理化学脱氮有哪些方法
废水深度处理的方法有:
絮凝沉淀法、砂滤法、活性炭法、臭氧氧化法、膜分离法、离子交换法、电解处理、湿式氧化法、催化氧化法、蒸发浓缩法等物理化学方法与生物脱氮、脱磷法等。深度处理方法费用昂贵,管理较复杂,处理每吨水的费用约为一级处理费用的4-5倍以上。
污水深度处理是指城市污水或工业废水经一级、二级处理后,为了达到一定的回用水标准使污水作为水资源回用于生产或生活的进一步水处理过程。针对污水(废水)的原水水质和处理后的水质要求可进一步采用三级处理或多级处理工艺。常用于去除水中的微量COD和BOD有机污染物质,SS及氮、磷高浓度营养物质及盐类。
❼ 污水处理中脱氮原理反硝化、硝化的顺序,不明白,(我是个外行)
在污水处理中按脱氮原理,或者说要达到脱氮的目标,顺序是先硝化细菌在好氧环境下进行硝化作用,把污水污泥中的氮转化为硝酸盐和亚硝酸盐,然后在缺氧条件下反硝化细菌进行反硝化反应,把硝酸盐和亚硝酸盐氮转化为氮气,以达到脱氮的目的。
但是,污水处理中,不仅要脱氮,而且还要除磷,而磷在好氧条件下才聚磷,厌氧和缺氧要在好氧之前。但这对脱氮影响不大,因为污水处理中的经过好氧处理的大部分污泥还要回流利用,所以厌氧——缺氧——好氧是个循环的过程,经过循环过程,氮在缺氧去除,磷在好氧去除。
(7)化学脱氮作用有哪些扩展阅读:
A2/O工艺(AAO工艺、AAO法:厌氧-缺氧-好氧),是一种很常用的二级污水处理工艺,具有脱氮除磷的作用,用于二级污水处理或者三级污水处理,后续增加深度处理后,可作为中水回用,具有良好的脱氮除磷效果。
首先,污水与回流污泥进入厌氧池进行混合,经一定时间厌氧分解作用,去除部分BOD,并使部分含氮化合物转化成氮气(反硝化作用)而释放,回流污泥中的聚磷微生物(聚磷菌等)释放出磷,满足细菌对磷的需求。
然后,污水流入缺氧池,池中的反硝化细菌以污水中的含碳有机物为碳源,将好氧池内通过内循环回流进来的硝酸根和亚硝酸根还原为氮气而释放。
接下来,污水流入好氧池,水中的氨氮进行硝化反应生成硝酸根或亚硝酸根,同时水中的有机物氧化分解供给吸磷微生物能量,微生物从水中吸收磷,则磷富集在微生物内,最后经沉淀分离后以富磷污泥的形式从系统中排出。
网络:A2O
❽ 脱氮作用的作用
即为反硝化作用
微生物和植物吸收利用硝酸盐有两种完全不同的用途,一是利用其中的氮作为氮源,称为同化性硝酸还原作用:NO3-→NH4+→有机态氮。许多细菌、放线菌和霉菌能利用硝酸盐做为氮素营养。另一用途是利用NO2-和NO3-为呼吸作用的最终电子受体,把硝酸还原成氮(N2),称为反硝化作用或脱氮作用:NO3-→NO2-→N2↑。能进行反硝化作用的只有少数细菌,这个生理群称为反硝化菌。大部分反硝化细菌是异养菌,例如脱氮小球菌、反硝化假单胞菌等,它们以有机物为氮源和能源,进行无氧呼吸,其生化过程可用下式表示:
C6H12O6+12NO3-→6H2O+6CO2+12NO2-+能量
5CH3COOH+8NO3-→6H2O+10CO2+4N2+8OH-+能量
少数反硝化细菌为自养菌,如脱氮硫杆菌,它们氧化硫或硝酸盐获得能量,同化二氧化碳,以硝酸盐为呼吸作用的最终电子受体。可进行以下反应:
5S+6KNO3+2H2O→3N2+K2SO4+4KHSO4
❾ 高中生物中化能合成作用,硝化作用反硝化作用分别指什么
化能合成:
自然界中存在某些微生物,它们能以二氧化碳为主要碳源,以无机含氮化合物为氮源,合成细胞物质,并通过氧化外界无机物获得生长所需要的能量.这些微生物进行的营养方式称为化能合成作用.例如硝化细菌、硫细菌、铁细菌、氢细菌等.这些微生物的活动,对维持地球上物质循环的平衡以及对净化环境具有重要作用.例如,土壤中硝化细菌的活动,可提高土壤肥力,增加植物可利用的氮素营养.利用硫细菌可降低土壤pH值,提高土壤矿质盐的可溶性,从而改善作物的矿质营养.利用某些自养微生物的化能合成作用,可在贫矿尾矿中进行细菌浸矿.还可利用氢细菌进行单细胞蛋白生产,其最大优点在于原料取之不尽.但某些菌亦可造成对人类的危害,例如对金属的腐蚀等.
硝化作用
硝化细菌将氨氧化为硝酸的过程.
其作用过程如下:
硝化细菌从铵或亚硝酸的氧化过程中获得能量用以固定二氧化碳,但它们利用能量的效率很低,亚硝酸菌只利用自由能的5~14%; 硝酸细菌也只利用自由能的5~10%.因此,它们在同化二氧化碳时,需要氧化大量的无机氮化合物.
土壤中硝化细菌的数量首先受铵盐含量的影响,一般耕地里,每克土中只有几千至几万个.添加铵盐即可使其数量增至几千万个.土壤中性偏碱,通气良好,水分为田间持水量的50~70%,温度为10~30℃时,最适宜硝化细菌的生长繁殖,铵盐也能迅速被转化为硝酸盐.
自然界中,除自养硝化细菌外,还有些异养细菌、真菌和放线菌能将铵盐氧化成亚硝酸和硝酸,异养微生物对铵的氧化效率远不如自养细菌高,但其耐酸,并对不良环境的抵抗能力较强,所以在自然界的硝化作用过程中,也起着一定的作用.
反硝化作用
也称脱氮作用.反硝化细菌在缺氧条件下,还原硝酸盐,释放出分子态氮(N2)或一氧化二氮(N2O)的过程.微生物和植物吸收利用硝酸盐有两种完全不同的用途,一是利用其中的氮作为氮源,称为同化性硝酸还原作用:NO3-→NH4+→有机态氮.许多细菌、放线菌和霉菌能利用硝酸盐做为氮素营养.另一用途是利用NO2-和NO3-为呼吸作用的最终电子受体,把硝酸还原成氮(N2),称为反硝化作用或脱氮作用:NO3-→NO2-→N2↑.能进行反硝化作用的只有少数细菌,这个生理群称为反硝化菌.大部分反硝化细菌是异养菌,例如脱氮小球菌、反硝化假单胞菌等,它们以有机物为氮源和能源,进行无氧呼吸,其生化过程可用下式表示:
C6H12O6+12NO3-→6H2O+6CO2+12NO2-+能量
CH3COOH+8NO3-→6H2O+10CO2+4N2+8OH-+能量
少数反硝化细菌为自养菌,如脱氮硫杆菌,它们氧化硫或硝酸盐获得能量,同化二氧化碳,以硝酸盐为呼吸作用的最终电子受体.可进行以下反应:
5S+6KNO3+2H2O→3N2+K2SO4+4KHSO4
反硝化作用使硝酸盐还原成氮气,从而降低了土壤中氮素营养的含量,对农业生产不利.农业上常进行中耕松土,以防止反硝化作用.反硝化作用是氮素循环中不可缺少的环节,可使土壤中因淋溶而流入河流、海洋中的NO3-减少,消除因硝酸积累对生物的毒害作用.
❿ 土壤中的氮有哪些,其相互关系如何,测定时应注意什么问题
氮素是核酸和蛋白质的主要成分,是构成生物体的必需元素。虽然大气中78%的成分是N2,但所有植物、动物和大多数微生物都不能直接利用,而只能利用离子态氮(NH4+、NO3-等),然而他们在自然界中为数不多,远远不能满足地球上生物的要求。只有将分子态的N2进行转化和循环,才能满足植物体对氮素营养的需要。因此氮素物质的相互转化和不断训话,在自然界十分重要。
(1)固氮作用
N2被还原成氨或其他氮化物的过程。自然界氮的固定有两种方式,一是非生物固氮,即通过自然和人为因素的化学固氮,形成的氮化物很少;二是生物固氮,即通过微生物的作用固氮,它对自然界氮素循环中的固氮作用具有决定意义。能够固氮的微生物均为原核生物,主要包括细菌、放线菌和蓝细菌。在固氮生物中,贡献最大的与大欧科植物共生的根瘤菌属。全球每年约固定2.4*108t。
(2)氨化作用
微生物分解含氮有机物产生氨的过程。能分解含氮有机物的微生物种类和数量很多。氨化作用在农业生产上十分重要,土壤中的各种动植物残体和有机肥料,包括绿肥、堆肥和厩肥等都富含含氮有机物,他们须通过各类微生物的作用,尤其须先通过氨化作用才能成为植物能洗后和利用的氮素养料。
(3)硝化作用
微生物将氨氧化成硝酸盐的过程。硝化作用份两个阶段:第一个阶段是氨被氧化为亚硝酸盐,利用亚硝化细菌完成;第二个阶段是亚硝酸盐被氧化为硝酸盐,利用硝化细菌完成。硝化作用对农业生产无益,但在自然界氮素循环中不可缺少。
(4)同化作用
绿色植物和多种微生物以铵盐和硝酸盐为氮素营养物,合成氨基酸、蛋白质、核算和其他含氮有机物。
(5)反硝化作用
微生物还原硝酸盐,释放出N2和N2O的过程称为反硝化作用或称为脱氮作用。反硝化作用一般只在厌氧条件下,如淹水的土壤或死水塘中发生。参与反硝化作用的微生物主要是反硝化细菌,如地衣芽孢杆菌、铜绿假单胞菌等。反硝化作用是造成土壤氮素损失的重要原因。
由环境吸入土壤中的N元素少之又少,无法供给植物正常生长,因此需要农业种植业者对土壤进行N素的补充。光小禾向大家推荐北京光禾生物科技有限公司生产的有机肥及灌根肥两种产品为土壤增加N元素的摄入。