A. 配位化学的主要反应
由于水合金属离子离解,生成质子,金属离子在水溶液中通常显酸性,例如:K
是酸离解常数,可用来衡量水合金属离子的酸性大小,它与金属离子电荷、半径和电子构型有关。一般地说,金属离子电荷高、半径小,电子构型有利于极化作用时,酸性就大;反之就小。这种离解反应还可继续进行,并伴随着聚合,生成羟联或氧联的双核、多核配合物,例如:其他含有能离解出质子的配体,还有NH3、乙二胺和有机酸等。 指配体取代配合物中另一种配体的反应。根据取代反应的快慢,常把配合物分为活性配合物和惰性配合物。金属水合配合物中水被取代的反应速率常作为活性或惰性的衡量标准。取代基可以是水分子或其他配体,如为前者,可用标记原子O(以符号O表示)示踪。例如:【Al(H2O)6】+6H2O匑【Al(H2O)6】+6H2O
各种水合金属离子的配位水分子与溶液本体中水分子取代速率相差很大。例如碱金属水合离子的取代反应速率常数为10~10秒,而铝和镓的水合离子则为1~10秒。离子的大小和所带电荷的多少对反应速率有明显的影响。电荷和结构相同的离子,半径愈大,交换得愈快;离子大小相同者,电荷愈高,交换得愈慢。其他配体取代水合金属离子中的配位水分子的反应速率很少取决于配体的性质,而常与水分子的交换速率一致,即取决于水合金属离子的性质。 指两配合物之间发生电子转移的反应。例如,将 【Fe(CN)6】(Fe为标记原子)溶液与【Fe(CN)6】混合,则前者失去一个电子,后者得到一个电子,其反应为:【Fe(CN)6】+【Fe(CN)6】─→
【Fe(CN)6】+【Fe(CN)6】
交换作用在1分钟内完成。这是相同金属和相同配体的配合物的电子转移反应。不同金属和不同配体的电子转移如下:
B. 配位化学与有机中的哪些方面有关急需,要写论文
金属有机络合物
C. 有有关配位化学与过渡元素的资料吗
配位化学
coordination chemistry
研究金属的原子或离子与无机、有机的离子或分子相互反应形成配位化合物的特点以及它们的成键、结构、反应、分类和制备的学科。最早记载的配合物是18世纪初用作颜料的普鲁士蓝K〔FeⅡ(CN)6FeⅢ〕。1798年又发现了CoCl3·6NH3是CoCl3与NH3形成的稳定性强
配位化学
的化合物 ,对其组分和性质的研究开创了配位化学领域。1893年,瑞士化学家A.韦尔纳首先提出这类化合物的正确化学式和配位理论,在配位化合物中引进副价概念,提出元素在主价以外还有副价,从而解释了配位化合物的存在以及它在溶液中的离解。
在配位化合物中 ,中心原子与配位体之间以配位键相结合。解释配位键的理论有价键理论、晶体场理论和分子轨道理论。
配位化学与有机、分析等化学领域以及生物化学、药物化学、化学工业有密切关系,应用很广:①金属的提取和分离。从矿石中分离金属,进一步提纯,如溶剂萃取、离子交换等都与金属配合物的生成有关。②配位催化作用。过渡金属化合物能与烯烃、炔烃和一氧化碳等各种不饱和分子形成配位化合物,使这些分子活化,形成新的化合物,因此,这些配位化合物就是反应的催化剂。③化学分析。配位反应在重量分析、容量分析、分光光度分析中都有广泛应用,主要用作显色剂、指示剂、沉淀剂、滴定剂、萃取剂、掩蔽剂,可以增加分析的灵敏度和减少分离步骤。④生物化学。生物体中许多金属元素都以配合物的形式存在,例如血红素是铁的配合物;叶绿素是镁的配合物;维生素B12是钴的配合物。⑤医学。可用乙二胺四乙酸二钠盐与汞形成配合物,将人体中有害元素排出体外。顺式二氯·二氨合铂(Ⅱ)已被证明为抗癌药物。
2简史编辑
最早有记载的配合物是18世纪初用作颜料的普鲁士蓝,化学式为 K【Fe(CN)6Fe】。1798年发现CoCl3·6NH3。CoCl3和NH3都是稳定的化合物,在它们结合成新的化合物后,其性质与组分化合物不同。这一发现开创了配位化学的研究。
19世纪就发现了更多的钴氨配合物和其他配合物。1893年瑞士化学家A.韦尔纳首先提出这类化合物的正确化学式及配位理论。他在配合物中引进副价的概念,提出元素在主价以外还有副价。例如,在一系列铂(Ⅳ)的配合物中铂的主价为+4,副价为+6,由此可解释这些铂配合物的存在和离解(表 1)。生成的离子数目由溶液电导和游离氯离子的分析确定。由于韦尔纳的出色工作,他于1913年获得诺贝尔化学奖。
3配位键编辑
解释配位键的理论有三种,即价键理论、晶体场理论和分子轨道理论。
价键理论
主要是由L.C.鲍林发展起来的。该理论认为配合物是在路易斯碱(配体)和路易斯酸(金属或金属离子)之间反应生成(见酸碱理论),在配体和金属之间有配位键生成(不必全是配位键)。配体上的电子对转到金属的杂化原子轨道上。
晶体场理论
认为金属-配体键是由点电荷之间的反应生成,把配体看作点电荷或偶极子,因而影响金属离子的部分已占的d轨道能量,并用来说明其成键结构。
分子轨道理论
认为电子围绕整个配合物体系的分子轨道运动,它综合了价键和晶体场理论,是当前用得最广泛的理论。
4稳定性编辑
与金属离子和配体有关。由于配合物的生成主要是在荷正电的金属离子和配体阴离子或偶极分子之间进行的,金属离子的离子势(阳离子电荷与其半径之比)愈大,相同配体的配合物愈稳定。配合物的稳定性还与配体阴离子的可极化性有关。在一定限度内,阴离子的可极化性愈大,配体也愈易成为电子给体。例如,对于第四周期从Mn到Zn的二价金属离子,其配合物稳定性按F<OS>P次序变化。对于d或d结构的贵金属,其配合物的稳定性,按P>S》N>O>F《Cl<Br<I的次序变化。
影响配合物稳定性的还有螯合作用,即双齿以上的配体在多于一个的位置上与金属离子连接成环。通常,螯合程度增加时,配合物的稳定性也就增加,例如乙二胺配合物的稳定性要比氨配合物大。
D. 配位化学的应用
配位化学与无机、分析、有机以及物理化学关系密切,与生物化学、药物化学、农业化学等也有关。在化学和化工方面应用很广。
金属的提取和分离 一些重要的湿法冶金过程要利用金属配合物的形成,例如镍、铜和钴可用氨水溶液萃取。在核反应中产生的铍,可用噻吩甲酰三氟丙酮的苯溶液萃取。氰化钠的水溶液通常用于从矿石中分离金。一氧化碳可用于镍的纯化。 过渡金属化合物能与烯烃、炔烃和一氧化碳等各种不饱和分子配位形成配合物,使这些分子活化,生成新的化合物。例如烯烃的氢甲醛化反应中,烯烃与氢和一氧化碳按照与钴催化剂形成配合物的机理,最终生成醛(R为烷基):RCH=CH2+CO+H2─→RCH2CH2CHO
有些金属催化剂可把烯烃转变为多聚体。例如,将氯化钛(Ⅲ)和烷基铝配位后,作为催化剂,可使烯烃定向聚合成高分子化合物。
E. 关于配位化学的问题,请高手解答一下
sp3d2 六氟合铁,d2sp3六氰合铁,都是正八面体 补充: 铁离子 最外层3d5,五个单电子填充在5个简并d轨道上,氟离子为弱场配体,铁离子利用外层的轨道与之成键,铁离子最外层:(t2g)3(eg)2,所以是sp3d2,n=4 而氰离子是强场配体,会迫使铁离子最外层电子成对,铁离子最外层:(t2g)5 还空余了两个简并的,能量较高的d轨道,n=3,它与n=4的s,p轨道杂化,成为d2sp3
F. 配位化合物应用在哪些方面
配位化学已经深入到了工业、农业、生命科学、自然科学等诸多领域
如可以应用在磁性,荧光,非线性等,配位化学对经济的发展、人们的生活等有着重要的影响
G. 无机化学学科当前有哪些研究热点
热点一 配位化学
配位化学是在无机化学基础上发展起来的一门边沿学科。配位化学在现代化学中占有重要地位。当前配位化学处于无机化学的主流,配位化合物以其花样繁多的价键形式和空间结构在化学理论发展中,以及与其他学科的相互渗透中成为众多学科的交叉点。我国配位化学研究已步人国际先进行列,研究水平大为提高。如:(1)小新型配合物、簇合物、有机金属化合物和生物无机配合物,特别是配位超分子化合物的基础无机合成及其结构研究取得了丰硕
成果,丰富了配合物的内涵;(2)开展了热力学、动力学和反应机理方面的研究,特别在溶液中离子萃取分离和均相催化等应用方面取得了成果;(3)现代溶液结构的谱学研究及其分析方法以及配合物的结构和性质的基础研究水平大为提高;(4)随着高新技术的发展,具有光、电、热、磁特性和生物功能配合物的研究正在取得进展,它的很多成果还包含在其它不同学科的研究和化学教学中。 在配位化学学科发展的同时创造出更为奇妙的新材料,揭示出更多生命科学的奥妙。从超分子之类的新观点研究分子的合成和组装,在我国日益受到重视。化学模板有助于提供物种和创造有序的组装,但是其最大的困难在于克服热力学第二定律所要求的无序。尽管目前我们了解了一些局部的组装规律和方法,但比起自然界长期进化而得到的完满而言,还有很大差距。配位化学包含在超分子化学概念之中。配位化学的原理和规律,无疑将在分子水平上对未来复杂的分子层次以上聚集态体系的研究起着重要的作用,其概念及方法也将超越传统学科的界限。配位化学与化学其它分支学科的结合研究将给配位化学带来新的发展前景。 热点二 固体化学
固体无机化学是跨越无机化学、固体物理、材料科学等学科的交叉领域,犹如一个以固体无机物的“结构”、“物理性能”、“化学反应性能”、及“材料”为顶点的正四面体,是当前无机化学学科十分活跃的新兴分支学科。
近来该领域不断发现具有特异性能及新结构的化合物。如,高温超导材料、纳米材料、Ce等。固体无机化学主要从固体无机化合物的制备和应用及室温和低热固相化学反应两大方面开展大量的基础性和应用基础性研究工作,取得了一批举世瞩目的研究成果,向信息、能源等各个应用领域提供了各种新材料。例如,在固体无机化合物的制备及应用方面,展
开了对光学材料、多孔晶体材料、纳米相功能材料、无机膜敏感材料、电、磁功
能材料及C.及其衍生物、多酸化合物、金属氢化物的研究。在室温和底热固相反应方面,进行了固相反应机理与合成、原子簇与非活性光学材料合成纳米材料新方法、绿色化学等方
面的研究。
H. 什么是络合物
配位化合物(络合物),简称配合物,又称为络合物、络盐、复合物,包含由中心原子或离子与几个配体分子或离子以配位键相结合而形成的复杂分子或离子,通常称为“配位单元”。凡是含有配位单元的化合物都称做配位化合物。研究配合物的化学分支称为配位化学。
配合物的命名方式:
(1)配合物的命名,关键在于配合物内界(即配离子)的命名
处于配合物内界的配离子,其命名方法一般依照如下顺序:自右向左是配位体数——配位体的名称[不同配位体名称之间以中圆点(·)分开] ——合——中心离子的名称——中心离子的化合价。
中心离子的化合价由外界离子电荷 /配位体电荷按配合物电荷为零计算得到,在中心离子后面用小括号加罗马数字表示。
(2)配合物可看作盐类,若内界是阳离子,外界必是阴离子;若内界是阴离子,外界必是阳离子。可按盐的命名方法命名,自右向左可命名为 某酸某 或 某化某 。
I. 关于配位化学的几个问题,希望详细解释理由,有些概念还弄不大懂
1。 不能说“凡是”。 可以说这样说:在八面体弱配场中(弱场配位体作用),中心离子d电子“一般”取高自旋态;凡是在强场配位体作用下,中心离子d电子“一般”取低自旋态。 但是,在四面配体场中,不管是强场配体还是弱场配体,中心离子d电子“一般”均取高自旋态。
2。 [CoF6]3-:F- 为弱场配体,Co3+呈d6高自选电子构型(4个电子在T2g;2个在Eg) 应该有四个未成对电子。
[Fe(CN)6]3- :CN-为非常强配体, Fe3+呈d5低自旋。一个未成对电子。
3。Ni2+, d8。 在平面正方形分子中,Ni2+ 5个d轨道分裂成四个不同的能级(由低向高,2, 1, 1, 1)。每个轨道最多可填两个电子,正好留下最高的一个轨道为空。故为低自旋。
在正面体分子中,Ni2+ 5个d轨道分裂成2个不同的能级(由低向高,E, T2)。8个电子填入正好又有两个未成对电子。故为高自旋。
4。单核羰基络合物Fe(CO)5的立体构形为:三角双锥。
5。四羰基镍的构形为:正四面体(因为d10电子构型)
J. 影响配合物稳定性的因素有哪些(配位化学)
影响配合物稳定性的最主要因素就是配合物中配体即中心原子的配位数,中心原子的配位数越大,配合物就越稳定,如乙二胺四乙酸二钠。
含有配位键的化合物就不一定是配位化合物,如硫酸及铵盐等化合物中尽管有配位键,但由于没有过渡金属的原子或离子,故它们也就不是配位化合物。当然含有过渡金属离子的化合物也不一定是配位化合物,如氯化铁、硫酸锌等化合物就不是配位化合物。
(10)配位化学主要关于哪些方面扩展阅读:
在配合物中,中心原子与配位体之间共享两个电子,组成的化学键称为配位键,这两个电子不是由两个原子各提供一个,而是来自配位体原子本身。
例如[Cu(NH₃)₄]SO₄中,Cu2+与NH₃共享两个电子组成配位键,这两个电子都是由N原子提供的。形成配位键的条件是中心原子必须具有空轨道,而过渡金属原子最符合这一条件。
离子配合物以盐的形式处理。命名配位单元时,配体在前,不同配体之间以圆点分隔,且最后一个配体与中心原子名称间要加“合”字。配体的名称列在右表,其顺序主要遵循“先无机后有机”与“先阴离子后中性分子”两条。
配体前要加上配体个数,必要时加圆括号将配体名称括起来,以避免歧义。中心原子需在其后标注氧化数,以带圆括号的罗马数字表示。正离子的配合物称氯化物、硝酸盐、硫酸盐等,阴离子的配合物则称某酸钾/钠或某酸。