导航:首页 > 化学知识 > 核磁的化学位移怎么看

核磁的化学位移怎么看

发布时间:2023-06-08 17:01:19

⑴ 核磁共振氢谱中那个什么“化学位移”,就是图下面的刻度,表示的是什么

化学位移就是指在磁场照射下,化学键各官能团的偏移值。
按楼主的追问 它与氢原子个数关系不大,主要与氢原子所处的环境有关。
如果一峰为另一峰的三倍,如果出现这种情况,基本判断该物质中存在氯元素。
请采纳哦!又不明白的可以追问

⑵ 核磁共振的化学位移

氢的核磁共振谱提供了三类极其有用的信息:化学位移、偶合常数、积分曲线。应用这些信 息,可以推测质子在碳胳上的位置。
根据前面讨论的基本原理,在某一照射频率下,只能在某一磁感应强度下发生核磁共振。例如:照射频率为60 MHz,磁感应强度是 14.092 Gs(14.092×10^-4 T),100 MHz—23.486 Gs(23.486×10^-4 T),200 MHz—46.973 Gs(46.973×10^-4 T)。600 MHz—140.920 Gs(140.920×10^-4 T)。但实验证明:当1H在分子中所处化学环境(化学环境是指1H的核外电子以及与1H 邻近的其它原子核的核外电子的运动情况)不同时,即使在相同照射频率下,也将在不同的共振磁场下显示吸收峰。下图是乙酸乙酯的核磁共振图谱,图谱表明:乙酸乙酯中的8个氢,由 于分别处在a,b,c三种不同的化学环境中,因此在三个不同的共振磁场下显示吸收峰。同种核由于在分子中的化学环境不同而在不同共振磁感应强度下显示吸收峰,这称为化学位移(chemical shift)。 化学位移是怎样产生的?分子中磁性核不是完全裸露的,质子被价电子包围着。这些电子 在外界磁场的作用下发生循环的流动,会产生一个感应的磁场,感应磁场应与外界磁场相反(楞次定律),所以,质子实际上感受到的有效磁感应强度应是外磁场感应强度减去感应磁场强度。即
B有效=B0(1-σ)=B0-B0σ=B0-B感应
外电子对核产生的这作用称为屏蔽效应(shielding effect),也叫抗磁屏蔽效应(diamagnetic effect)。称为屏蔽常数(shielding constant)。与屏蔽较少的质子比较,屏蔽多的质子对外磁场感受较少,将在较高的外磁场B0作用下才能发生共振吸收。由于磁力线是闭合的,因此感应磁 场在某些区域与外磁场的方向一致,处于这些区域的质子实际上感受到的有效磁场应是外磁场B0加上感应磁场B感应。这种作用称为去屏蔽效应(deshielding effect)。也称为顺磁去屏蔽效应(paramagnetic effect)。受去屏蔽效应影响的质子在较低外磁场B0作用下就能发生共振吸收。综上所述:质子发生核磁共振实际上应满足:
ν射=γB有效/2π
因在相同频率电磁辐射波的照射下,不同化学环境的质子受的屏蔽效应各不相同,因此它们发生 核磁共振所需的外磁场B0也各不相同,即发生了化学位移。
对1H化学位移产生主要影响的是局部屏蔽效应和远程屏蔽效应。核外成键电子的电子云 密度对该核产生的屏蔽作用称为局部屏蔽效应。分子中其它原子和基团的核外电子对所研究的 原子核产生的屏蔽作用称为远程屏蔽效应。远程屏蔽效应是各向异性的。 化学位移的差别约为百万分之十,要精确测定其数值十分困难。现采用相对数值表示法,即选用一个标准物质,以该标准物的共振吸收峰所处位置为零点,其它吸收峰的化学位移值根据这 些吸收峰的位置与零点的距离来确定。最常用的标准物质是四甲基硅(CH3)4Si简称TMS。选TMS为标准物是因为:TMS中的四个甲基对称分布,因此所有氢都处在相 同的化学环境中,它们只有一个锐利的吸收峰。另外,TMS的屏蔽效应很高,共振吸收在高场出现,而且吸收峰的位置处在一般有机物中的质子不发生吸收的区域内。现规定化学位移用δ来 表示,四甲基硅吸收峰的δ值为零,其峰右边的δ值为负,左边的δ值为正。测定时,可把标准物与样品放在一起配成溶液,这称为内标准法。也可将标准物用毛细管封闭后放人样品溶液中进 行测定,这称为外标准法。此外,还可以利用溶剂峰来确定待测样品各个峰的化学位移。
由于感应磁场与外磁场的B0成正比,所以屏蔽作用引起的化学位移也与外加磁场B0成正 比。在实际测定工作中,为了避免因采用不同磁感应强度的核磁共振仪而引起化学位移的变化,δ一般都应用相对值来表示,其定义为
δ=(ν样-ν标)/ν仪×10^6④
在式④中,ν样和ν标分别代表样品和标准化合物的共振频率,ν仪为操作仪器选用的频率。多数有机物的质子信号发生在0~10处,零是高场,10是低场。 需注意也有一些质子的信号是在小于0的地方出现的。如安扭烯的环内的质子,受到其外芳环磁各向异性的影响,甚至可以达到-2.99。此外,在不同兆数的仪器中,化学位移的值是相同的。 化学位移取决于核外电子云密度,因此影响电子云密度的各种因素都对化学位移有影响,影 响最大的是电负性和各向异性效应。
⑴电负性(诱导效应)
电负性对化学位移的影响可概述为:电负性大的原子(或基团)吸电子能力强,1H核附近的吸电子基团使质子峰向低场移(左移),给电子基闭使质子峰向高场移(右移)。这是因为吸电子基团降低了氢核周围的电子云密度,屏蔽效应也就随之降低,所以质子的化学位 移向低场移动。给电子基团增加了氢核周围的电子云密度,屏蔽效应也就随之增加,所以质子的 化学位移向高场移动。下面是一些实例。
实例一: 电负性 C2.6 N3.0 O3.5 δ C—CH3(0.77~1.88) N—CH3(2.12~3.10) O—CH3(3.24~4.02) 实例二: 电负性 Cl3.1 Br2.9 I2.6 δ CH3—Cl(3.05)
CH2—Cl2(5.30)
CH—Cl3(7.27) CH3—Br(2.68) CH3—I(2.16) 电负性对化学位移的影响是通过化学键起作用的,它产生的屏蔽效应属于局部屏蔽效应。
⑵各向异性效应
当分子中某些基团的电子云排布不呈球形对称时,它对邻近的1H核产 生一个各向异性的磁场,从而使某些空间位置上的核受屏蔽,而另一些空间位置上的核去屏蔽, 这一现象称为各向异性效应(anisotropic effect)。
除电负性和各向异性的影响外,氢键、溶剂效应、van der Waals效应也对化学位移有影响。氢键对羟基质子化学位移的影响与氢键的强弱及氢键的电子给予体的性质有关,在大多数情况 下,氢键产生去屏蔽效应,使1H的δ值移向低场。有时同一种样品使用不同的溶剂也会使化学位移值发生变化,这称为溶剂效应。活泼氢的溶剂效应比较明显。
当取代基与共振核之间的距离小于van der Waals半径时,取代基周围的电子云与共振核周围的电子云就互相排 斥,结果使共振核周围的电子云密度降低,使质子受到的屏蔽效应明显下降,质子峰向低场移动,这称为van der Waals效应。氢键的影响、溶剂效应、van der Waals效应在剖析NMR图谱时很有用。
(3)共轭效应
苯环上的氢若被推电子基取代,由于P-π共轭,使苯环电子云密度增大,质子峰向高场位移。而当有拉电子取代基则反之。对于双键等体系也有类似的效果。

⑶ 核磁共振谱图是怎样看的

核磁共振氢谱分析的一般步骤

核磁共振氢谱的分析大体上可以分为以
下三个步骤:
(1)
看峰的位置(即化学位移)和峰的面
积(即氢原子数目):应用化学位移的知
识,结合谱峰面积,可以确定(或大致确
定)化合物中含氢官能团的种类。

5.1
核磁共振氢谱分析的一般步骤

(2)
看峰的形状(即各个峰的偶合裂分情
况):应用n
1规律或二级偶合裂分的知识,
可确定(或大致确定)分子中基团和基团
间的相互关系,区分出自旋体系的种类。
5.1
核磁共振氢谱分析的一般步骤

(3)
计算偶合常数:应用偶合常数的知识,
可以确定分子的立体构型等。

⑷ 核磁共振氢谱中各个基团的化学位移怎么判断

氢谱在核磁共振内有一个峰值,其出现化学位移是因为连接的官能团的影响,极性官能团与非极性官能团对氢谱的影响是一向左移,一向右移。

有机化学书上,常见的吸电子基团(吸电子诱导效应用-I表示)NO2 > CN > F > Cl > Br > I > C三C > OCH3 > OH > C6H5 > C=C > H羟基的吸电子效应比苯环稍大。

化学位移值是对某个原子的周围的化学环境的专一性的表示,化学环境不同,化学位移值就不同,通过数值,可以知道其周围的原子或者基团有哪些,推测其结构。

核磁共振氢谱中,甲基的和乙基的基本化学位移值分别为多少,咖啡因属于甲基黄嘌呤的生物碱.它的化学式是C8H10N4O2.分子量,194.19.它的化学名是1,3,7-三甲基黄嘌呤或3,7-二氢-1,3,7-三甲基-1H-嘌呤。

(4)核磁的化学位移怎么看扩展阅读:

化学位移符号δ虽称不上精准但广泛存在,因此常常作为谱学分析中的重要参考数据。范围一般在 ±0.2ppm,有时更大。确切的化学位移值取决于分子的结构、溶剂、温度及该NMR分析所用的磁场强度及其他相邻的官能团。氢原子核对键结氢原子的混成轨域和电子效应敏感。核子经常因吸引电子的官能基解除屏蔽。未屏蔽的核子会反应较高的δ值,而有屏蔽的核子δ值较低。

官能基如羟基(-OH)、酰氧基(-OCOR)、烷氧基( -OR )、硝基(-NO2)和卤素等均为吸引电子的取代基。 这些取代基会使Cα上相连的氢峰向低场移动大约2-4 ppm, Cβ上相连的氢峰向低场移动大约1-2 ppm。 Cα是与取代基直接相连的碳原子, Cβ是与Cα相连的碳原子.羰基,碳碳双键和芳香环等含“sp2” 杂化碳原子的基团会使其Cα上相连的氢原子峰向低场移动约1-2 ppm 。

⑸ 有机化学核磁共振的化学位移怎么看的

以TMS的峰为基准,从右往左看,测量峰与TMS峰的间距就是该峰的化学位移

⑹ 核磁共振的质子化学位移

由于不同类型的质子化学位移不同,因此化学位移值对于分辨各类质子是重要的,而确定质子类型对于阐明分子结构是十分有意义的。下表列出了一些特征质子的化学位移,表中黑体字的H是要研究的质子。 特征质子的化学位移质子的类型 化学位移 质子的类型 化学位移 RCH3 0.9 ArOH 4.5-4.7(分子内缔合10.5~16) R2CH2 1.3 R3CH 1.5 R2C=CR—OH 15~19(分子内缔合) 0.22 RCH2OH 3.4~4 R2C=CH2 4.5~5.9 ROCH3 3.5~4 R2C=CRH 5.3 RCHO 9~10 R2C=CR—CH3 1.7 RCOCR2—H 2~2.7 RC≡CH 7~3.5 HCR2COOH 2~2.6 ArCR2—H 2.2~3 R2CHCOOR 2~2.2 RCH2F 4~4.5 RCOOCH3 3.7~4 RCH2Cl 3~4 RC≡CCOCH3 2~3 RCH2Br 3.5~4 RNH2或R2NH 0.5~5(峰不尖锐,常呈馒头形) RCH2I 3.2~4 ROH 0.5~5.5(温度、溶剂
、浓度改变时影响很大) RCONRH或ArCONRH 5~9.4 甲烷氢的化学位移值为0.23,其它开链烷烃中,一级质子在高场δ≈0.91处出现,二级质子移向低场在δ≈1.33处出现,三级质子移向更低场在δ≈1.5处出现。例如: 烷烃 CH4 CH3—CH3 CH3—CH2—CH3 (CH3)3CH δ 0.23 0.86 0.86 0.91 1.33 0.91 0.86 1.50 甲基峰一般具有比较明显的特征,亚甲基峰和次甲基峰没有明显的特征,而且常呈很复杂的峰形,不易辨认。当分子中引人其它官能团后,甲基、次甲基及亚甲基的化学位移会发生变化,但其δ值极少超出0.7~4-5这一范围。
环烷烃能以不同构象形式存在,未被取代的环烷烃处在一确定的构象中时,由于碳碳单键的 各向异性屏蔽作用,不同氢的δ值略有差异。例如,在环己烷的椅型构象中,由于C-I上的平伏键氢处于C⑵ — C⑶键及C⑸ — C⑹键的去屏蔽区,而C-I上的直立键氢不处在去屏蔽区,(图环己烷的各向异性屏蔽效应)。所以平伏键氢比直立键氢的化学位移略高0.2~0.5。在低温(-100℃)构象固定时,NMR谱图上可以清晰地看出两个吸收峰,一个代表直立键氢,一个代表平伏键氢。但在常温下,由于构象的迅速转换(图环己烷构象的转换),一般只看到一个吸收峰(见右图)。
其它未取代的环烷烃在常温下也只有一个吸收峰。环丙烷的δ值为0.22,环丁烷的δ值为1.96,别的环烷烃的δ值在1.5左右。取代环烷烃中,环上不同的氢有不同的化学位移,它们的图谱有时呈比较复杂的峰形,不易辨认。 酯中烷基上的质子RCOOCH2R的化学位移δH=3.7~4。酰胺中氮上的质子RCONHR 的化学位移,一般在δ= 5~9.4之间,往往不能给出一个尖锐的峰。
羰基或氮基附近α碳上的质子具有类似的化学位移= 2~3,例如,CH3COCl δH=2.67,CH3COOCH3 δH=2.03, RCH2COOCH3 δH=2.13,CH3CONH2 δH= 2.08,RCH2CONH2 δH=2.23,CH3CN δH=1.98,RCH2CN δH=2.30。 醇的核磁共振谱的特点参见后文。醚α-H的化学位移约在3.54附近。
酚羟基氢的核磁共振的δ值很不固定,受温度、浓度、溶剂的影响很大,只能列出它的大致范 围。一般酚羟基氢的δ值在4~8范围内,发生分子内缔合的酚羟基氢的δ值在10.5~16范 围内。
羧酸H的化学位移在2~2.6之间。羧酸中羧基的质子由于受两个氧的吸电子作用,屏 蔽大大降低,化学位移在低场。R2CHCOOH δH=10~12。
胺中,氮上质子一般不容易鉴定,由于氢键程度不同,改变很大,有时N— H和C一H质子 的化学位移非常接近,所以不容易辨认。一般情况在α-H δH=2.7~3.1,β-H δ=1.1~1.71。N-H δ=0.5~5,RNH2,R2NH的δ值的大致范围在0.4~3.5,ArNH2,ArzNH,ArNHR的δ值的大 致范围在2.9~4.8之间。

⑺ 核磁共振氢谱怎么看

化学位移、偶合常数及峰面积积分曲线分别提供含氢官能团、核间关系及氢分布等三方面的信息。中:

(1)峰的数目:标志分子中磁不等价质子的种类;

(2)峰的强度(面积):每类质子的数目(相对);

(3)峰的位移(δ):每类质子所处的化学环境;

(4)峰的裂分数:相邻碳原子上质子数;

(5)偶合常数(J):确定化合物构型。

(7)核磁的化学位移怎么看扩展阅读:

简单的氢谱来自于含有样本的溶液。为了避免溶剂中的质子的干扰,制备样本时通常使用氘代溶剂(氘=2H, 通常用D表示),例如:氘代水D2O,氘代丙酮(CD3)2CO,氘代甲醇CD3OD,氘代二甲亚砜(CD3)2SO和氘代氯仿CDCl3。同时,一些不含氢的溶剂,例如四氯化碳CCl4和二硫化碳CS2,也可被用于制备测试样品。

⑻ 有机化学核磁共振的化学位移怎么看的

氢核外的电子云密度越小,化学位移越大。1那的是c,2那的是b,4.3那的是a,因为硝基是强吸电子基团,离这个基团越远,吸电子效应越弱。
非要具体算,你得找本参考书了,不过一般识谱没有这个必要。

阅读全文

与核磁的化学位移怎么看相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:702
乙酸乙酯化学式怎么算 浏览:1370
沈阳初中的数学是什么版本的 浏览:1315
华为手机家人共享如何查看地理位置 浏览:1008
一氧化碳还原氧化铝化学方程式怎么配平 浏览:845
数学c什么意思是什么意思是什么 浏览:1366
中考初中地理如何补 浏览:1257
360浏览器历史在哪里下载迅雷下载 浏览:669
数学奥数卡怎么办 浏览:1347
如何回答地理是什么 浏览:987
win7如何删除电脑文件浏览历史 浏览:1020
大学物理实验干什么用的到 浏览:1445
二年级上册数学框框怎么填 浏览:1657
西安瑞禧生物科技有限公司怎么样 浏览:821
武大的分析化学怎么样 浏览:1210
ige电化学发光偏高怎么办 浏览:1299
学而思初中英语和语文怎么样 浏览:1603
下列哪个水飞蓟素化学结构 浏览:1385
化学理学哪些专业好 浏览:1449
数学中的棱的意思是什么 浏览:1015