① 请教一下理想气体状态方程请问之前是怎么被发现的求详细关于这个方程发现的历史。
波义耳定律(Boyle's law,有时又称 Mariotte's Law):在定量定温下,理想气体的体积与气体的压强成反比。是由英国化学家波义耳(Boyle),在1662年根据实验结果提出:“在密闭容器中的定量气体,在恒温下,气体的压强和体积成反比关系。”称之为波义耳定律。这是人类历史上第一个被发现的“定律”。盖-吕萨克1805年研究空气的成分。在一次实验中他证实:水可以用氧气和氢气按体积1∶2的比例制取。1808年他证明,体积的一定比例关系不仅在参加反应的气体中存在,而且在反应物与生成物之间也存在。1809年12月31日盖-吕萨克发表了他发现的气体化合体积定律(盖-吕萨克定律),在化学原子分子学说的发展历史上起了重要作用。盖·吕萨克定律:参加同一反应的各种气体,在同温同压下,其体积成简单的整数比。这就是着名的气体化合体积实验定律,常称为盖·吕萨克定律。由法国科学家查理(1746--1823)通过实验发现。 查理定律指出,一定质量的气体,当其体积一定时,它的压强与热力学温度成正比。即p1/T1=p2/T2
② 气体理想状态方程
描述理想气体状态变化规律的方程。质量为M的理想气体,其状态参量压强p、体积V和绝对温度T之间的函数关系为
式中μ和v分别是理想气体的摩尔质量和摩尔数;R是气体常量。对于混合理想气体,其压强p是各组成部分的分压强p1、 p2、……之和,故
pV=( p1+ p2+……)V=(v1+v2+……)RT,式中v1、v2、……是各组成部分的摩尔数。
以上两式是理想气体和混合理想气体的状态方程,可由理想气体严格遵循的气体实验定律得出,也可根据理想气体的微观模型,由气体动理论导出。在压强为几个大气压以下时,各种实际气体近似遵循理想气体状态方程,压强越低,符合越好,在压强趋于零的极限下,严格遵循。
③ 急求高一化学有关理想气体状态方程式这一知识点的详细说明!
理想气体状态方程(ideal
gas,equation
of
state
of),描述理想气体状态变化规律的方程。质量为M的理想气体,其状态参量压强p、体积V和绝对温度T之间的函数关系
公式
pV=nRT
p为气体压强,单位Pa。V为气体体积,单位m3。n为气体的物质的量,单位mol,T为体系温度,单位K。
R为比例系数,数值不同状况下有所不同,单位是J/(mol·K)
④ 化学的理想气体状态方程是高中学的还是初
一般是在高中化学中学习,初中只是涉及一些较为简单的化学知识
⑤ 化学的理想气体状态方程是高中学的还是初中第几章
你翻物理书吧,化学初中高中都没有的,至少上海的教材是没有的。物理书上学分子的那章是有的,大学的物理化学书也有。
⑥ 气体状态方程是什么
气体状态方程是PV=NRT。
N是物质的量,单位摩尔。
R是普适气体恒量为8.31pa*m3/(k *mol)。
T代表温度,单位开尔文,必须用热力学温度。
理想气体状态方程适用范围
任何情况下都严格遵守气体实验定律的气体可以看成理想气体。同时,气体实验定律是在压强不太大(与大气压相比)、温度不太低(与室温相比)的条件下获得的,因此只要在此条件下一般气体都可以近似视作理想气体。
以理想气体模型为基础,范德瓦尔斯气体模型考虑分子间吸引和排斥力后所做的修正在一定程度上可以体现真实气体的部分性质,如临界现象等。但范德瓦尔斯等温线与真实气体等温线还有明显的区别,尤其在温度较低时,因此它只能作为研究真实气体的参考模型,还有不完善和有待改进之处。
⑦ 关于物理定律:气体状态方程的分态式推导
理想气体状态方程(ideal gas,equation of state of),也称理想气体定律或克拉佩龙方程,描述理想气体状态变化规律的方程。质量为m,摩尔质量为M的理想气体,其状态参量压强p、体积V和绝对温度T之间的函数关系为pV=mRT/M=nRT 式中M和n分别是理想气体的摩尔质量和物质的量;R是气体常量。对于混合理想气体,其压强p是各组成部分的分压强p1、 p2、……之和,故 pV=( p1+ p2+……)V=(n1+n2+……)RT,式中n1、n2、……是各组成部分的摩尔数。 以上两式是理想气体和混合理想气体的状态方程,可由理想气体严格遵循的气体实验定律得出,也可根据理想气体的微观模型,由气体动理论导出。在压强为几个大气压以下时,各种实际气体近似遵循理想气体状态方程,压强越低,符合越好,在压强趋于零的极限下,严格遵循。
[编辑本段]公式
pV=nRT(克拉伯龙方程[1]) p为气体压强,单位Pa。V为气体体积,单位m3。n为气体的物质的量,单位mol,T为体系温度,单理想气体状态方程位K。 R为比例系数,数值不同状况下有所不同,单位是J/(mol·K) 在摩尔表示的状态方程中,R为比例常数,对任意理想气体而言,R是一定的,约为8.31441±0.00026J/(mol·K)。 如果采用质量表示状态方程,pV=mrT,此时r是和气体种类有关系的,r=R/M,M为此气体的平均分子量
[编辑本段]推导
经验定律
(1)玻意耳定律(玻—马定律) 当n,T一定时 V,p成反比,即V∝(1/p)① (2)查理定律 当n,V一定时 p,T成正比,即p∝T ② (3)盖-吕萨克定律 当n,p一定时 V,T成正比,即V∝T ③ (4)阿伏伽德罗定律 当T,p一定时 V,n成正比,即V∝n ④ 由①②③④得 V∝(nT/p) ⑤ 将⑤加上比例系数R得 V=(nRT)/p 即pV=nRT 实际气体中的问题当理想气体状态方程运用于实际气体时会有所偏差,因为理想气体的基本假设在实际气体中并不成立。如实验测定1 mol乙炔在20℃、101kPa时,体积为24.1 dm,,而同样在20℃时,在842 kPa下,体积为0.114 dm,,它们相差很多,这是因为,它不是理想气体所致。 一般来说,沸点低的气体在较高的温度和较低的压力时,更接近理想气体,如氧气的沸点为-183℃、氢气沸点为-253℃,它们在常温常压下摩尔体积与理想值仅相差0.1%左右,而二氧化硫的沸点为-10℃,在常温常压下摩尔体积与理想值的相差达到了2.4%。 应用一定量处于平衡态的气体,其状态由p、V和T刻划,表达这几个量之间的关系的方程称之为气体的状态方程,不同的气体有不同的状态方程。但真实气体的方程通常十分复杂,而理想气体的状态方程具有非常简单的形式。 虽然完全理想的气体并不可能存在,但许多实际气体,特别是那些不容易液化、凝华的气体(如氦、氢气、氧气、氮气等,由于氦气不但体积小、互相之间作用力小、也是所有气体中最难液化的,因此它是所有气体中最接近理想气体的气体。)在常温常压下的性质已经十分接近于理想气体。 此外,有时只需要粗略估算一些数据,使用这个方程会使计算变得方便很多。
[编辑本段]应用
一定量处于平衡态的气体,其状态由p、V和T刻划,表达这几个量之间的关系的方程称之为气体的状态方程,不同的气体有不同的状态方程。但真实气体的方程通常十分复杂,而理想气体的状态方程具有非常简单的形式。 虽然完全理想的气体并不可能存在,但许多实际气体,特别是那些不容易液化、凝华的气体(如氦、氢气、氧气、氮气等,由于氦气不但体积小、互相之间作用力小、也是所有气体中最难液化的,因此它是所有气体中最接近理想气体的气体。)在常温常压下的性质已经十分接近于理想气体。 此外,有时只需要粗略估算一些数据,使用这个方程会使计算变得方便很多。
[编辑本段]计算气体所含物质的量
从数学上说,当一个方程中只含有1个未知量时,就可以计算出这个未知量。因此,在压强、体积、温度和所含物质的量这4个量中,只要知道其中的3个量即可算出第四个量。这个方程根据需要计算的目标不同,可以转换为下面4个等效的公式: 求压力: p=nRT/v 求体积: v=nRT/p 求所含物质的量:n=pv/RT 求温度:T=pv/nR
[编辑本段]化学平衡问题
根据理想气体状态方程可以用于计算气体反应的化学平衡问题。 根据理想气体状态方程可以得到如下推论: 温度、体积恒定时,气体压强之比与所含物质的量的比相同,即可得Ρ平/P始=n平/n始 温度、压力恒定时,气体体积比与气体所含物质量的比相同,即V平/V始=n平/n始 通过结合化学反应的方程,很容易得到化学反应达到平衡状态后制定物质的转化率。
[编辑本段]注释
几个参数为: p为理想气体的压力,单位通常为atm或kPa; V为理想气体的体积,单位为L或称dm3; n为理想气体中气体物质的量,单位为mol; R为理想气体常数或称摩尔气体常数、普适气体恒量,更多值参见理想气体常数; T为理想气体的温度,单位为K ^ 在所有气体当中,构成粒子中最小的,氢气仅次之。 ^ 氦还是唯一不能在标准大气压下固化的物质。 ^ 约合739mm ^ atm为标准大气压,1atm=101.3 kPa ^ 当时查理认为是膨胀1/267,1847年法国化学家雷诺将其修正为1/273.15。 ^ 其实查理早就发现压力与温度的关系,只是当时未发表,也未被人注意。直到盖-吕萨克从新提出后,才受到重视。早年都称“查理定律”,但为表彰盖-吕萨克的贡献而称为“查理-盖吕萨克定律”。 ^ 如二氧化碳在40℃、52 MPa时,Z≈1
⑧ 1、理想气体状态方程是______pv=n(摩尔数)r(8.314)t_______
n指物质的量
T指绝对温度
譬如说知道一种气体,体积为1立方米,气压为10130Pa,温度为25摄氏度,求其物质的量.
T=25+273=298K R=8.314 n=pV/RT n=4.08868mol