导航:首页 > 化学知识 > 核磁化学位移差多少算裂分

核磁化学位移差多少算裂分

发布时间:2023-06-19 08:51:50

Ⅰ 核磁共振的化学位移

氢的核磁共振谱提供了三类极其有用的信息:化学位移、偶合常数、积分曲线。应用这些信 息,可以推测质子在碳胳上的位置。
根据前面讨论的基本原理,在某一照射频率下,只能在某一磁感应强度下发生核磁共振。例如:照射频率为60 MHz,磁感应强度是 14.092 Gs(14.092×10^-4 T),100 MHz—23.486 Gs(23.486×10^-4 T),200 MHz—46.973 Gs(46.973×10^-4 T)。600 MHz—140.920 Gs(140.920×10^-4 T)。但实验证明:当1H在分子中所处化学环境(化学环境是指1H的核外电子以及与1H 邻近的其它原子核的核外电子的运动情况)不同时,即使在相同照射频率下,也将在不同的共振磁场下显示吸收峰。下图是乙酸乙酯的核磁共振图谱,图谱表明:乙酸乙酯中的8个氢,由 于分别处在a,b,c三种不同的化学环境中,因此在三个不同的共振磁场下显示吸收峰。同种核由于在分子中的化学环境不同而在不同共振磁感应强度下显示吸收峰,这称为化学位移(chemical shift)。 化学位移是怎样产生的?分子中磁性核不是完全裸露的,质子被价电子包围着。这些电子 在外界磁场的作用下发生循环的流动,会产生一个感应的磁场,感应磁场应与外界磁场相反(楞次定律),所以,质子实际上感受到的有效磁感应强度应是外磁场感应强度减去感应磁场强度。即
B有效=B0(1-σ)=B0-B0σ=B0-B感应
外电子对核产生的这作用称为屏蔽效应(shielding effect),也叫抗磁屏蔽效应(diamagnetic effect)。称为屏蔽常数(shielding constant)。与屏蔽较少的质子比较,屏蔽多的质子对外磁场感受较少,将在较高的外磁场B0作用下才能发生共振吸收。由于磁力线是闭合的,因此感应磁 场在某些区域与外磁场的方向一致,处于这些区域的质子实际上感受到的有效磁场应是外磁场B0加上感应磁场B感应。这种作用称为去屏蔽效应(deshielding effect)。也称为顺磁去屏蔽效应(paramagnetic effect)。受去屏蔽效应影响的质子在较低外磁场B0作用下就能发生共振吸收。综上所述:质子发生核磁共振实际上应满足:
ν射=γB有效/2π
因在相同频率电磁辐射波的照射下,不同化学环境的质子受的屏蔽效应各不相同,因此它们发生 核磁共振所需的外磁场B0也各不相同,即发生了化学位移。
对1H化学位移产生主要影响的是局部屏蔽效应和远程屏蔽效应。核外成键电子的电子云 密度对该核产生的屏蔽作用称为局部屏蔽效应。分子中其它原子和基团的核外电子对所研究的 原子核产生的屏蔽作用称为远程屏蔽效应。远程屏蔽效应是各向异性的。 化学位移的差别约为百万分之十,要精确测定其数值十分困难。现采用相对数值表示法,即选用一个标准物质,以该标准物的共振吸收峰所处位置为零点,其它吸收峰的化学位移值根据这 些吸收峰的位置与零点的距离来确定。最常用的标准物质是四甲基硅(CH3)4Si简称TMS。选TMS为标准物是因为:TMS中的四个甲基对称分布,因此所有氢都处在相 同的化学环境中,它们只有一个锐利的吸收峰。另外,TMS的屏蔽效应很高,共振吸收在高场出现,而且吸收峰的位置处在一般有机物中的质子不发生吸收的区域内。现规定化学位移用δ来 表示,四甲基硅吸收峰的δ值为零,其峰右边的δ值为负,左边的δ值为正。测定时,可把标准物与样品放在一起配成溶液,这称为内标准法。也可将标准物用毛细管封闭后放人样品溶液中进 行测定,这称为外标准法。此外,还可以利用溶剂峰来确定待测样品各个峰的化学位移。
由于感应磁场与外磁场的B0成正比,所以屏蔽作用引起的化学位移也与外加磁场B0成正 比。在实际测定工作中,为了避免因采用不同磁感应强度的核磁共振仪而引起化学位移的变化,δ一般都应用相对值来表示,其定义为
δ=(ν样-ν标)/ν仪×10^6④
在式④中,ν样和ν标分别代表样品和标准化合物的共振频率,ν仪为操作仪器选用的频率。多数有机物的质子信号发生在0~10处,零是高场,10是低场。 需注意也有一些质子的信号是在小于0的地方出现的。如安扭烯的环内的质子,受到其外芳环磁各向异性的影响,甚至可以达到-2.99。此外,在不同兆数的仪器中,化学位移的值是相同的。 化学位移取决于核外电子云密度,因此影响电子云密度的各种因素都对化学位移有影响,影 响最大的是电负性和各向异性效应。
⑴电负性(诱导效应)
电负性对化学位移的影响可概述为:电负性大的原子(或基团)吸电子能力强,1H核附近的吸电子基团使质子峰向低场移(左移),给电子基闭使质子峰向高场移(右移)。这是因为吸电子基团降低了氢核周围的电子云密度,屏蔽效应也就随之降低,所以质子的化学位 移向低场移动。给电子基团增加了氢核周围的电子云密度,屏蔽效应也就随之增加,所以质子的 化学位移向高场移动。下面是一些实例。
实例一: 电负性 C2.6 N3.0 O3.5 δ C—CH3(0.77~1.88) N—CH3(2.12~3.10) O—CH3(3.24~4.02) 实例二: 电负性 Cl3.1 Br2.9 I2.6 δ CH3—Cl(3.05)
CH2—Cl2(5.30)
CH—Cl3(7.27) CH3—Br(2.68) CH3—I(2.16) 电负性对化学位移的影响是通过化学键起作用的,它产生的屏蔽效应属于局部屏蔽效应。
⑵各向异性效应
当分子中某些基团的电子云排布不呈球形对称时,它对邻近的1H核产 生一个各向异性的磁场,从而使某些空间位置上的核受屏蔽,而另一些空间位置上的核去屏蔽, 这一现象称为各向异性效应(anisotropic effect)。
除电负性和各向异性的影响外,氢键、溶剂效应、van der Waals效应也对化学位移有影响。氢键对羟基质子化学位移的影响与氢键的强弱及氢键的电子给予体的性质有关,在大多数情况 下,氢键产生去屏蔽效应,使1H的δ值移向低场。有时同一种样品使用不同的溶剂也会使化学位移值发生变化,这称为溶剂效应。活泼氢的溶剂效应比较明显。
当取代基与共振核之间的距离小于van der Waals半径时,取代基周围的电子云与共振核周围的电子云就互相排 斥,结果使共振核周围的电子云密度降低,使质子受到的屏蔽效应明显下降,质子峰向低场移动,这称为van der Waals效应。氢键的影响、溶剂效应、van der Waals效应在剖析NMR图谱时很有用。
(3)共轭效应
苯环上的氢若被推电子基取代,由于P-π共轭,使苯环电子云密度增大,质子峰向高场位移。而当有拉电子取代基则反之。对于双键等体系也有类似的效果。

Ⅱ 核磁共振的质子化学位移

由于不同类型的质子化学位移不同,因此化学位移值对于分辨各类质子是重要的,而确定质子类型对于阐明分子结构是十分有意义的。下表列出了一些特征质子的化学位移,表中黑体字的H是要研究的质子。 特征质子的化学位移质子的类型 化学位移 质子的类型 化学位移 RCH3 0.9 ArOH 4.5-4.7(分子内缔合10.5~16) R2CH2 1.3 R3CH 1.5 R2C=CR—OH 15~19(分子内缔合) 0.22 RCH2OH 3.4~4 R2C=CH2 4.5~5.9 ROCH3 3.5~4 R2C=CRH 5.3 RCHO 9~10 R2C=CR—CH3 1.7 RCOCR2—H 2~2.7 RC≡CH 7~3.5 HCR2COOH 2~2.6 ArCR2—H 2.2~3 R2CHCOOR 2~2.2 RCH2F 4~4.5 RCOOCH3 3.7~4 RCH2Cl 3~4 RC≡CCOCH3 2~3 RCH2Br 3.5~4 RNH2或R2NH 0.5~5(峰不尖锐,常呈馒头形) RCH2I 3.2~4 ROH 0.5~5.5(温度、溶剂
、浓度改变时影响很大) RCONRH或ArCONRH 5~9.4 甲烷氢的化学位移值为0.23,其它开链烷烃中,一级质子在高场δ≈0.91处出现,二级质子移向低场在δ≈1.33处出现,三级质子移向更低场在δ≈1.5处出现。例如: 烷烃 CH4 CH3—CH3 CH3—CH2—CH3 (CH3)3CH δ 0.23 0.86 0.86 0.91 1.33 0.91 0.86 1.50 甲基峰一般具有比较明显的特征,亚甲基峰和次甲基峰没有明显的特征,而且常呈很复杂的峰形,不易辨认。当分子中引人其它官能团后,甲基、次甲基及亚甲基的化学位移会发生变化,但其δ值极少超出0.7~4-5这一范围。
环烷烃能以不同构象形式存在,未被取代的环烷烃处在一确定的构象中时,由于碳碳单键的 各向异性屏蔽作用,不同氢的δ值略有差异。例如,在环己烷的椅型构象中,由于C-I上的平伏键氢处于C⑵ — C⑶键及C⑸ — C⑹键的去屏蔽区,而C-I上的直立键氢不处在去屏蔽区,(图环己烷的各向异性屏蔽效应)。所以平伏键氢比直立键氢的化学位移略高0.2~0.5。在低温(-100℃)构象固定时,NMR谱图上可以清晰地看出两个吸收峰,一个代表直立键氢,一个代表平伏键氢。但在常温下,由于构象的迅速转换(图环己烷构象的转换),一般只看到一个吸收峰(见右图)。
其它未取代的环烷烃在常温下也只有一个吸收峰。环丙烷的δ值为0.22,环丁烷的δ值为1.96,别的环烷烃的δ值在1.5左右。取代环烷烃中,环上不同的氢有不同的化学位移,它们的图谱有时呈比较复杂的峰形,不易辨认。 酯中烷基上的质子RCOOCH2R的化学位移δH=3.7~4。酰胺中氮上的质子RCONHR 的化学位移,一般在δ= 5~9.4之间,往往不能给出一个尖锐的峰。
羰基或氮基附近α碳上的质子具有类似的化学位移= 2~3,例如,CH3COCl δH=2.67,CH3COOCH3 δH=2.03, RCH2COOCH3 δH=2.13,CH3CONH2 δH= 2.08,RCH2CONH2 δH=2.23,CH3CN δH=1.98,RCH2CN δH=2.30。 醇的核磁共振谱的特点参见后文。醚α-H的化学位移约在3.54附近。
酚羟基氢的核磁共振的δ值很不固定,受温度、浓度、溶剂的影响很大,只能列出它的大致范 围。一般酚羟基氢的δ值在4~8范围内,发生分子内缔合的酚羟基氢的δ值在10.5~16范 围内。
羧酸H的化学位移在2~2.6之间。羧酸中羧基的质子由于受两个氧的吸电子作用,屏 蔽大大降低,化学位移在低场。R2CHCOOH δH=10~12。
胺中,氮上质子一般不容易鉴定,由于氢键程度不同,改变很大,有时N— H和C一H质子 的化学位移非常接近,所以不容易辨认。一般情况在α-H δH=2.7~3.1,β-H δ=1.1~1.71。N-H δ=0.5~5,RNH2,R2NH的δ值的大致范围在0.4~3.5,ArNH2,ArzNH,ArNHR的δ值的大 致范围在2.9~4.8之间。

Ⅲ 腈基所连烃基的核磁位移是多少

烷烃的碳的化学位移一般在10—80,普通甲基10—25,亚甲基一般20—40,连接吸电子基化学位移会增大;被氟取代位移大概在80,裂分成二重峰,三氟甲基的位移大概在120,裂分成四重峰。
烯烃的碳位移在120左右,练不同基团会波动,大概范围110—150。
炔烃的碳化学位移在80左右。
氰基的碳化学位移在120左右。
芳香环的碳化学位移在110—160之间;例如苯环的碳位移在130左右,取代的苯的碳化学位移会变化,多数取代基取代后,直接相连的碳化学位移会大大增大,邻对位小幅度增大,间位减小;但是与碘直接相连的碳化学位移会降到95。
羧酸衍生物的碳化学位移在160—180之间。
醛基的碳和羰基的碳的化学位移在200以上。
碳谱解析一般是数碳的个数,对称碳的峰重叠,高度加倍,含氟的化合物会耦合裂分,苯环上的一个氢被氟原子时,苯环上六个碳都可能会裂分,苯环上的一个氢被三氟甲基取代时,除三氟甲基的碳外,与三氟甲基相连的苯环的碳及邻位的碳都会裂分,最终碳谱上的峰是总的碳原子数减去对称碳的个数加因氟产生裂分的碳数。

Ⅳ 什么是氢谱的化学位移、裂分和分裂

dd:双二重峰;dt:双三重峰;br.:宽峰;s:单峰;q:四重峰;t:三重峰。

氢原子在分子中的化学环境不同,而显示出不同的吸收峰,峰与峰之间的差距被称作化学位移;化学位移的大小,可采用一个标准化合物为原点,测出峰与原点的距离,就是该峰的化学位移。

裂分:由于相邻碳上质子之间的自旋耦合,因此能够引起吸收峰裂分。例如,一个质子共振峰不受相邻的另一个质子的自旋偶合影响,则表现为一个单峰,如果受其影响,就表现为一个二重峰,该二重峰强度相等,其总面积正好和未分裂的单峰面积相等。

(4)核磁化学位移差多少算裂分扩展阅读:

简单的氢谱来自于含有样本的溶液。为了避免溶剂中的质子的干扰,制备样本时通常使用氘代溶剂(氘=2H, 通常用D表示),例如:氘代水D2O,氘代丙酮(CD3)2CO,氘代甲醇CD3OD,氘代二甲亚砜(CD3)2SO和氘代氯仿CDCl3。同时,一些不含氢的溶剂,例如四氯化碳CCl4和二硫化碳CS2,也可被用于制备测试样品。

Ⅳ 核磁共振氢谱中氢信号的裂分间距反映了什么信息

由于相邻碳上质子之间的自旋偶合,因此能够引起吸收峰裂分。例如,一个质子共振峰不受相邻的另一个质子的自旋偶合影响,则表现为一个单峰,如果受其影响,就表现为一个二重峰,该二重峰强度相等,其总面积正好和未分裂的单峰面积相等。
自旋偶合使核磁共振谱中信号分裂成多重峰,峰的数目等于n+1,n是指邻近H的数目,例如CH3-CHCl2中CH3的共振峰是1+1=2,因为他邻近基团CHCl2上只有一个H;-CHCl2的共振峰是3+1=4,因为他邻近基团-甲基上有三个H。注意,只有当自旋偶合的邻近H原子都相同时才适用n+1规则。
当自旋偶合的邻近H原子不相同时,裂分数目为(n+1)(n'+1)(n''+1)。例如化合物Cl2CH-CH2-CHBr2中,两端两个基团-CHCl2和-CHBr2中的H并不相同,因而-CH2-应该裂分成为(1+1)(1+1)=4重峰。又如ClCH2-CH2-CH2Br中-CH2-该裂分为(2+1)(2+1)=9重峰 。
2.1核磁共振氢谱中的几个重要参数
1、化学位移

(1)影响化学位移的主要因素:
a.诱导效应。
电负性取代基降低氢核外电子云密度,其共振吸收向低场位移,δ值增大,如
CH3F
CH3OH
CH3Cl
CH3Br
CH3I
CH4
TMS
δ(ppm)
4.06
3.40
3.05
2.68
2.16
0.23
0
X电负性
4.0
3.5
3.0
2.8
2.5
2.1
1.6

对于X-CH<YZ型化合物,X、Y、Z基对>CH- δ值的影响具有加合性,可用shoolery公式估算,式中0.23为CH4的δ,Ci值见下表。

例如:BrCH2Cl(括号内为实测值)
δ=0.23+2.33+2.53=5.09ppm(5.16ppm)
利用此公式,计算值与实测值误差通常小于0.6ppm,但有时可达1pmm。
值得注意的是,诱导效应是通过成键电子传递的,随着与电负性取代基距离的增大,诱导效应的影响逐渐减弱,通常相隔3个碳以上的影响可以忽略不计。例如:

b.磁各向异性效应。
上面所述的质子周围的电子云密度,能阐明大多数有机化合物的化学位移值。但是还存在用这一因素不能解释的事实:如纯液态下的乙炔质子与乙烯质子相比,前者在高场共振;相反苯的质子又在低场下发生共振。这些现象可用磁各向异性效应解释。
当分子中某些基团的电子云排布不是球形对称时,即磁各向异性时,它对邻近的H核就附加一个各向异性磁场,使某些位置上核受屏蔽,而另一些位置上的核受去屏蔽,这一现象称为各向异性效应。在氢谱中,这种邻近基团的磁各向异性的影响十分重要。现举例说明一下:

叁键的磁各向异性效应:如乙炔分子呈直线型,叁键轴向的周围电子云是对称分布的。乙炔质子处于屏蔽区,使质子的δ值向高场移动。

双键:π电子云分布于成键平面的上、下方,平面内为去屏蔽区。与SP2杂化碳相连的氢位于成键的平面内(处于去屏蔽区),较炔氢低场位移。乙烯:5.25ppm;醛氢:9-10ppm。
化学键的各向异性还可由下述化合物(1)至(4)看出:
化合物(1)、(3)中的标记氢分别处于双键和苯环的屏蔽区,而化合物(2)、(4)中相应的氢分别处于双键和苯环的去屏蔽区,δ值增大。

芳环的磁各向异性效应:芳香族化合物的环形π电子云,在外磁场Bo的作用下形成大π电子环流。这电子环流所产生的感应磁场,使苯环平面上下两圆锥体为屏蔽区,其余为去屏蔽区。苯环质子处在去屏蔽区,所心共振信号位置与大多数质子相比在较低场。

Ⅵ H核磁共振中氢谱数据比如 7.5(三重峰,4H) ,他们各代表什么意思

7.5,化学位移是7.5
三重峰,氢谱上的封有三个突起,受氢原子是受邻近质子的影响而裂分
4H,表示这个峰对应4个氢原子

Ⅶ 核磁谱图怎么解读最好有实例

呃...我该怎么回答好呢...

首先我不清楚你想要问多深,如果只是简单化合物的氢谱,OK,那很简单,几个特殊的位置一看,结合化学位移、裂分情况等就能分析出来。比如图中,化学位移在7左右的复杂裂分很可能就是苯环的峰,结合氢原子个数(图中未进行积分),就能猜测出来是单取代苯环,而且所接基团对邻位有较强的拉电子能力,在高场的两个裂分很显然就是乙基的,综合考虑应当为苯甲酸乙酯,若能结合质谱或者红外当更有说服力。

如果问二维谱,也还好说,和氢谱差不离,就是看两根轴而已,恩,视具体方法有所不同。

如果是碳谱,也不难,只要找好标准,也能进行类似判断。

固体核磁我不大懂。

阅读全文

与核磁化学位移差多少算裂分相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:728
乙酸乙酯化学式怎么算 浏览:1393
沈阳初中的数学是什么版本的 浏览:1339
华为手机家人共享如何查看地理位置 浏览:1031
一氧化碳还原氧化铝化学方程式怎么配平 浏览:874
数学c什么意思是什么意思是什么 浏览:1396
中考初中地理如何补 浏览:1285
360浏览器历史在哪里下载迅雷下载 浏览:690
数学奥数卡怎么办 浏览:1376
如何回答地理是什么 浏览:1010
win7如何删除电脑文件浏览历史 浏览:1042
大学物理实验干什么用的到 浏览:1473
二年级上册数学框框怎么填 浏览:1686
西安瑞禧生物科技有限公司怎么样 浏览:931
武大的分析化学怎么样 浏览:1237
ige电化学发光偏高怎么办 浏览:1326
学而思初中英语和语文怎么样 浏览:1635
下列哪个水飞蓟素化学结构 浏览:1414
化学理学哪些专业好 浏览:1476
数学中的棱的意思是什么 浏览:1043