㈠ 离子键有什么特点
化学键主要分为离子键和共价键。离子键是由阴阳离子形成的,从物质的化学式来看,含有活泼金属或铵根离子的物质中含有离子键,如氯化钠、氢氧化钠、氯化铵等,含有离子键的物质一般熔沸点比较高,在熔融或溶于水的条件下都可以导电。共价键是原子间通过共用电子对形成的,成键的两种元素都是非金属的,相互间的作用一定是共价键。共价键可以存在于分子(由分子组成的物质往往熔沸点较低,常温下呈气态、液态的物质一般由分子组成)中,如氯化氢、水、碘单质等,也存在于原子团中,如铵根、氢氧根等,也可以形成熔沸点较高的物质,如二氧化硅。含有共价键的物质只有在熔融条件下才可能发生电离,导电(像二氧化硅、金刚石等熔融也不导电)。总之,初学可以依据元素组成判断离子键和共价键,以后再慢慢记住一些特例。
㈡ 化学键的特征波数
实验方法原理 红外光谱分析是研究分子振动和转动信息的分子光谱。当化合物受到红外光照射,化合物中某个化学键的振动或转动频率与红外光频率相当时,就会吸收光能,并引起分子永久偶极矩的变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应频率的透射光强度减弱。分子中不同的化学键振动频率不同,会吸收不同频率的红外光,检测并记录透过光强度与波数(1/cm)或波长的关系曲线,就可得到红外光谱。红外光谱反映了分子化学键的特征吸收频率,可用于化合物的结构分析和定量测定。
根据实验技术和应用的不同,我们将红外光划分为三个区域:近红外区(0.75~2.5 μm;:13158~4000),中红外区(2.5~25 μm;:4000~400)和远红外区(25~1000 μm;:400~10)。分子振动伴随转动大多数在中红外区,一般的红外光谱都在此波数区间进行检测。
红外光源傅里叶变换红外光谱仪主要由红外光源、迈克尔逊干涉仪、检测器、计算机和记录系统五部分组成。红外光经迈克尔逊干涉仪照射样品后,再经检测器将检测到的信号以干涉图的形式送往计算机,进行傅里叶变换的数学处理,最后得到红外光谱。
实验步骤
㈢ 共价键具有什么特点
主要特点
饱和性
在共价键的形成过程中,因为每个原子所能提供的未成对电子数是一定的,一个原子的一个未成对电子与其他原子的未成对电子配对后,就不能再与其它电子配对,即,每个原子能形成的共价键总数是一定的,这就是共价键的饱和性。
共价键的饱和性决定了各种原子形成分子时相互结合的数量关系,是定比定律(law of definite proportion)的内在原因之一。
方向性
除s轨道是球形的以外,其它原子轨道都有其固定的延展方向,所以共价键在形成时,轨道重叠也有固定的方向,共价键也有它的方向性,共价键的方向决定着分子的构形。
影响共价键的方向性的因素为轨道伸展方向。
(3)化学键有哪些特点扩展阅读:
共价键(covalent bond),是化学键的一种,两个或多个原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比较稳定的化学结构叫做共价键,或者说共价键是原子间通过共用电子对所形成的相互作用。
其本质是原子轨道重叠后,高概率地出现在两个原子核之间的电子与两个原子核之间的电性作用。
参考资料:网络----共价键
㈣ 共价键的特点
共价键就是组成共价键的原子之间相互提供空轨道和外层电子,达到最外层电子的稳定结构,就成键了。
比如 氯化氢,氯的最外层有七个电子和一个空轨道,氢的最外层有一个电子和一个空轨道,于是氢原子的电子就通过氧化还原反应转移给了氯原子,使氯原子达到最外层8电子的稳定结构,同时氢原子也达到了最外层2电子的稳定结构
㈤ 原子间的结合键共有几种各自特点是什么
有离子键、共价键、金属键,还有分子键(范德华键),氢键等五种。
离子键:是由正离子和负离子由静电引力相互吸引;同时当它们十分接近时发生排斥,引力和斥力相等即形成稳定的离子键。离子键往往在金属与非金属间形成。离子键的结合力很大,因此通常离子晶体的硬度高,强度大,热膨胀系数小,但脆性大。离子键种很难产生可以自由运动的电子,所以离子晶体都是良好的绝缘体。
共价键:是化学键的一种,两个或多个原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比较稳定的化学结构叫做共价键,或者说共价键是原子间通过共用电子对所形成的相互作用。其本质是原子轨道重叠后,高概率地出现在两个原子核之间的电子与两个原子核之间的电性作用。
金属键:由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成。在金属晶体中,自由电子作穿梭运动,它不专属于某个金属原子而为整个金属晶体所共有。这些自由电子与全部金属离子相互作用。金属键没有方向性,金属键中由于存在大量自由电子,所以由金属键形成的晶体通常有良好导电性。
分子键:由分子之间的作用力(范德华力)而形成的,由于分子键很弱,故结合成的晶体具有低熔点、低沸点、低硬度、易压缩等特性。
氢键:氢原子与电负性大的原子X以共价键结合,若与电负性大、半径小的原子Y(O F N等)接近,在X与Y之间以氢为媒介,生成X-H…Y形式的一种特殊的分子间或分子内相互作用,称为氢键。
㈥ 离子键有什么特点化学键有哪几种
离子键是阴阳离子互相吸引产生的化学键
特点,有极性,存在电子的得失
㈦ 化学共价键σ键.π键的特征有哪些
主要特征是σ键电子云重叠程度一般较大,比较稳定,重叠后电子云呈轴对称,可以旋转;而π键电子云重叠程度一般较小,不稳定,重叠后电子云呈镜面对称,不能旋转。
㈧ 共价键的特征是什么
共价键的特征是饱和性、方向性。
共价键(covalentbond),是化学键的一种,两个或多个原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比较稳定的化学结构,像这样由几个相邻原子通过共用电子并与共用电子之间形成的一种强烈作用叫做共价键。其本质是原子轨道重叠后,高概率地出现在两个原子核之间的电子与两个原子核之间的电性作用。
1、在共价键的形成过程中,因为每个原子所能提供的未成对电子数是一定的,一个原子的一个未成对电子与其他原子的未成对电子配对后,就不能再与其它电子配对,即,每个原子能形成的共价键总数是一定的,这就是共价键的饱和性。
共价键的饱和性决定了各种原子形成分子时相互结合的数量关系,是定比定律(lawofdefiniteproportion)的内在原因之一。
2、除s轨道是球形的以外,其它原子轨道都有其固定的延展方向,所以共价键在形成时,轨道重叠也有固定的方向,共价键也有它的方向性,共价键的方向决定着分子的构形。影响共价键的方向性的因素为轨道伸展方向。
㈨ 什么是共价键,有什么特点
原子通过共用电子对,形成的化学键,叫共价键。
一般是非金属原子之间形成的。
根本特点是两个成键原子的电负性之差小于1.7,就认为属于共价键。
㈩ 化学键的具体类型有哪些具体具体
化学键的具体类型有离子键、共价键、金属键。
离子键(ionic bond)
带相反电荷离子之间的互相作用叫做离子键,成键的本质是 阴阳离子间的静电作用。两个原子间的电负性相差极大时,一般是金属与非金属。例如氯和钠以离子键结合成氯化钠。电负性大的氯会从电负性小的钠抢走一个电子,以符合八隅体。之后氯会以-1价的方式存在,而钠则以+1价的方式存在,两者再以库仑静电力因正负相吸而结合在一起,因此也有人说离子键是金属与非金属结合用的键结方式。而离子键可以延伸,所以并无分子结构。
离子键亦有强弱之分。其强弱影响该离子化合物的熔点、沸点和溶解性等性质。离子键越强,其熔点越高。离子半径越小或所带电荷越多,阴、阳离子间的作用就越强。例如钠离子的微粒半径比钾离子的微粒半径小,则氯化钠NaCl中的离子键较氯化钾KCl中的离子键强,所以氯化钠的熔点比氯化钾的高。
化学键在本质上是电性的,原子在形成分子时,外层电子发生了重新分布(转移、共用、偏移等),从而产生了正、负电性间的强烈作用力。但这种电性作用的方式和程度有所不同,所以又可将化学键分为离子键、共价键和金属键等。离子键是原子得失电子后生成的阴阳离子之间靠静电作用而形成的化学键。离子键的本质是静电作用。由于静电引力没有方向性,阴阳离子之间的作用可在任何方向上,离子键没有方向性。只有条件允许,阳离子周围可以尽可能多的吸引阴离子,反之亦然,离子键没有饱和性。不同的阴离子和阳离子的半径、电性不同,所形成的晶体空间点阵并不相同。
共价键(covalent bond)
1.共价键是原子间通过共用电子对(电子云重叠)而形成的相互作用。形成重叠电子云的电子在所有成键的原子周围运动。一个原子有几个未成对电子,便可以和几个自旋方向相反的电子配对成键,共价键饱和性的产生是由于电子云重叠(电子配对)时仍然遵循泡利不相容原理。电子云重叠只能在一定的方向上发生重叠,而不能随意发生重叠。共价键方向性的产生是由于形成共价键时,电子云重叠的区域越大,形成的共价键越稳定,所以,形成共价键时总是沿着电子云重叠程度最大的方向形成(这就是最大重叠原理)。共价键有饱和性和方向性。
2.原子通过共用电子对形成共价键后,体系总能量降低。
共价键的形成是成键电子的原子轨道发生重叠,并且要使共价键稳定,必须重叠部分最大。由于除了s轨道之外,其他轨道都有一定伸展方向,因此成键时除了s-s的σ键(如H2)在任何方向都能最大重叠外,其他轨道所成的键都只有沿着一定方向才能达到最大重叠。 共价键的分类
金属键
1.概述:化学键的一种,主要在金属中存在。由自由电子及排列成晶格状的金属离子之间的静电吸引力组合而成。由于电子的自由运动,金属键没有固定的方向,因而是非极性键。金属键有金属的很多特性。例如一般金属的熔点、沸点随金属键的强度而升高。其强弱通常与金属离子半径成逆相关,与金属内部自由电子密度成正相关(便可粗略看成与原子外围电子数成正相关)。
2.改性共价键理论:在金属晶体中,自由电子作穿梭运动,它不专属于某个金属离子而为整个金属晶体所共有。这些自由电子与全部金属离子相互作用,从而形成某种结合,这种作用称为金属键。由于金属只有少数价电子能用于成键,金属在形成晶体时,倾向于构成极为紧密的结构,使每个原子都有尽可能多的相邻原子(金属晶体一般都具有高配位数和紧密堆积结构),这样,电子能级可以得到尽可能多的重叠,从而形成金属键。上述假设模型叫做金属的自由电子模型,称为改性共价键理论。这一理论是1900年德鲁德(drude)等人为解释金属的导电、导热性能所提出的一种假设。这种理论先后经过洛伦茨(Lorentz,1904)和佐默费尔德(Sommerfeld,1928)等人的改进和发展,对金属的许多重要性质都给予了一定的解释。但是,由于金属的自由电子模型过于简单化,不能解释金属晶体为什么有结合力,也不能解释金属晶体为什么有导体、绝缘体和半导体之分。随着科学和生产的发展,主要是量子理论的发展,建立了能带理论。