导航:首页 > 化学知识 > 化学量传感技术有哪些

化学量传感技术有哪些

发布时间:2023-07-26 05:37:34

❶ 气体传感器有哪些分类

气体传感器的分类如下:

一、半导气体传感器

这种类型的传感器在气体传感器中约占60%,根据机理分为电导型和非电导型,电导型中又分为表面型和容积控制型。

二、固体电解质气体传感器

这种传感器元件为离子对固体电解质隔膜传导,称为电化学池,分为阳离子传导和阴离子传导,是选择性强的传感器,研究较多达到实用化的是氧化锆固体电解质传感器,其机理是利用隔膜两侧两个电池之间的电位差等于浓差电池的电势。稳定的氧化铬固体电解质传感器已成功地应用于钢水中氧的测定和发动机空燃比成分测量等。

为弥补固体电解质导电的不足,近几年来在固态电解质上镀一层气敏膜,把围周环境中存在的气体分子数量和介质中可移动的粒子数量联系起来。

三、接触燃烧式气体传感器

接触燃烧式传感器适用于可燃性气H2、CO、CH4的检测。

四、电化学气体传感器

电化学方式的气体传感器常用的有两种:

1、恒电位电解式传感器

是将被测气体在特定电场下电离,由流经的电解电流测出气体浓度,这种传感器灵敏度高,改变电位可选择的检洌气体,对毒性气体检测有重要作用。

2、原电池式气体传感器

在KOH电解质溶液中,Pt—Pb或Ag—Pb电极构成电池,已成功用于检测O2,其灵敏度高,缺点是透水逸散吸潮,电极易中毒。

五、光学气体传感器

1、直接吸收式气体传感器

红外线气体传感器是典型的吸收式光学气体传感器,是根据气体分别具有各自固有的光谱吸收谱检测气体成分,非分散红外吸收光谱对SO2、CO、CO2、NO等气体具有较高的灵敏度。

2、光反应气体传感器

光反应气体传感器是利用气体反应产生色变引起光强度吸收等光学特性改变,传感元件是理想的,但是气体光感变化受到限制,传感器的自由度小。

3、气体光学特性的新传感器

光导纤维温度传感器为这种类型,在光纤顶端涂敷触媒与气体反应、发热。温度改变,导致光纤温度改变。利用光纤测温已达到实用化程度,检测气体也是成功的。

梅特勒-托利多InPro 6800G/12/220/Ka可精确测量浓度介于0.1%至100%的氧气浓度,为满足特定应用的要求,InPro 6800G/12/220/Ka的长度为220 mm,适用于中长长度安装。它采用了Kalrez?O形圈和316L不锈钢液接部分,应用范围广泛。

❷ 传感器有哪些种类

一、温度传感器:是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。按测 量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。
温度传感器是最早开发,应用最广的一类传感器。温度传感器的市场份额大大超过了其他的传感器。从17世纪初人们开始 利用温度进行测量。在半导体技术的支持下,本世纪相继 开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。
二、压力传感器:是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智 能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原 理及其应用。另有医用压力传感器。
压力传感器主要应用于增压缸、增压器、气液增压缸、气液增压器、压力机,压缩机,空调制冷设备等领域。
三、液位传感器:是一种测量液位的压力传感器。静压投入式液位变送器(液位计)是基于所测液体静压与该液体的高度 成比例的原理,采用国外先进的隔离型扩散硅敏感元件或陶瓷电容压力敏感传感器,将静压转换为电信号,再经过温度补偿和 线性修正,转化成标准电信号。
液位传感器适用于石油化工、冶金、电力、制药、供排水、环保等系统和行业的各种介质的液位测量。
四、电容式物位传感器:利用被测介质面的变化引起电容变化的一种变介质型电容传感器。具有可靠性高,安装方便等特 点,可广泛应用于冶金、采矿、等部门作料位控制,是应用最广的一种物位传感器。
因为电容量电容量是连续变化的,因此该传感器可以用作连续式物位测量,也可用作物位开关,作为报警或喂料、卸料设 备的输入信号。
五、超声波传感器:是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电 压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声 波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。
超声波传感技术应用在生产实践的不同方面,而医学应用是其最主要的应用之一。硬之城超声波传感器可以对集装箱状态进行探测。超声波传感器可用于检测透明物体、液体、任何表粗糙、光滑、光的密致材料和不规则物体。超声波传感器可以应用于食品加工厂,实现塑料包装检测的闭环控制系统。超声波传感器可用于探测液位、探测透明物体和材料,控制张力以及测量距离,主要为包装、制瓶、物料搬检验煤的设备运、塑料加工以及汽车行业等。

❸ 电化学传感器原理

电化学传感器技术及原理应用

发表时间:2006-8-11

基本原理

化学传感器主要由两部分组成:识别系统;传导或转换系统。

识别系统反待测物的某一化学参数(常常是浓度)与传导系统连结起来。它主要具有两种功能:选择性地与待测物发生作用,反所测得的化学参数转化成传导系统可以产生响应的信号。分子识别系统是决定整个化学传感器的关键因素。因此,化学传感器研究的主要问题就是分子识别系统的选择以及如何反分子识别系统与合适的传导系统相连续。化学传感器的传导系统接受识别系统响应信号,并通过电极、光纤或质量敏感元件将响应信号以电压、电流或光强度等的变化形式,传送到电子系统进行放大或进行转换输出,最终使识别系统的响应信号转变为人们所能用作分析的信号,检测出样品中待测物的量。

化学传感器在环境与卫生监测中的应用

(一) 空气检验

1、湿度传感器 湿度是空气环境的一个重要指标,空气的湿度与人体蒸发热之间有着密切关系,高温高湿时,由于人体水分蒸发困难而感到闷热,低温高湿时,人体散热过程剧烈,容易引起感冒和冻伤。人体最适宜的气温是18~22℃,相对湿度为35%~65%RH。

在环境与卫生监测中,常用于湿球温湿度计、手摇湿温度计和通风湿温度计等仪器测定空气湿度。近年来,大量文献报道用传感器测定空气湿度。用于测定相对湿度的涂覆压电石英晶体用传感器,通过光刻和化学蚀刻技术制成小型石英夺电晶体,在AT切割的10MHZ石英晶体上涂有4种物质,对湿度具有较高的质量敏感性.该晶体是振荡电路中的共振器,其频率随质量变化,选择适当涂层,该传感器可用于测定不同气体的相对湿度.该传感器的灵敏度、响应线性、响应时间、选择性、滞后现象和使用寿命等孝怪癖于涂层化学物质的性质。1986年,德国ErbenUwe[提出了一种测定湿度用的传感器,并获得专利。该传感器采用以硅为基体的金属-绝缘体-半导体(MIS)型结构。在MIS型结构中涂有二氧化硅和敏湿层,敏湿层的材料包含有金属氧化物、氧化物以及低极性组分的聚合物。敏湿材料的吸水量与每湿材料的相对介电常数的变化有关,该传感器可用准表态和支态两种方法进行测定,不过前者比后者更为方便省力,在空气调节系统、建筑工地和日常生活环境中都能监测、控制和调节湿度。

我国科技工作者采用最新研制的氧化钽薄膜湿敏电容,推出一种稳定性好,调节十分方便的通用湿度控制器。这种传感器可用于恒湿箱、计算机房、防湿机等许多场合的空气湿度监测,是一种性能价格比很高的通用型湿度传感器,有人利用磷酸盐涂膜的感湿性研制出性能十分可靠的湿度传感器。它的主要电极为不锈钢线材,直径0.4~1.0mm,表层涂有磷酸薄膜,在膜上再旋绕一层镀金丝作为主电极的对置电极,两电极间仅仅相隔一层20~50um厚的涂膜,距离大大小于一般的湿度传感器,响应速度得到提高,改变磷酸盐涂膜,又能制成特性不同的多种感湿元件。传感器工作期间,由于磷酸盐涂膜表面吸附水分而产生的离子在电极间来回运动,致使传导发生变化,从而显示感湿性。若对传感器元件加以交流负荷,则可借检测阻抗的变化测定出空气湿度。该传感器何种小,可封闭在注射器针关内,利用针尖可插入狭窄的被测处,使用方便,检测迅速,还可用于露点测定。

现在日本制造销售湿度传感器及湿度测量控制仪器的公司已超过30家。温度传感器数量大,品种多,使用的感湿材料有电解质陶瓷和有机高分子膜等,范围甚广,大部分检测精度高,结构简单,具有超小型化和集成化的特点。

2、氧化氮传感器 氧化氮是氮的各种氧化物所组成的气体混合物的总称,常以NOX表示。在氧化氮中,不同形式的氧化氮化学稳定性不同,空气中常风的是化学性质相对稳定的一氧化氮和二氧化氮,它们在卫生学上的意义显得较其它形式氧化氮更为重要。在环境分析中,氧化氮一般指一氧化氮二氧化氮。

我国监测氧化氮的标准方法是盐酸萘乙二胺比色法,方法灵敏度为0.25ug/5ml,方法转换系数受吸收液组成、二氧化氮浓度、采气速度、吸收管结构、共存离子及温度等多种因素的影响,目前沿末完全统一。传感器测定是近年发慌起来的新方法。

文献报道,用交指型栅极电极场效应晶体管的微电子集成电路与化学活性电子束蒸镀酞花青铜薄膜相结合,获得了新型气体敏感微传感器,可选择性检测mg/m3级二氧化氮和二惜内基甲基膦酸盐(DIMP)。它利用电压脉冲激发传感器,测量时域和频域响应,测定的峰形与归一化差分傅立叶变换频谱有关,能清晰地区分二氧化氮和DIMP的响应,每个峰面积可以相应地反应出传感器对特定气体浓度的灵敏度,科技人员研究了工作频率600MHZ的高频表面声波(SAW)气敏装置。该装置包括三个分离的SAW延迟线,它们是振荡电路的频率测定元件,在其表面涂了一层有机膜,作为气体吸附剂,该膜为1~15nm厚酞花青铅膜或由可溶酞花青铁衍生物组成的LB(Langmuir-Blodgett)膜。在吸附过程中,薄膜质量增加,引起表面波速的降低,随即引起振荡频率的降低,达到测定二氧化氮浓度的目的。

锡在高于熔点的温度下沉积,而镉在室温下沉积,利用加热蒸镀新方法可制得掺有1%~6%镉的二氧化锡薄膜。在520℃下缓慢氧化该膜,便形成了二氧化锡和氧化镉的多晶体,薄膜表面对低浓度氧化氮和二氧化氮有吸附。在300℃条件下,该膜对10g/m3的一氧化氮和二氧化氮具有最高灵敏度,按电导率相对变化百分比计,其值分别为10000%和400%,相同条件下,对空气中0.01%的一氧化碳、甲烷、丁烷和氢气的灵敏度都在300%以下,这种基于掺镉二氧化锡薄膜组成的传感器,对氧化氮和二氧化氮的测定不仅灵敏度高,而且具有很好的选择性。半导体本花青膜的电导率对电子受体气体具有极佳的灵敏度,这一特点给人们提供了制造廉价、低能耗、体积小的二氧化氮传感器系统的理论基础。但是,这种膜用于传感器也有一缺点,如响应慢,在潮湿条件下,响应呈可逆地降低等。为此,WilsonA等人研制了一种微处理控制传感系统。该系统通过控制取样和传感器操作条件,获得可再现的动力学过程,从而把上述缺点带来的影响降低到了最低点。

3、硫化氢气体传感器 硫化氢是一种无色、具有特殊腐蛋臭味的可燃气体,具有刺激性和窒息性,对人体有较大危害。目前大多用比色法和气相色谱法测定空气中硫化氢。

对含量常常低至mg/m3级的空气污染物进行测定是气体传感器的一项主要应用,但在短时期内半导体气体传感器还不能满足监测某些污染气体灵敏度和选择性要求。他提出利用掺银薄膜传感器监测实验室和城市空气中的硫化氢。该传感器阵列由四个传感器构成,通过基于库化滴定的通用分析装置和半导体气体传感器阵列的信号,同时记录二氧化硫和硫化氢浓度,实践表明,在150℃下以恒温方式盍的掺银薄膜传感器用于监测城市空气中的硫化氢含量,效果良好。Yomogoe N对半导体气体传感器进行了改进和研究,克服了它检测硫化氢等气体的不足之处。他通过控制能影响接收和转换功能的基本因素,改进了二氧化锡半导体气体传感器的传感性能。他发现,转换功能与元件的微观结构密切相关,如与二氧化锡的粒度大小(D)和表面空间电荷层的厚度(L)相关。当D≤2L时,传感器的灵敏度大幅度提高。在二氧化锡表面引入其它受体,极大地改善了传感器的受体功能,特别是用银和钯作助催化剂,在空气中形成的氧化物与二所化锡表面相互作用,产生缺电子实质问题电荷,大大提高了检测气体的灵敏度。用CaO-SnO2元件能十分灵敏地检测空气中的硫化氢。

4、二氧化硫传感器 二氧化硫是污染空气的主要物质之一,检测空气中二氧化硫尝试是空气检验的一项经常性工作。应用传感器监测二氧化硫。从缩短检测时间到降低检出限,都显示出极大的优越性。

利用固体聚合物作离子交换膜,膜的一边含对电极和参比电极的内部电解液,另一边插入铂电极,组成一种二氧化硫传感器。该传感器安装在流通池中,在0.65V下氧化二氧化硫。批示出二氧化硫的量。该传感装置电流灵敏度高。响应时间短,稳定性好,本底噪音低,线性范围达0.2mmol/L,检出限为8*10-6mmol/L,信噪比为3。该传感器不仅可以测定空气中的二氧化硫,还可用于测定低电导率液体中的二氧化硫。有机改性硅酸盐薄膜二氧化硫气体传感器的气敏涂层是利用溶胶工艺和自旋技术制作的,对二氧化硫的测定具有良好的重现性和可逆性,响应时间不到20S,对其它气体的交感小,受温度和湿度影响小。中国科学院长春应用化学研究所薛祚霖等人研制成功一种检测范围宽广的小型二氧化硫浓度传感器,利用它可以装配成何种小、重量轻、价格便宜的拾式二氧化硫气体浓度检测仪器。它可用于现场直接检测二氧化硫气体的浓度,不需要单独采样。该传感器采用控制电们电解原理,待测气体在传感器的工作电极上一定控制电位下发生氧化反应,当电位控制足够正且电极的催化活性足够高时,氧化反应进行得很快,过程的总速度由二氧化硫扩散步骤所决定,产生的信号电流与二氧化硫浓度成正比。这一传感器响应快速,响应时间小于30S。在宽广的二氧化硫浓度范围内,具有良好线性关系,线性误差<±2%,响应关系的直线通过坐标原点。因此可以采用一点法标定传感器。正确选择催剂和控制电位,可避免大多数气体物质的干扰,而且不需要干扰气过滤器,既改善了传感器的性能,又简化了仪器的结构。该传感器用188g/m3二氧化硫气体,测定偏差<2%。低浓度标准气体标定的传感器用来测定高浓度气体,能获得如此准确的结果,可见其检测准确度是令人满意的.

❹ 传感器的分类

1、电阻式

电阻式传感器是将被测量,如位移、形变、力、加速度、湿度、温度等这些物理量转换式成电阻值这样的一种器件。主要有电阻应变式、压阻式、热电阻、热敏、气敏、湿敏等电阻式传感器件。

2、变频功率

变频功率传感器通过对输入的电压、电流信号进行交流采样,再将采样值通过电缆、光纤等传输系统与数字量输入二次仪表相连,数字量输入二次仪表对电压、电流的采样值进行运算。

3、电阻应变式

传感器中的电阻应变片具有金属的应变效应,即在外力作用下产生机械形变,从而使电阻值随之发生相应的变化。电阻应变片主要有金属和半导体两类,金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。

4、压阻式

压阻式传感器是根据半导体材料的压阻效应在半导体材料的基片上经扩散电阻而制成的器件。其基片可直接作为测量传感元件,扩散电阻在基片内接成电桥形式。当基片受到外力作用而产生形变时,各电阻值将发生变化,电桥就会产生相应的不平衡输出。

5、热电阻

热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,已开始采用镍、锰和铑等材料制造热电阻。

6、激光

利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。

7、霍尔

霍尔传感器是根据霍尔效应制作的一种磁场传感器,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。

参考资料来源:网络—传感器

❺ 化学感应器包括哪些以化学吸附,电化学反应等现象为因果关系的传感器

可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。
根据传感器工作原理,可分为物理传感器和化学传感器二大类 :

传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。被测信号量的微小变化都将转换成电信号。

化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。
有些传感器既不能划分到物理类,也不能划分为化学类。大多数传感器是以物理原理为基础运作的。化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。

常见传感器的应用领域和工作原理列于表1.1。

按照其用途,传感器可分类为:

压力敏和力敏传感器 ?位置传感器

液面传感器 ?能耗传感器

速度传感器 ?热敏传感器

加速度传感器 ?射线辐射传感器

振动传感器? 湿敏传感器

磁敏传感器? 气敏传感器

真空度传感器? 生物传感器等。?

以其输出信号为标准可将传感器分为:

模拟传感器——将被测量的非电学量转换成模拟电信号。?

数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换)。?

膺数字传感器——将被测量的信号量转换成频率信号或短周期信号的输出(包括直接或间接转换)。?

开关传感器——当一个被测量的信号达到某个特定的阈值时,传感器相应地输出一个设定的低电平或高电平信号。
?
在外界因素的作用下,所有材料都会作出相应的、具有特征性的反应。它们中的那些对外界作用最敏感的材料,即那些具有功能特性的材料,被用来制作传感器的敏感元件。从所应用的材料观点出发可将传感器分成下列几类:

(1)按照其所用材料的类别分?

金属? 聚合物? 陶瓷? 混合物?

(2)按材料的物理性质分? ? 导体? 绝缘体? 半导体? 磁性材料?

(3)按材料的晶体结构分?

单晶? 多晶? 非晶材料?

与采用新材料紧密相关的传感器开发工作,可以归纳为下述三个方向:?

(1)在已知的材料中探索新的现象、效应和反应,然后使它们能在传感器技术中得到实际使用。?

(2)探索新的材料,应用那些已知的现象、效应和反应来改进传感器技术。?

(3)在研究新型材料的基础上探索新现象、新效应和反应,并在传感器技术中加以具体实施。?
现代传感器制造业的进展取决于用于传感器技术的新材料和敏感元件的开发强度。传感器开发的基本趋势是和半导体以及介质材料的应用密切关联的。表1.2中给出了一些可用于传感器技术的、能够转换能量形式的材料。?

按照其制造工艺,可以将传感器区分为:

集成传感器?薄膜传感器?厚膜传感器?陶瓷传感器
集成传感器是用标准的生产硅基半导体集成电路的工艺技术制造的。通常还将用于初步处理被测信号的部分电路也集成在同一芯片上。?
薄膜传感器则是通过沉积在介质衬底(基板)上的,相应敏感材料的薄膜形成的。使用混合工艺时,同样可将部分电路制造在此基板上。?
厚膜传感器是利用相应材料的浆料,涂覆在陶瓷基片上制成的,基片通常是Al2O3制成的,然后进行热处理,使厚膜成形。
陶瓷传感器采用标准的陶瓷工艺或其某种变种工艺(溶胶-凝胶等)生产。?
完成适当的预备性操作之后,已成形的元件在高温中进行烧结。厚膜和陶瓷传感器这二种工艺之间有许多共同特性,在某些方面,可以认为厚膜工艺是陶瓷工艺的一种变型。?
每种工艺技术都有自己的优点和不足。由于研究、开发和生产所需的资本投入较低,以及传感器参数的高稳定性等原因,采用陶瓷和厚膜传感器比较合理。
感觉这样的提问没有什么意义
不要多想,想多了累

阅读全文

与化学量传感技术有哪些相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:723
乙酸乙酯化学式怎么算 浏览:1388
沈阳初中的数学是什么版本的 浏览:1334
华为手机家人共享如何查看地理位置 浏览:1026
一氧化碳还原氧化铝化学方程式怎么配平 浏览:866
数学c什么意思是什么意思是什么 浏览:1389
中考初中地理如何补 浏览:1278
360浏览器历史在哪里下载迅雷下载 浏览:684
数学奥数卡怎么办 浏览:1368
如何回答地理是什么 浏览:1004
win7如何删除电脑文件浏览历史 浏览:1037
大学物理实验干什么用的到 浏览:1465
二年级上册数学框框怎么填 浏览:1681
西安瑞禧生物科技有限公司怎么样 浏览:909
武大的分析化学怎么样 浏览:1230
ige电化学发光偏高怎么办 浏览:1319
学而思初中英语和语文怎么样 浏览:1627
下列哪个水飞蓟素化学结构 浏览:1408
化学理学哪些专业好 浏览:1471
数学中的棱的意思是什么 浏览:1036