导航:首页 > 化学知识 > 咪唑环碳化学位移一般是多少

咪唑环碳化学位移一般是多少

发布时间:2023-08-05 03:54:46

① 碳谱160-170化学位移是什么

δ1~250。碳谱分辨率高,谱线简单,可观察到季碳,碳谱160-170化学位移是δ1~250,驰豫时间对碳谱信息强度影响较大,可给出化合物骨架信息。

② 卤代烷氢的化学位移值比较

各类有机化合物官能团的。13C化学位移δ值(以TMS为标准),随其杂化不同而异,均有一定的特征范围。
(1)开链烷烃
Sp3杂化的开链烷碳的化学位移δ值一般都小于50ppm。一般说来,在直链烷烃中被测碳(以k标记)的a一或β一位每增加一个烷基,都可使其化学位移增加9ppm,而在其r位每增加一个烷基却使其位移减小2.5ppm。
官能团取代对其a一、β一及r一碳的化学位移影响各不相同,相隔四个价键以上的影响小于1ppm,可以忽略不计。
多取代烷中,官能团的取代影响具有加和性。因此,在测得或求得相应母体烷烃碳的化学位移值(作为基数)之后,加上取代位移参数,即可对各种取代烷烃碳的化学位移进行预测。特别是对于含复杂烷链的化合物,由于(CH2)n链中的碳峰具有*相同的多重性,且在13C—NMR及1H—NMR谱中信号常常密集或重叠,利用双共振技术甚至多脉冲技术有时也难解析。这时,运用经验计算预测,常有助于对这类化合物13C—NMR谱的解析。
显然,多取代烷中取代基间有相互作用时,取代位移常常偏离加和性,从而使个别碳的预测位移与实测值相差很大。但是,在多数情况下,实测各碳的化学位移顺序与预测结果相符,有助于复杂光谱的解析。
(2)环烷烃
环烷烃和杂环化合物在药物中占有重要地位。除环丙烷外,环烷烃碳的化学位移受环的大小影响不明显。但环丙烷碳与其它环烷碳相比受到异常强的屏蔽作用,其化学位移与甲烷碳的相近。这种异常屏蔽是由于三元环的张力及价电子环流作用所致。其它环烷碳的化学位移在20~30ppm之问。一般比相应直链烃中心碳的化学位移小3~5ppm 。
六元环烷结构最为常见。环己烷上的取代基使其a和β位环碳去屏蔽,而由于空间效应1位环碳所受屏蔽增加。并且,竖键(a键)取代通常使其a位、β位及r位环碳的化学位移δ值比对应横键取代的δ值要小。
(3)烯烃及其衍生物
烯碳为sp2杂化,其化学位移较大,δc值约在80~160ppm,与芳环C的δc范围接近。烯碳的化学位移随烷基取代的增多而增大,末端烯碳的化学位移比连有烷基烯碳的要小约10-20ppm。由于取代基的空间效应,顺式烯碳的化学位移比相应反式烯碳的略小。因而,利用13C—NMR谱,也可区分烯烃的构型异构体。
(4)炔烃
炔碳的δ值介于sp2及sp3杂化碳的δc之间,为60—95。炔键的各向异性效应使炔碳所受屏蔽比烯碳强而比烷碳弱。
(5)芳烃
苯的δc为128.5,对于取代芳环,苯环的C一1受取代基的影响,除屏蔽效应较大的I、C1、CN、CF3等外,多数移向低场位。给电子基团,特别是一些有孤对电子对的基团,即使电负性较大,都使a一芳碳、β一芳碳向高场位移动,如一0H、一OR、--NH2等;吸电子基闭则使a一芳碳、β一芳碳向低场位移动,如一CN、--CO2H等,m—C受影响较小。
(6)醇类化合物
羟基取代使a碳化学位移增加35—52ppm,β碳化学位移增加5~12ppm,r碳化学位移减少0~6ppm,离羟基更远的碳所受影响很小(位移变化<lppm)。
醇羟基乙酰化使羟基a碳去屏蔽,伯、仲、叔醇a碳的δ值分别增加约2.3和10ppm;乙酰化使β碳屏蔽增加,化学位移减小3- 4ppm;而r及δ碳的化学位移受乙酰化的影响甚微。这种乙酰化位移有助于谱峰的解析及醇类的识别。
(7)醚类化合物
与对应醇相比,氧原子a碳被去屏蔽,δ值增加10~20ppm;而β碳所受屏蔽增加,β值减小约3ppm。
(8)胺类化合物
与相应烷烃相比可知,胺基(伯、仲、叔)的r效应均约为一4.5ppm。随胺基上烷基取代的增加,其a碳的化学位移增加,而β碳的化学位移减小。
(9)卤代烷
卤代烷碳的化学位移变化范围很宽:120(CF4)~一292(CI4)。与对应烷烃相比,单卤代烷a碳位移改变与卤素的电负性有关;F、cl、Br取代使a碳去屏蔽,I取代由于重原子效应使a碳所受屏蔽增加;β碳的位移改变与卤素性质无关,均约为10ppm;r碳的位移改变随卤素原子体积的增大而减小,这显然是由于r一gauche构象的减少所致。
(10)羰基化合物
羰基的平均电子激发能较低,因而羰基碳受到较强的顺磁性去屏蔽作用,其共振峰出现在碳核共振区域的场,化学位移值在150~220ppm范围。各种羰基碳化学位移值的大小顺序为:
酮>醛>羧酸>羧酸衍生物(酰胺、酰氯、酸酐、酯)(11)腈类化合物
腈类化合物中氰基碳的化学位移值在110~125ppm范围。与a支链烷基相连氰基碳的δ值接近125ppm。异氰基碳与氰基碳相比被显着地去屏蔽,δc>150ppm,且与氮核产生偶合裂分。
(12)杂环化合物
未取代芳杂环化合物的13C化学位移δ值在105~170ppm。环中各碳的化学位移与杂环π电子的贫(六元环)富(五元环)及杂原子的特性有关。
芳杂环具有取代烯的许多定性特点,而杂原子的作用却不如在烯烃中的那样明显。
和取代苯相似,取代芳杂环中与取代基相连碳的化学位移主要受诱导效应的影响,而取代基邻位及对位碳的化学位移则主要受共轭效应的作用。

③ 腈基所连烃基的核磁位移是多少

烷烃的碳的化学位移一般在10—80,普通甲基10—25,亚甲基一般20—40,连接吸电子基化学位移会增大;被氟取代位移大概在80,裂分成二重峰,三氟甲基的位移大概在120,裂分成四重峰。
烯烃的碳位移在120左右,练不同基团会波动,大概范围110—150。
炔烃的碳化学位移在80左右。
氰基的碳化学位移在120左右。
芳香环的碳化学位移在110—160之间;例如苯环的碳位移在130左右,取代的苯的碳化学位移会变化,多数取代基取代后,直接相连的碳化学位移会大大增大,邻对位小幅度增大,间位减小;但是与碘直接相连的碳化学位移会降到95。
羧酸衍生物的碳化学位移在160—180之间。
醛基的碳和羰基的碳的化学位移在200以上。
碳谱解析一般是数碳的个数,对称碳的峰重叠,高度加倍,含氟的化合物会耦合裂分,苯环上的一个氢被氟原子时,苯环上六个碳都可能会裂分,苯环上的一个氢被三氟甲基取代时,除三氟甲基的碳外,与三氟甲基相连的苯环的碳及邻位的碳都会裂分,最终碳谱上的峰是总的碳原子数减去对称碳的个数加因氟产生裂分的碳数。

④ 核磁共振的碳化学位移

13C的化学位移亦以四甲基硅为内标,规定δTMS = 0,其左边值大于0,右边值小干0。与1H的化学位移相比,影响13C的化学位移的因素更多,但自旋核周围的电子屏蔽是重要因素之一, 因此对碳核周围的电子云密度有影响的任何因素都会影响它的化学位移。碳原子是有机分子的骨架,氢原子处于它的外围,因此分子间碳核的互相作用对δc的影响较小,而分子本身的结构及 分子内碳核间的相互作用对δc影响较大。碳的杂化方式、分子内及分子间的氢键、各种电子效 应、构象、构型及测定时溶剂的种类、溶液的浓度、体系的酸碱性等都会对δc产生影响。如今已 经有了一些计算δc的近似方法,可以对一些化合物的δc作出定性的或半定量的估算,但更加完 善的理论还有待于进一步的探讨研究。下表是根据大量实验数据归纳出来的某些基团中C的化学位移,表中黑体字的碳是要研究的对象。 一些特征碳的化学位移碳的类型 化学位移 碳的类型 化学位移 CH4 -2.68 醚的α碳(三级) 70~85 直链烷烃 0~70 醚的α碳(二级) 60~75 四级C 35~70 醚的α碳(一级) 40~70 三级C 30~60 醚的α碳(甲基碳) 40~60 二级C 25~45 RCOOH RCOOR 160~185 一级C 0~30 RCOCl RCONH2 160-180 CH2=CH2 123.3 酰亚胺的羰基碳 165~180 烯碳 100~150 酸酐的羰基碳 150-175 CH≡CH 71.9 取代尿素的羰基碳 150~175 炔碳 65~90 胺的α碳(三级) 65~75 环丙烷的环碳 — 2.8 胺的α碳(二级) 50~70 (CH2)n4~7 22~27 胺的α碳(一级) 40~60 苯环上的碳 128.5 胺的α碳(甲基碳) 20~45 芳烃,取代芳烃中的芳碳 120~160 氰基上的碳 110~126 芳香杂环上的碳 115~140 异氰基上的碳 155~165 -CHO 175~205 R2C=N-OH 145~165 C=C-CHO 175~195 RNCO 118~132 α-卤代醛的羰基碳 170~190 硫醚的α碳(三级) 55~70 R2C=O(包括环酮)的羰基碳 200~220 硫醚的α碳(二级) 40~55 不饱和酮和芳酮的羰基碳 180~210 硫醚的α碳(一级) 25~45 α-卤代酮的羰基碳 160~200 硫醚的α碳(甲基碳) 10~30

⑤ 核磁共振的质子化学位移

由于不同类型的质子化学位移不同,因此化学位移值对于分辨各类质子是重要的,而确定质子类型对于阐明分子结构是十分有意义的。下表列出了一些特征质子的化学位移,表中黑体字的H是要研究的质子。 特征质子的化学位移质子的类型 化学位移 质子的类型 化学位移 RCH3 0.9 ArOH 4.5-4.7(分子内缔合10.5~16) R2CH2 1.3 R3CH 1.5 R2C=CR—OH 15~19(分子内缔合) 0.22 RCH2OH 3.4~4 R2C=CH2 4.5~5.9 ROCH3 3.5~4 R2C=CRH 5.3 RCHO 9~10 R2C=CR—CH3 1.7 RCOCR2—H 2~2.7 RC≡CH 7~3.5 HCR2COOH 2~2.6 ArCR2—H 2.2~3 R2CHCOOR 2~2.2 RCH2F 4~4.5 RCOOCH3 3.7~4 RCH2Cl 3~4 RC≡CCOCH3 2~3 RCH2Br 3.5~4 RNH2或R2NH 0.5~5(峰不尖锐,常呈馒头形) RCH2I 3.2~4 ROH 0.5~5.5(温度、溶剂
、浓度改变时影响很大) RCONRH或ArCONRH 5~9.4 甲烷氢的化学位移值为0.23,其它开链烷烃中,一级质子在高场δ≈0.91处出现,二级质子移向低场在δ≈1.33处出现,三级质子移向更低场在δ≈1.5处出现。例如: 烷烃 CH4 CH3—CH3 CH3—CH2—CH3 (CH3)3CH δ 0.23 0.86 0.86 0.91 1.33 0.91 0.86 1.50 甲基峰一般具有比较明显的特征,亚甲基峰和次甲基峰没有明显的特征,而且常呈很复杂的峰形,不易辨认。当分子中引人其它官能团后,甲基、次甲基及亚甲基的化学位移会发生变化,但其δ值极少超出0.7~4-5这一范围。
环烷烃能以不同构象形式存在,未被取代的环烷烃处在一确定的构象中时,由于碳碳单键的 各向异性屏蔽作用,不同氢的δ值略有差异。例如,在环己烷的椅型构象中,由于C-I上的平伏键氢处于C⑵ — C⑶键及C⑸ — C⑹键的去屏蔽区,而C-I上的直立键氢不处在去屏蔽区,(图环己烷的各向异性屏蔽效应)。所以平伏键氢比直立键氢的化学位移略高0.2~0.5。在低温(-100℃)构象固定时,NMR谱图上可以清晰地看出两个吸收峰,一个代表直立键氢,一个代表平伏键氢。但在常温下,由于构象的迅速转换(图环己烷构象的转换),一般只看到一个吸收峰(见右图)。
其它未取代的环烷烃在常温下也只有一个吸收峰。环丙烷的δ值为0.22,环丁烷的δ值为1.96,别的环烷烃的δ值在1.5左右。取代环烷烃中,环上不同的氢有不同的化学位移,它们的图谱有时呈比较复杂的峰形,不易辨认。 酯中烷基上的质子RCOOCH2R的化学位移δH=3.7~4。酰胺中氮上的质子RCONHR 的化学位移,一般在δ= 5~9.4之间,往往不能给出一个尖锐的峰。
羰基或氮基附近α碳上的质子具有类似的化学位移= 2~3,例如,CH3COCl δH=2.67,CH3COOCH3 δH=2.03, RCH2COOCH3 δH=2.13,CH3CONH2 δH= 2.08,RCH2CONH2 δH=2.23,CH3CN δH=1.98,RCH2CN δH=2.30。 醇的核磁共振谱的特点参见后文。醚α-H的化学位移约在3.54附近。
酚羟基氢的核磁共振的δ值很不固定,受温度、浓度、溶剂的影响很大,只能列出它的大致范 围。一般酚羟基氢的δ值在4~8范围内,发生分子内缔合的酚羟基氢的δ值在10.5~16范 围内。
羧酸H的化学位移在2~2.6之间。羧酸中羧基的质子由于受两个氧的吸电子作用,屏 蔽大大降低,化学位移在低场。R2CHCOOH δH=10~12。
胺中,氮上质子一般不容易鉴定,由于氢键程度不同,改变很大,有时N— H和C一H质子 的化学位移非常接近,所以不容易辨认。一般情况在α-H δH=2.7~3.1,β-H δ=1.1~1.71。N-H δ=0.5~5,RNH2,R2NH的δ值的大致范围在0.4~3.5,ArNH2,ArzNH,ArNHR的δ值的大 致范围在2.9~4.8之间。

⑥ 关于有机物的化学位移值。为什么甲醛>苯>乙烯>乙炔

质子的化学位移
碳上质子的化学位移值取决于质子的化学环境。因此,我们也可以反过来由质子的化学位移推测质子的化学环境及分子的结构。各类质子的化学位移大体有一个范围,下面给出各类质子的粗略化学位移:
碳上的氢(H)
脂肪族CH(C上无杂原子) 0——2.0
β-取代脂肪族CH 1.0——2.0
炔氢 1.6——3.4
α-取代脂肪族CH(C上有O、N、X或与烯键、炔键相连) 1.5——5.0
烯氢 4.5——7.5
苯环、芳杂环上氢 6.0——9.5 醛基氢 9——10.5
氧上的氢(OH)
醇类 0.5——5.5 酚类 4.0——8.0 酸 9——13.0
氮上的氢(NH)
脂肪族0.6——3.5 芳香胺 3.0——5.0 酰胺 5——8.5
对于大部分有机化合物来说氢谱的化学位移值在0-13 ppm. 大致可分以下几个区
0-0.8 ppm :很少见,典型化合物; 环丙烷,硅烷,以及金属有机化合物。
0.8-1.5 ppm :烷烃区域. 氢直接与脂肪碳相连,没有强电负性取代基。化学位移地次序CH>CH2>CH3.。如果有更多的取代基化学位移移向低场。
2-3 ppm:羰基αH(醛、酮、羧酸、酯)、苄位碳H。
1.5-2ppm:烯丙位碳H
卤代烃(氯、溴、碘)同碳氢:2-4ppm,氟代烃:4-4.5
3.0-
4.5 ppm:醚区域。即醚,羟基或者酯基碳氧单键的αH如果有更多的电负性取代基化学位移移向低场。
5.0-7.0 ppm :双键区域,氢直接与C=C 双键相连。炔氢化学位移2-3。
7.0-8.0 ppm :芳环质子区域. 磁各向异性作用,导致芳环质子处于去屏蔽区。同样现象发生在醛由于羰基地磁各向异性,醛质子化学位移在9-10 ppm
-OH 可以出现在任何位置,谱线的性质由多重因此影响H的交换:pH.浓度,温度,溶剂等。一般芳环酚羟基更趋于低场。醇羟基0.5-5.5ppm,酚羟基4-8ppm 醇在DMSO中4.0-6.5
大多数的-NHR, -NH2和醇一样,可被交换,在2-3 ppm 区域显示宽峰。
脂肪胺 0.6-3.5ppm ,芳香胺3.0-5.0ppm。酰胺5-9ppm
-CO2H 可交换,像醇(>10 ppm)

阅读全文

与咪唑环碳化学位移一般是多少相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:721
乙酸乙酯化学式怎么算 浏览:1387
沈阳初中的数学是什么版本的 浏览:1333
华为手机家人共享如何查看地理位置 浏览:1025
一氧化碳还原氧化铝化学方程式怎么配平 浏览:865
数学c什么意思是什么意思是什么 浏览:1388
中考初中地理如何补 浏览:1276
360浏览器历史在哪里下载迅雷下载 浏览:683
数学奥数卡怎么办 浏览:1366
如何回答地理是什么 浏览:1003
win7如何删除电脑文件浏览历史 浏览:1035
大学物理实验干什么用的到 浏览:1464
二年级上册数学框框怎么填 浏览:1680
西安瑞禧生物科技有限公司怎么样 浏览:903
武大的分析化学怎么样 浏览:1229
ige电化学发光偏高怎么办 浏览:1318
学而思初中英语和语文怎么样 浏览:1625
下列哪个水飞蓟素化学结构 浏览:1407
化学理学哪些专业好 浏览:1470
数学中的棱的意思是什么 浏览:1035