导航:首页 > 化学知识 > 怎么查找化学研究课题组官网

怎么查找化学研究课题组官网

发布时间:2023-08-15 00:27:19

Ⅰ 求无机化学研究领域最新发展动态

无机化学研究最新进展

陈 荣 梁文平

(国家自然科学基金委员会化学科学部,北京 100085)

近几年我国无机化学在国家自然科学基金及其它基础项目的支持下,基础研究取得突出进展,成果累累,一批中青年专家的工作脱颖而出。有的专家在科研成果转化、产业化方面作出了突出成绩;有的专家在国际高水平的专业杂志Science, Accounts of Chemical Reserch , Angew.Chem.Int.ed., J. Am. Chem. Soc.上发表了一批有影响的科学论文。以化学着名期刊Angew. Chem. Int. Ed.和J. Am. Chem. Soc.为例,据不完全统计,近10年来,大陆学者在Angew. Chem. Int. Ed. 上共发表论文44篇,其中无机化学领域的专家发表18篇,占41%。特别是近两年,大陆学者在Angew. Chem. Int. Ed. 上共发表论文30篇,无机化学领域的专家发表16篇,占53%,增长迅速;近10年大陆学者在J. Am. Chem. Soc. 上发表论文53篇,无机化学学者发表11篇,占20%;有机化学领域的专家,在Angew. Chem. Int. Ed. 上共发表论文8篇;在J. Am. Chem. Soc. 上发表论文14篇,也表现出良好的发展势头。我们相信在国家自然科学基金的资助下,化学学科能够继续取得基础研究的突破,开创新领域,开展国际领先的独创性研究工作。无机化学的在以下几个方面取得了令人瞩目的成绩:

1. 中国科技大学钱逸泰、谢毅研究小组在水热合成工作基础上,在有机体系中设计和实现了新的无机化学反应,在相对低的温度制备了一系列非氧化物纳米材料。溶剂热合成原理与水热合成类似,以有机溶剂代替水,在密封体系中实现化学反应。他们在苯中280℃下将GaCl3和Li3N反应制得纳米GaN的工作发表在Science上,审稿人评价为“文章报道了两个激动人心的研究成果:在非常低的温度下苯热制备了结晶GaN;观察到以前只在超高压下才出现的亚稳的立方岩盐相。……”文章已被Science 等刊物引用60次。在甲苯中溶剂热共还原制成InAs,文章发表在J. Am. Chem. Soc.上;在KBH4存在下,在毒性低的单质As和InCl3反应制得纳米InAs,文章发表在Chem. Mater.上;在700℃下将CCl4和金属Na发生类似Wurtz反应制成金刚石,该工作在Science上发表不久就被美国《化学与工程新闻》评价为“稻草变黄金”;用溶剂热合成了一维CdE(E=S,Se,Te),文章发表在Chem. Mater.上;用金属Na还原CCl4和SiCl4在400℃下制得一维SiC纳米棒的工作发表在Appl. Phys. Lett.上,被审稿人认为这是一种“新颖的和非常有趣的合成方法,……将促进该领域更深入的工作”;多元金属硫族化合物纳米材料的溶剂热合成:如AgMS2 和CuMS2(M=Ga,In)的文章分别发表在Chem. Commum.和Inorg. Chem.;成功地将部分硫族化合物纳米材料的溶剂制备降至室温,其中一维硒化物的工作发表在J. Am. Chem. Soc. 和Adv. Mater.上;不定比化合物的制备和亚稳物相的鉴定:如Co9S8等不定比化合物的溶剂热合成发表在Inorg. Chem.上,岩盐型GaN亚稳相的高分辨率电镜鉴定工作发表在Appl. Phys. Lett.上。

2. 吉林大学冯守华、徐如人研究组应用水热合成技术,从简单的反应原料出发成功地合成出具有螺旋结构的无机椨谢�擅赘春喜牧希?/FONT>M(4,4'-bipy)2(VO2)2(HPO4)4 (M=Co; Ni)。在这两个化合物中,PO4四面体和VO4N三角双锥通过共用氧原子交替排列形成新颖的V/P/O无机螺旋链。结构中左旋和右旋的V/P/O螺旋链共存。这些左旋和右旋的螺旋链严格交替,并被M(4,4'-bipy)2结构单元连接,形成开放的三维结构。无机螺旋链的形成,归因于M(4,4'-bipy)2结构单元上的两个联吡啶刚性分子分别与两个相邻螺旋链上的钒原子配位产生的拉力。研究结果发表在Angew. Chem. Int. Ed. 2000, Vol. 39, No. 13, 2325-2327。

鉴于在国际上无机水热合成前沿领域的系统和创新性研究工作,吉林大学无机合成与制备化学国家重点实验室冯守华教授和徐如人院士2001年应邀为美国化学会《化学研究评述》(Accounts of Chemical Reserch)撰写综述论文。综述题目为“New Materials in Hydrothermal Synthesis” (Acc. Chem. Res.,34(3),239?/FONT>247,2001)。该文从以下七个方面系统地总结了新材料水热合成化学方面的研究成果:微孔晶体;离子导体;复合氧化物和复合氟化物;低维磷酸铝;无机/有机杂化材料;特殊聚集态材料;材料,生命,环境与社会问题。

3. 南京大学熊仁根、游效曾等在光学活性类沸石的组装及其手性拆分功能研究方面设计和合成具有手性与催化功能的无机椨谢�踊�亩辔�峁梗��歉男粤斯庋Щ钚缘奶烊挥谢�┪?/FONT>(奎宁),以它作为配体同金属离子自组装构成了一个能进行光学拆分(或选择性的包合S-构型)消旋2-丁醇和3-甲基-2-丁醇,拆分率达98%以上的三维多孔类沸石。在成功设计这个类沸石时,我们主要考虑了以下一些因素:负一价阴离子的配体(排除了外部阴离子占据空洞的可能性);配体具有大量的有机部分增强了疏水性;同时也有亲水基团, N、OH等基团共存于一个配体中, 这样配体具有两性;多个手性中心(4个)。这是目前第一个能拆分的具有光学活性的类沸石,该工作被认为是非常重要和有意义的工作,发表在Angew. Chem. Int. Ed.,(2001,40,4422-4425)上,并被选为Hot Paper。

4. 中国科学院福建物质结构研究所洪茂椿、吴新涛等在纳米材料和无机聚合物方面的工作有30篇论文发表在国际高水平的刊物如Angew. Chem. Int. Ed.,J. Am. Chem. Soc.,Chem. Eur. J.,Chem. Comm.,Inorg. Chem.上,引起了国内外同行的广泛重视。

他们在纳米金属分子笼(nanometer-sized metallomolecular cage)的合成,结构和性能研究方面考虑有机桥联配体与金属离子的协同作用和结构调控,设计合成了一种含有机硫和氮的三齿桥联配体tpst, 其中的吡啶环与中心隔离体通过柔性的硫醚联结. 通过tpst配体与两价的镍、钯或铂离子自组装反应,我们成功地构筑了具有Oh对称的立方体金属-有机笼子[Ni6(tpst)8Cl12],其笼内体积超过1000?3,可以同时容纳多种离子和溶剂分子。 该笼子在100° C下稳定并有12个较大的可变的窗口,可以让小分子进出笼子。这是目前已测定单晶结构的容量最大的一个金属-有机笼子( J. Am. Chem. Soc. 2000, 122,4819-4820)。

进行了具有大孔洞的新型金属¾ 有机类分子筛(New type of metal-organic macroporous zeotype) 的合成,结构和性能的研究。这一方面的研究工作主要集中在合成合适的有机配体设计合成孔洞大小和形状适宜的复合聚合物。他们最近把tpst 配体和一价的金属离子进行逐步组装,制成了一种具有纳米级管的一维聚合物[Ag7(tpst)4(ClO4)2(NO3)5]n , 管中可以同时容纳离子和小分子。 这是目前唯一的一种具有金属-有机的纳米管的一维聚合物。

他们还成功地构筑了一个新型的具有纳米级孔洞的类分子筛[{Zn4(OH)2(bdc)3}· 4(dmso)2H2O]n , 其中孔洞的大小近一纳米。骨架的金属可以是具有催化活性的金属团簇。把多齿羧酸大配体与稀土金属和过渡金属离子反应,制成了多种含稀土金属和过渡金属且具有大孔洞的一维、二维和三维聚合物, [Gd2Ag2(pydc)4(H2O)4]n [{Gd2Cu3(pydc)6(H2O)12}.4H2O]n ,[{Gd4Cu2(pydc)8 (H2O)12}.4H2O]n ,[{Gd2Zn3(pydc)6(H2O)12}.4H2O]n ,[{Gd4Zn2(pydc)8

金属纳米线和金属-有机纳米板的合成和结构研究。设计合成了一些金属纳米线、金属-非金属纳米线和金属有机纳米板,应用结构化学研究手段,研究它们的自组装规律、空间结构、电子结构及其物理化学性能,探索空间结构与性质和性能的关系规律。

5.北京大学高松研究小组在磁分子材料的研究方面取得了突出成果。 外磁场依赖的特殊的磁弛豫现象。 在水溶液中以1:1:1的摩尔比缓慢扩散K3[M(CN)6] (M = FeIII,CoIII), bpym (2,2’-bipyrimidine) 和Nd(NO3)3, 合成了第一例氰根桥联的4f-3d二维配位高分子[NdM(bpym)(H2O)4(CN)6]× 3H2O, 24个原子形成的大六边形环, 分别以顶点和边相连, 构筑成独特的二维拓扑结构。通过对结构相同的两个化合物的磁性比较研究,确定了NdIII-FeIII间存在弱的铁磁相互作用。尽管在2K以上未观察到长程磁有序,零外场下变温交流磁化率也表现出通常的顺磁行为,但是,在外磁场(2kOe)存在时交流磁化率表现出慢的磁弛豫现象, 与超顺磁体和自旋玻璃有类似之处。用该体系几何上的自旋阻挫给予了初步解释(Angew. Chem. -Int. Ed., 40(2), 434-437, 2001)。

金属簇合物为结构单元的超分子组装。 以混合稀土盐Dy(ClO4)3和天冬氨酸的水溶液, 调节溶液的pH到大约6.5, 合成得到了一个三维开放骨架结构的配位高分子, 其孔径达11.78A。 用天冬氨酸这个二元羧酸替代一元氨基羧酸的结果是, 在生理pH条件下形成的氨基酸稀土配合物从分立的四核立方烷结构组装成三维的超立方烷(Angew. Chem.-Int. Edit., 39(20), 3644-6, 2000)。

氰根桥联的三维铁磁体。以以4d金属离子Ru(III) 稳定的的二氰根配合物[RuIII(acac)2(CN)2]-为“建筑块”与3d金属离子Mn(II)反应,合成了一个氰根桥联的类金刚石结构的三维配位高分子。磁性研究表明,Ru-Mn间呈铁磁性作用,并且在3.6 K 以下表现出长程铁磁有序。这是第一例含Ru(III)的分子铁磁体。

缓慢扩散Cu(en)(H2O)2SO4的水溶液到K3[Cr(CN)6]的水-乙醇溶液,得到一个氰根桥联的结构新颖的三维配位高分子[Cu(EtOH)2][Cu(en)]2[Cr(CN)6]2,磁性研究表明,Cr-Cu间呈铁磁相互作用,并且在57 K以下表现出长程铁磁有序。这是第一个结构和磁性表征的Cr-Cu三维分子磁体(Angew. Chem.-Int. Edit., 40(16), 3031-3, 2001; J. Am. Chem. Soc., 123, 11809-10, 2001)。

6.清华大学李亚栋研究组在新型一维纳米结构的制备、组装方面取得了突出的进展。 李亚栋课题组首次发现了由具有准层状结构特性的金属铋形成的一种新型的单晶多壁金属纳米管,有关研究成果在美国化学会志上(J. Am. Chem. Soc. 123(40), 9904~9905, 2001)报道。这是国际上首例由金属形成的单晶纳米管,铋纳米管的发现为无机纳米管的形成机理和应用研究提供了新的对象和课题。

他们还设计利用人工合成的有机无机层状结构作为前驱体合成出金属钨单晶纳米线和高质量的WS2纳米管,并借助小角X射线衍射和高分辨电镜微结构分析,详细研究了由层状前驱体到纳米管的层状卷曲机制,为一维纳米线和纳米管的合成提供了新的方法和思路。这方面的工作发表在德国应用化学(Angew. Chem. Int. Ed. 41(2), 333~335, 2002)和美国化学会志(J. Am. Chem. Soc. 124(7), 1411~1416, 2002)上。

一维氧化物纳米线、带及管由于其广泛的应用情景而倍受重视。李亚栋等通过液相反应途径,在较温和的条件下成功地合成了高质量的a 和b 二氧化锰纳米线和纳米棒,同时实现了对产物成相的调控。此外,他们还合成出了单晶MoO3纳米带和钛酸盐纳米管。这方面的工作部分已发表在美国化学会志(J. Am. Chem. Soc. 124(12), 2880~2881, 2002)等杂志上。

无机化学在最近几年里所取得的突出进展主要表现在固体材料化学、配位化学方面,在某种程度上与国际保持同步发展。从传统的无机化学角度来看,生物无机化学和放射化学的研究则相对滞后。在国家自然科学基金委员会政策局、化学部和中国科学院化学部的共同支持下,2002年3月5-7日在深圳举行了生物无机化学发展战略研讨会。会议分析了国内外生物无机化学发展过程和在目前生命科学和化学科学交叉发展相互促进的强大动力和趋势。我国生物无机化学是在20世纪80年代开始发生发展的,当时落后于国际约10年。在国家自然科学基金委员会十几年连续支持下,在全体从事生物无机化学研究者的努力下,生物无机化学的研究10年内跃升了三个台阶,研究对象从生物小分子配体上升到生物大分子;从研究分离出的生物大分子到研究生物体系;近年来又开始了对细胞层次的无机化学研究,研究水平逐年提高。我国在金属配合物与生物大分子的相互作用、金属蛋白结构与功能、金属离子生物效应的化学基础,以及无机药物化学、生物矿化方面都有了相对固定的研究方向,研究队伍日益年轻化。但我国生物无机化学的总体水平与国际水平还有一定差距,究其原因是研究经费投入不足,研究周期较长,但最突出的问题是缺乏杰出的青年研究人才。放射化学的研究也表现出以上特点,其中最重要的也是要扶持年青的研究人才脱颖而出。

New Research Progress in Inorganic Chemistry

Chen Rong, Liang Wenping

(Department of Chemical Sciences, National Natural Science Foundation of China, Beijing 100085)

Key words: Inorganic Chemistry, Innovation Research Groups, Inorganic Synthesis

Ⅱ 着名青年化学家姜雪峰

姜雪峰,1980年12月出生于甘肃兰州,现任华东师范大学化学与分子工程学院教授,博士生导师。课题组(主页)主要从事新方法导向复杂生理活性天然产物全合成研究,在全合成中寻找需要解决的方法学,在方法学中探究如何绿色全合成。我在这里整理了着名青年化学家姜雪峰相关资料,希望能帮助到您。

着名青年化学家姜雪峰

姜雪峰共发表独立通讯论文60多篇(影响因子大于10 的10 篇),外文邀请专着6章,申请发明专利43项(2项国际专利),已授权21项。

2014 年,姜雪峰作为亚洲五名代表之一(中国唯一代表)应邀参加在塞浦路斯举行的欧洲化学会第六届青年有机化学家论坛(6th YIW of EuCheMs-Organic Division)并作邀请报告。

2015年,受美国有机化学家Eric Block教授邀请,姜雪峰作为大会主席之一共同组织了美国化学会泛太平洋有机硫化学会议(2015-Pacific Chem-New Organosulfur Chemistry)并作会议邀请报告。

2016年,姜雪峰受德国有机化学家Wolfgang Weigand教授邀请参加了在德国举行的第27届国际有机硫化学会议(27th International Symposium on Organic Chemistry of Sulfur)并作大会邀请报告(中国唯一代表)。

2017年,受Springer邀请作为主编组织撰写《Sulfur Chemistry》工具书。2018年,姜雪峰受邀担任《亚洲化学》Guest Editor of Homogeneous Catalysis from Young Investigators in Asia 。

2018年,姜雪峰担任International Symposium on Main Group Chemistry Directed towards Organic Synthesis (MACOS)国际顾问和并作邀请报告。

这位“80后”教授,先后荣获中组部“万人计划”青年拔尖人才,基金委优秀青年科学基金,教育部“长江学者奖励计划”青年项目、“新态瞎世纪”优秀人才和“霍英东”基金,上海市“东方学者”和“科技启明星”各类橡闭猜称号;获得德国Thieme Chemistry Journal Award,日本ACP Lectureship Award,药明康德生命化学研究奖。

姜雪峰荣获上海市“五四青年奖章”、上海市青年“岗位能手”称号;并担任上海市第十三届政协委员、中国青年科技工作者协会委员,中国化学会青委会委员,中国化学会化学教育委员会委员,中国化学会催化委员会均相催化专业委员会委员;任《化学教育》编委,Wiley旗下《Heteroatom Chemistry》编委,Taylor旗下《Phosphorus Sulfur Silicon and the Related Elements》编委。

研究概览及近期代表性成果

姜雪峰教授课题组主要从复杂天然产物全合成的视角来构建一系列独特、高效、实用的反应方法学体系进而运用构建的方法学体系、试剂、配体实现高效绿色的全合成。并对完成的高活性系列天然产物进行化学生物学机理研究,同时解决药物化学机制问题。

白坚木属生物碱是单萜吲哚生物碱中知名度高且重要的天然产物,它们具有良好的生物活性但自然界中丰度低、提取难度大,因而探究其化学合成吸引了许多化学工作者的兴趣。2017年,姜雪峰教授课题组从廉价易得的溴代吡喃酮和手性烯胺原料出发,通过选择性exo-[4+2]环加成反应高效构建全氢吲哚骨架(C和E环),后续又通过还原/Wittig桥环开环串联反应、Pd/C氢化串联环化反应和Fischer吲哚化等梁型反应获得三个白坚木属生物碱,最后经过简单的官能团转化又得到其他11个白坚木属生物碱,从而实现了该家族天然产物的发散式合成。

呋喃并喹啉酮和吲哚并香豆素骨架在配体调控下的高效构建[2]

平面生物碱,即没有手性胺的生物碱,这类化合物具有多种重要的药物活性,例如从喜树中提取分离的抗癌药物喜树碱,如何发展高效构建这类结构的方法学是合成化学工作者急需解决的问题。2018年,姜雪峰教授课题组以独特的视角对呋喃并喹啉酮和吲哚并香豆素这两类结构差异性较大的骨架结构进行逆合成分析后,发现它们都具有共同的2-羟基-2′-氨基二苯炔和羰基结构片段。鉴于此,课题组运用PdII为催化剂,借助配体效应、配位电负性以及插羰速率的微小差别,大幅度的扭转了反应途径,高效实现多种多并环结构生物碱的多样性合成。

引领世界的绿色硫化学研究

除了在天然产物全合成及发展新颖高效的合成方法学研究之外,近些年姜雪峰教授更加致力于发展绿色的、环境友好及可持续的硫化学研究。2018年7月,第25届IUPAC国际化学教育会议在澳大利亚悉尼举行,姜雪峰教授被遴选为“全球青年化学家元素周期表硫元素代表”,标志着姜雪峰教授的硫化学研究获得国际认可。

姜雪峰教授课题组运用“从无机硫向有机硫”转化的理念,构建起独特的“3S绿色硫化学”(Smelless/Stable/Sustainable),发展了一系列新颖的绿色硫试剂并解决了它们在水相转移、可见光催化、绿色氧化等方面的挑战,值得一提的是,这些独特的硫试剂及合成方法为含硫药物的工业生产及工艺优化提供了重要参考,在未来具有广阔的应用前景。

鉴于多硫化合物广泛存在于自然界,并且在生命科学、药物化学、食品化学以及材料科学等领域扮演着重要的角色。2018年,姜雪峰教授课题组在知名杂志Nature Communications上报道了一类新型亲电过硫试剂(RSSOMe),借助甲氧基的“面具效应”使得与其相连的硫原子发生“极性翻转”(即RSS+),再利用甲氧基的电子效应很好稳定了硫硫键,进而实现了与多种亲核试剂间的过硫化反应,为更广阔的多硫生命现象解释和多硫药物发现开辟了新道路。[3]

工业4.0时代的绿色硫化学梦想

——专访华东师大化学学院姜雪峰教授

古往今来,人类都相信地球万物生长的能量来自太阳。朴素的信念从近代以后找到了科学证据:直至上世纪70年代末,人们一直坚信光合作用是所有地球生态圈的基石。但一次太平洋东岸Galápagos Rift的深海科考,却向世人呈现了生命的另一种可能:在漆黑无光的海底热泉,在几乎与世隔绝的冰水熔岩生态圈,如外星生物般的庞贝蠕虫、管状水母、铠甲虾等物种,在散发着硫化氢异味的地裂深渊处,千奇百怪却欣欣向荣地野蛮生长。

自此后,千姿百态的海底热泉(hydrothermal vent)在全球各地被发现。各种板块边界、大洋中脊的火山口,难以想象的极端环境中,许多神奇的微生物从不依赖恒星的光芒,却只对热泉喷射的硫化物和重金属化合物情有独钟。利用化学能量自给的硫化细菌与古细菌成就了热泉食物链的底端,为更加复杂高级的生命演化铺就了另类的舞台。

硫化物蕴藏着怎样的能量,可以为生命本源的探索提供不一样的剧本?硫化学的探索本身,对于生命之谜的阐释和生命科学的进步,又会绽放出怎样绮丽的华彩?让我们跟随硫化学专家——华东师大姜雪峰教授一同走进奥妙的硫化学世界。

“硫”砂坠简,书写生命元素传奇

药明康德:硫元素与硫化物质对于生命演化有哪些重要意义?

姜雪峰教授:硫化学对于生命本源的探索有非凡的意义。自然界与银河系的硫化物丰度并不算高,生命体却能将各种形态的硫富集:硫元素并不是生物大分子的主要成分,却与碳、氢、氧、氮、磷元素构成了人体中六种最为重要的常量元素。硫元素之所以成为重要的生命元素,是因为其在核酸和蛋白质分子形成、血氧传输、人体能量代谢等大量生命现象中的生化反应中充当还原剂、稳定剂。

自然界存在硝化菌、铁细菌、一氧化碳细菌等多种无光合作用的自养型生物,但它们都无法支撑独立的生态圈群落。至今,人类只在海底热泉的火山口,发现完全以硫化细菌为食物链基础、与光合作用生态圈迥然相异的生命体系。很多学者形成的共识是生命的初始舞台诞生于极端的地质环境,因为一马平川的环境很难产生剧烈的物质转化与化学反应,只有星球撞击、板块运动、地震火山才能孕育丰富的地貌与生命的火花。而海底热泉的极端生态,很可能与地球形成的早期环境类似,无疑是我们探索生命本源的极佳样本。

硫元素对于人的饮食健康也非常重要。榴莲、洋葱、大蒜这些有着“怪怪味道”的果蔬富含硫化物,其实是大自然因地制宜赐予人类的保健品,可杀菌消炎、活血化瘀、促心肺功能、抗血管老化。比如,有两种重要的硫化物,具有强大的解毒和免疫调节作用:二甲基砜(MSM)对于镇痛消炎、疏通血管、促进胶原蛋白合成、促进糖类物质代谢具有重要作用;含有硫巯基的谷胱甘肽(GSH)则具有广谱解毒功能,也是人体细胞内最重要的抗氧化剂,可通过持续清除自由基的方式,保护众多含巯基蛋白酶的活性。

药明康德:请您介绍一下人类应用硫化学的历史和现状各有哪些亮点。

姜雪峰教授:单质硫磺作为一种重要化学材料,很早就被人类发现并使用,起初应用于熏香漂白、洗发去屑。中西方许多着名温泉中都富含硫磺,古代西方一些公共浴池也直接利用硫磺消毒。中国早在先秦时代就开始开发天然硫磺矿藏,用于四大发明火药的制造。

如今,人们更加认识到硫元素价态丰富,可形成结构多样的化合物。硫化物是当代许多畅销药物中不可或缺的成分:小分子药物合成中,含有硫元素的基团是抗击不少病原体的活性位点,比如青霉素、头孢、磺胺类药物具有广谱抗菌作用。同时,过硫键广泛存在于生命体中,和青蒿素中的过氧桥一样具有多种生理功能,也具备抗真菌、病毒、原虫的潜在药用价值;过硫键还是抗体偶联药物(ADC)中常用的连接子(Linker),以缀合大分子抗体与小分子细胞毒性药物,形成对肿瘤靶细胞的选择性杀伤作用。

绿色硫化学之路:“面具侠”妙手通关

药明康德:您认为研究和发展绿色硫化学的挑战与机遇有哪些?针对无机硫替代有机硫的绿色试剂,您的团队还提出了新颖的“面具策略”,请您介绍一下。

姜雪峰教授:不少硫化物(比如硫巯基化合物)散发强烈的刺鼻恶臭,虽然没有让所有化学家望而却步,但确实使硫化学的发展、应用和生产受到严重阻碍。其实,由于硫的孤对电子化学性质活泼、价态丰富,也导致易氧化、容易使金属催化剂失活并终止催化循环,这些都是横亘在硫化学研究者面前的严峻挑战。但硫元素对于生命活动、医药和化工研发意义重大且前景广阔,我们应有的社会担当就是要在现阶段介入相对初级的研究项目,从而开拓未来的科学新领域和产业新方向。硫化学研究一旦解决相关的棘手科学问题,就可以同时实现两方面的突破。

从无机硫到有机硫的转换看似简单,但要跨越较多障碍,硫醚、过硫、亚砜、砜、磺胺等化合物的合成都需要不同的价态思考。我们努力针对不同类型的重要含硫有机物,设计建立几类多功能硫试剂,并建立起试剂的多样性使用规律,系统地打造绿色硫化学转化体系中的所有硬件和软件。我们希望逢山开路、遇水架桥,目前已经完成了某些“路基”的铺设,希望未来这条绿色反应体系的康庄大道能被世界学界和产业所铭记。

面具策略的主旨即在硫化物反应底物上引入一个“面具”基团,恰到好处地控制该底物的多样性反应活性。可以在数量上控制“单硫”、“双硫”、“三硫”、甚至“四硫”的引入,还可以在氧化态上控制引入“硫醚”、“亚砜”、“砜”,针对多官能团药物修饰的不同需求产生“亲核硫源”、“亲电硫源”、“自由基硫源”的多样性功能,以满足不同药物的合成与修饰需求。我们继续运用“面具”理念,将作为“面具”基团的SO3分子引到裸露的巯基上:SO3分子可对硫原子上的孤对电子产生吸电作用,弱化硫对金属催化剂的毒化作用(电性要求);SO3分子的大位阻还可掩蔽硫电子轨道并避免其氧化自偶联(位阻要求);再者,SO3分子的电子共振效应可调节硫原子电子流向(共振要求)。这一概念利用无臭绿色硫化试剂,为过渡金属催化的硫化学带来了一系列新特性。

药明康德:这么看来,单独硫原子引入的一些瓶颈问题已经有了较好突破,那么你前面提到的其他形式的硫呢?

姜雪峰教授: 举一个“过硫试剂”的例子:传统过硫键构建两个硫原子分别来自两种不同的反应对象,不仅限制反应效率和适用范围,还带来诸多硫巯基氧化不兼容、毒化金属催化的问题。我们团队至今已经设计了四代过硫化试剂,不同的“面具”让它们各自分别拥有了不同的属性。然而新的矛盾又再次出现:硫硫键键能远低于常见的其他化学键键能,反应活性极高,此时如何“保持弱键,断裂强键”便成了试剂成功使用的另一个挑战。运用“面具”的电子、立体以及偶极性质,依据动力学与热力学的交互调控,即可如我们所愿高兼容性引入敏感而有用的“双硫”。

最近,我们又在过硫结构的外端成功的装上OMe这个新型的“面具”,从而反转了电性,获得了更为广谱的亲电过硫试剂。随后的试剂使用探索表明,该类试剂可在非常温和的条件下与各类功能分子作用,获得与碳亲核试剂、氮亲核试剂、硫亲核试剂的多样性偶联,实现了多种天然产物和药物的后期修饰,建立了丰富的多硫结构化合物库。这一过硫试剂的设计与建立,为更广阔的多硫生命现象解释和多硫药物发现开辟了一条快速通道。期待着“硫循环”藏宝图的全面展开。

利用多种策略,我们还对许多药物进行了无官能团保护的直接后期硫化修饰,从而筛选出多发性骨髓瘤药物来那度胺的硫化衍生物,活性远高于来那度胺本身,且可以应用于对来那度胺无效的淋巴瘤细胞,目前该化合物正在做进一步生物利用度评价。

被梦想叫醒的清晨:相信奔跑的力量

药明康德:工作之外您还有哪些爱好?对学习科研有哪些正面的促进效果?

姜雪峰教授:我喜欢跑步,长跑会带来独特的灵感思辨和感恩顿悟,全年无休风雨无阻地奔跑,在四季变换中感受天地自然的馈赠,冥想每个课题的困惑,感恩父母师友的激励。痛苦与挫折都是生命的张力,只有酸甜苦辣掺拌才是真实丰满的人生。不论平凡的你我还是闪亮的名人,都有自己的压力和挑战,只要尽力就已足够。

在一场又一场马拉松的较量中,一时的快慢和名次并不重要,每一个驿站都是人生的积淀。所以,坚持不懈而不轻言放弃,不应冒进却要步步为营:有时候当你为某一个科学问题朝思暮想却无法突破,貌似读书百遍又回到原点,然而每一次你回到原点的高度都会有所不同,许多科学突破正是通过这种螺旋式的上升来实现。在科研攀峰的过程中,我们既需要不断制定明晰切实的小目标,也要珍视每一个灵感并在细节上保持耐心和平常心,即使小失败也可能是通往成功的道路。

药明康德:绿色化学的发展面临哪些挑战?您对硫化学的未来有哪些激情的畅想?

姜雪峰教授:化学工业为社会进步做出了巨大贡献,然而一些生产带来的污染和安全风险也日益受到关注。大家对化工产业缺陷的关注需要理性看待,对缺陷的批判正是推动社会进步的重要因素。科学发展是循序渐进的,创造物质的化学挑战人类智慧与耐力的极限,要实现全面清洁和安全的合成体系需要不断地积累和沉淀。

有机合成从19世纪发展至今,逐步走向成熟的过程却仍然存在诸多瓶颈问题亟待解决。化学家几乎可以制备出所有人类想要的小分子,然而与功能性相伴的却是污染与安全风险两个痛点。如果我们为了合成某种药物去治疗100位癌症病人,而导致环境污染使1000位健康人面临患病风险,那一定不是可持续发展之道。其实社会经济发展从粗放到集约的转变,正需要青年科学家重新审视合成化学的新需求。

多年来试剂绿色化和步骤经济化始终是我们团队的宗旨,希望能够最终构建从无机硫向有机硫转化的绿色硫化学体系,实现我们对“硫循环”的全面系统的理解,为打造工业4.0时代的环保无污染的医药生产链贡献自己的一份力量。

化学方程式配平方法大总结

1.零价法

用法:无法用常规方法确定化合价的物质中各元素均为零价,然后计算出各元素化合价的升降值,并使元素化合价升降值相等,最后用观察法配平其他物质的化学计量数。

【例1】试配平 Fe3C + HNO3- Fe(NO3)3 + NO2 + CO2+ H2O。

分析:复杂物质Fe3C按常规化合价分析无法确定其中Fe和C的具体化合价,此时可令组成该物质的各元素化合价均为零价,再根据化合价升降法配平。Fe3C → Fe(NO3)3和CO2整体升高13价,HNO3 → NO2下降13价(除了Fe、C以外,只有N变价)。易得 Fe3C + 22HNO3= 3Fe(NO3)3 + 13NO2+ CO2 + 11H2O。

2.平均标价法

用法:当同一反应物中的同种元素的原子出现两次且价态不同时,可将它们同等对待,即假定它们的化合价相同,根据化合物中化合价代数和为零的原则予以平均标价,若方程式出现双原子分子时,有关原子个数要扩大2倍。

【例2】试配平 NH4NO3-HNO3+N2+H2O。

分析:NH4NO3中N的平均化合价为+1价,元素化合价升降关系为:

NH4NO3 → HNO3:+1→+5升4×1价

NH4NO3 → N2:+1→0 降1×2价

易得 5NH4NO3= 2HNO3 + 4N2 + 9H2O

3.整体标价法

用法:当某一元素的原子或原子团(多见于有机反应配平)在某化合物中有数个时,可将它作为一个整体对待,根据化合物中元素化合价代数和为零的原则予以整体标价。

例3:试配平 S+Ca(OH)2-CaSx+CaS2O3+H2O

分析:NH4NO3中N的平均化合价为+1价(NH4中-3价,NO3中+5价),元素化合价升降关系为:

NH4NO3→HNO3:+1→+5升4×1价

NH4NO3→N2:+1→0 降2×2价

易得 2(x+1)S + 3Ca(OH)2 = 2CaSx + CaS2O3 + 3H2O

4.逆向配平法

若氧化剂(或还原剂)中某元素化合价只有部分改变,配平宜从氧化产物、还原产物开始,即先考虑生成物,逆向配平;自身氧化还原反应方程式,宜从生成物开始配平,即逆向配平。

例如:P + CuSO4 + H2O - CU3P + H3PO4+ H2SO4

该反应的氧化剂是P、CuSO4,还原剂是P,以反应物作标准求得失电子数比较困难,但是氧化产物只H3PO4、还原产物只CU3P,所以以1mol H3PO4和1mol CU3P作标准物容易求得失电子数。

答案:11 15 24 5 6 15

5.有机反应的配平法

有机物参入的氧化还原反应,通常首先规定有机物中H为+1价,O为-2价,并以此确定碳元素的平均化合价。再根据还原剂化合价升高总数与氧化剂化合价降低总数相等原则,结合观察法配平。

例如:H2C2O4 + KMnO4 +H2SO4- CO2+ K2SO4+ MnSO4 + H2O

解析:H2C2O4中,令H 为+1价,O为-2价,则C的平均化合价为+3价。1个H2C2O4化合价升高数为2,1个KMnO4化合价降低数为5,最小公倍数为10,故H2C2O4的系数为5,KMnO4的系数为2。

配平的方程式为:5H2C2O4+2KMnO4+3H2SO4=10CO2+K2SO4+2MnSO4+8H2O

6.缺项方程式的配平:

如果所给的化学方程式中有反应物或生成物没有写出来,在配平时,如果所空缺的物质不发生电子的得失,仅仅是提供一种发生反应的酸、碱、中性的环境,可先把有化合价升降的元素配平,再确定出所缺的物质,把系数填上即可。

例如:BiO3-+ Mn2+ +- Bi3++ MnO4-+ H2O

解析:首先根据化合价的升降配平有变价元素的有关物质:

5BiO3- +2Mn2+ + - 5Bi3+ +2MnO4-+H2O

根据氧原子守恒,可以确定H2O 的系数为7,根据质量守恒和电荷守恒规律可以确定反应物所缺的是氢离子H+。

答案:5 2 14H+ 5 2

除这几种常用方法外,还有一些简易方法也可用于一些方程式的配平。

(1)奇偶配平法

这种方法适用于化学方程式两边某一元素多次出现,并且两边的该元素原子总数有一奇一偶,例如:C2H2+O2→CO2+H2O,此方程式配平从先出现次数最多的氧原子配起。O2内有2个氧原子,无论化学式前系数为几,氧原子总数应为偶数。故右边H2O的系数应配2(若推出其它的分子系数出现分数则可配4),由此推知C2H2前2,式子变为:2C2H2+O2→CO2+2H2O,由此可知CO2前系数应为4,最后配单质O2为5,把短线改为等号,写明条件即可:2C2H2+5O2==4CO2+2H2O

(2)观察法配平

有时方程式中会出现一种化学式比较复杂的物质,我们可通过这个复杂的分子去推其他化学式的系数,例如:Fe+H2O——Fe3O4+H2,Fe3O4化学式较复杂,显然,Fe3O4中Fe来源于单质Fe,O来自于H2O,则Fe前配3,H2O前配4,则式子为:3Fe+4H2O=Fe3O4+H2由此推出H2系数为4,写明条件,短线改为等号即可:3Fe+4H2O==Fe3O4+4H2

(3)归一法

找到化学方程式中关键的化学式,定其化学式前计量数为1,然后根据关键化学式去配平其他化学式前的化学计量数。若出现计量数为分数,再将各计量数同乘以同一整数,化分数为整数,这种先定关键化学式计量数为1的配平方法,称为归一法。

做法:选择化学方程式中组成最复杂的化学式,设它的系数为1,再依次推断。

第一步:设NH3的系数为1 1NH3+O2——NO+H2O

第二步:反应中的N原子和H原子分别转移到NO和H2O中,由

阅读全文

与怎么查找化学研究课题组官网相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:658
乙酸乙酯化学式怎么算 浏览:1327
沈阳初中的数学是什么版本的 浏览:1264
华为手机家人共享如何查看地理位置 浏览:951
一氧化碳还原氧化铝化学方程式怎么配平 浏览:802
数学c什么意思是什么意思是什么 浏览:1319
中考初中地理如何补 浏览:1215
360浏览器历史在哪里下载迅雷下载 浏览:625
数学奥数卡怎么办 浏览:1293
如何回答地理是什么 浏览:946
win7如何删除电脑文件浏览历史 浏览:978
大学物理实验干什么用的到 浏览:1400
二年级上册数学框框怎么填 浏览:1608
西安瑞禧生物科技有限公司怎么样 浏览:749
武大的分析化学怎么样 浏览:1165
ige电化学发光偏高怎么办 浏览:1257
学而思初中英语和语文怎么样 浏览:1551
下列哪个水飞蓟素化学结构 浏览:1345
化学理学哪些专业好 浏览:1411
数学中的棱的意思是什么 浏览:967