A. 求一篇有关有机化学的小论文.
有机化学发展介绍及前景
一.发展介绍
1806年首次由瑞典的贝采里乌斯(J.J.Berzelius,1779—1848)提出,当时是作为无机化学的对立物而命名的。19世纪初,许多化学家都相信,由于在生物体内存在着所谓的“生命力”,因此,只有在生物体内才能存在有机物,而有机物是不可能在实验室内用无机物来合成的。1824年,德国化学家维勒(F.W�hler,1800—1882)用氰经水解制得了草酸;1828年,他在无意中用加热的方法又使氰酸铵转化成了尿素。氰和氰酸铵都是无机物,而草酸和尿素都是有机物。维勒的实验给予“生命力”学说以第一次冲击。在此以后,乙酸等有机物的相继合成,使得“生命力”学说逐渐被化学家们所否定。
有机化学的历史大致可以分为三个时期。
一是萌芽时期,由19世纪初到提出价键概念之前。
在这一时期,已经分离出了许多的有机物,也制备出了一些衍生物,并对它们作了某些定性的描述。当时的主要问题是如何表示有机物分子中各原子间的关系,以及建立有机化学的体系。法国化学家拉瓦锡(A.L.Lavoisier,1743—1794)发现,有机物燃烧后生成二氧化碳和水。他的工作为有机物的定量分析奠定了基础。在1830年,德国化学家李比希(J.von Liebig,1803—1873)发展了碳氢分析法;1883年,法国化学家杜马(J.B.A.Dumas,1800—1884)建立了氮分析法。这些有机物定量分析方法的建立,使化学家们能够得出一种有机化合物的实验式。
二是经典有机化学时期,由1858年价键学说的建立到1916年价键的电子理论的引入。
1858年,德国化学家凯库勒(F.A.Kekule,1829—1896)等提出了碳是四价的概念,并第一次用一条短线“—”表示“键”。凯库勒还提出了在一个分子中碳原子可以相互结合,且碳原子之间不仅可以单键结合,还可以双键或三键结合。此外,凯库勒还提出了苯的结构。
早在1848年法国科学家巴斯德(L.Pasteur,1822—1895)发现了酒石酸的旋光异构现象。1874年荷兰化学家范霍夫(J.H.van't Hoff, 1852—1911)和法国化学家列别尔(J.A.Le Bel,1847—1930)分别独立地提出了碳价四面体学说,即碳原子占据四面体的中心,它的4个价键指向四面体的4个顶点。这一学说揭示了有机物旋光异构现象的原因,也奠定了有机立体化学的基础,推动了有机化学的发展。
在这个时期,有机物结构的测定,以及在反应和分类方面都取得了很大的进展。但价键还只是化学家在实践中得出的一种概念,有关价键的本质问题还没有得到解决。
三是现代有机化学时期。
1916年路易斯(G.N.Lewis,1875—1946)等人在物理学家发现电子、并阐明了原子结构的基础上,提出了价键的电子理论。他们认为,各原子外层电子的相互作用是使原子结合在一起的原因。相互作用的外层电子如果从一个原子转移到另一个原子中,则形成离子键;两个原子如共用外层电子,则形成共价键。通过电子的转移或共用,使相互作用原子的外层电子都获得稀有气体的电子构型。这样,价键图像中用于表示价键的“—”,实际上就是两个原子共用的一对电子。价键的电子理论的运用,赋予经典的价键图像表示法以明确的物理意义。
1927年以后,海特勒(W.H.Heitler,1904—)等人用量子力学的方法处理分子结构的问题,建立了价键理论,为化学键提出了一个数学模型。后来,米利肯(R.S.Mulliken,1896—1986)用分子轨道理论处理分子结构,其结果与价键的电子理论所得的结果大体上是一致的,由于计算比较简便,解决了许多此前不能解决的问题。对于复杂的有机物分子,要得到波函数的精确解是很困难的,休克尔(E.Hückel,1896—)创立了一种近似解法,为有机化学家们广泛采用。在20世纪60年代,在大量有机合成反应经验的基础上,伍德沃德(R.B.Woodward,1917—1979)和霍夫曼(R.Hoffmann,1937—)认识到化学反应与分子轨道的关系,他们研究了电环化反应、σ键迁移重排和环加成反应等一系列反应,提出了分子轨道对称守恒原理。日本科学家福井谦一(1918—1998)也提出了前线轨道理论。
在这个时期的主要成就还有取代基效应、线性自由能关系、构象分析,等等。
二.21世纪有机化学的发展
在21世纪,有机化学面临新的发展机遇。一方面,随着有机化学本身的发展及新的分析技术、物理方法以及生物学方法的不断涌现,人类在了解有机化合物的性能、反应以及合成方面将有更新的认识和研究手段;另一方面,材料科学和生命科学的发展,以及人类对于环境和能源的新的要求,都给有机化学提出新的课题和挑战。有机化学将在物理有机学、有机合成学、天然产物学、金属有机学、化学生物学、有机分析和计算学、农药化学、药物化学、有机材料化学等各个方面得到发展。
物理有机化学
物理有机化学是用物理化学的方法研究有机化学的科学。
主要的研究发展方向有:
1.运用现代光谱、波谱和显微技术表征分子结构,探索其与性能(物理、化学、生理、材料……)的关系;新分子和新材料的设计和理论研究。
2. 反应机理(协同、离子、自由基、卡宾、激发态、电子转移……) 和活泼中间体。
3. 主—客体化学;分子间弱相互作用和超分子化学;分子组装和识别;功能大分子和小分子相互作用及信息传递。
4. 新的计算化学方法、分子力学和动力学、分子设计软件包的开发;与实验的互补与指导。
有机合成化学
研究从较简单的前体小分子到目标分子的过程和结果的科学。
有机合成化学是有机化学的主要内容。70年代以来,有机合成步入了一个新的高涨发展时期。
有机合成的基础是各种各样的基元合成反应,发现新的反应或用新的试剂或技术改善提高已有的反应的效率和选择性是发展有机合成的主要途径。
合成反应方法学上的一个重大进展是大量的合成新试剂的出现,特别是元素有机和金属有机试剂。利用光、电、声等物理因素的有机合成反应也要给以适当的重视。
高选择性试剂和反应是有机合成化学中最主要的研究课题之一,其中包括化学和区域选择控制,立体选择性控制和不对称合成等。后者是近年来发展得较快的领域,包括了反应底物中手性诱导的不对称反应,化学计量手性试剂的不对称反应,手性催化剂不对称反应,利用生物的不对称合成反应和新的拆分方法等。反映过渡态反应部位的构象是反应选择性的关键因素
复杂有机分子的全合成一直是最受关注的领域,体现合成化学的水平,与生物科学相结合,重视分子的功能则是合成化学家的新热点。
有机合成化学的发展方向有: Z n& V& a+
1.合成方法学 新概念、试剂、方法、反应的运用,实用的在温和条件下经过较简单的步骤高选择性高产率地转化为目标分子。
2. 具独特性能(生理、材料、理论兴趣)的分子的(全)合成。
3. 资源可持续利用的无害原料、原子经济和环境友好的反应介质、过程和工艺路线、绿色安全的产品。
4. 学科新生长点、交叉点的扩展和手性、仿生等新技术的运用。
化学生物学
在分子水平上研究生物机体的代谢产物及其变化规律性;利用有机化学的方法研究调控生命体系过程的科学。
化学生物学是顺应20世纪后半叶生物学日新月异的发展,在化学学科的原有的几个分支——生物有机学、生物无机化学,生物分析化学、生物结构化学以及天然产物化学的基础上提出的新兴学科。
化学生物学研究目前大致包括以下几个部分:
1.从天然化合物和化学合成的分子中发现对生物体的生理过程具有调控作用的物质,并以这些生物活性小分子作为探针和工具,研究它们与生物靶分子的相互识别和信息传递的机理。
2.发现自然界中生物合成的基本规律,从而为合成更多样性的分子提供新的理论和技术。
3.作用于新的生物靶点的新一代的治疗药物的前期基础研究。
4.发展提供结构多样性分子的组合化学。
5.对于复杂生物体系进行静态和动态分析的新技术等。
金属有机化学
研究金属有机化合物[各种不同类型的C—M(杂原子)]的结构、合成、反应及其应用的科学。
主要的研究发展方向有:
1. 金属有机化学基元反应及其机理;各种不同类型的C—H(C、杂原子)的选择性形成、切断。
2. 导向合成化学和聚合反应的金属有机化学;金属有机化合物的新型高效催化作用及其应用。
药物化学和农药化学
药物化学是有机化学的一个重要分支,与生命科学密切相关。它是研究与人类疾病和健康、植物保护等生命现象有关的创新药物研制的科学。
药物化学的发展领域:
1. 高通量生物活性筛选;药物作用靶点和基于构效关系指导下的分子设计和组合化学学库设计。
2. 生化信息学的应用和创新、仿生及先导药物的发现、开发。
3. 非传统机制的药物合成、分析和功能测试。
有机新材料化学
有机材料化学是研究以有机化合物为基础的新型分子材料的开发的科学。现代科学技
术突飞猛进的发展,尤其是信息技术的发展,对材料科学提出了更高的要求,迫切需要研究新材料。相对于其他功能材料,以有机化学为基础的分子材料具有以下的特点:1.化学结构种类繁多,给人们提供了很多发现新材料的机遇;2.运用现代合成化学的理论和方法,能够有目的的改变分子的结构,进行功能组合和集成;3.运用组装和质组装的原理,能够在分子层次上组装功能分子,调控材料的性能。
有机材料化学的发展方向有以下:
1. 有机固体、半导体、超导体、光导体、非线性光学、铁磁体、聚合物材料。
2. 具有特殊和潜在光、电、磁功能分子的合成和器件有序组装。
3. 功能分子的结构、排列、组合和物化性能、机制的关系,新分子材料的设计和应用。
有机分离分析化学
研究有机物的分离、定性定量分析和结构解析的科学。
研究方向:
1. 基于近代光谱、波谱、色谱技术的进步对微(痕)量有机物的高效分析鉴定。
2. 复杂的生物活性大分子和混合物中的有效组份及环境样品的分离分析方法的建立。
绿色化学
面对环境保护的重大压力,绿色化学提出来一些新的观念,起基本点是,通过研究和改进化学化工反应以及相关的工艺,从根本上减少以至消除副产物的生成,从源头上解决环境污染的问题。以此为目的的研究所带来的新的高效化工工艺也会大大提高经济效益。可以看出,绿色化学是对世纪化学化工研究的重要发展方向,是实现可持续发展的重要保障。
本领域的发展和研究:
1.发展高效、高选择性的“原子经济性”反应其中,催化的不对称合成反应仍是获得单一性分子的方法之一,应加强有关的新反应、新技术、新配体及催化剂的研究,加强开发和改进与绿色有关的生物催化的有机反应的研究。
2.开发符合绿色化学要求的新反应以及相关的工艺降低或者避免使用对环境有害的原料,减少副产物的排放,直至实现零排放。
3. 环境友好的反应介质的开发和利用其中可包括水、超临界流体、近临界流体、离子液体等,以替代传统反应介质的研究。
4.可重复使用材料、可降解材料和生物质的利用以及生活中废弃物的再利用。
在我们的生活中,有机化学的身影无处不在。能否好好的利用和发展有机化学也将在一定程度上影响着我们生活水平的高低。相信随着科学理论的发展,更多的基础学科相互交融,将在更多的领域发挥更大的作用。
B. 药物化学课程中通过哪些研究内容去发现一个安全有效的药物
药物发现的新方法及其优势
根据药物研究中采用的方法和技术特点,药物研究的全过程大概可以分为三个主要阶段:药物发现;药物的临床前研究;药物的临床研究。过去,药物的发现局限于对天然产物的提取物的筛选或从化合物的专利中寻找线索,而且化合物的合成也是一次只生产一种化合物,一次只发生一个反应,效率很低。
一、 化学基因组学的简介
化学基因组学(chemogenomics) ,是联系基因组和新药研究的桥梁和纽带。它指的是使用对确定的靶标蛋白高度专一的小分子化合物来进行基因功能分析和发现新的药物先导化合物。化学基因组学整合了组合化学、基因组学、蛋白质组学、分子生物学、药物学等领域的相关技术,采用具有生物活性的化学小分子配体作为探针,研究与人类疾病密切相关的基因、蛋白质的生物功能,同时为新药开发提供具有高亲和性的药物先导化合物。
所谓化学基因组学药物发现模式,就是首先通过功能基因组研究,从细胞和分子层次弄清疾病发生的机制与防治机理,发现并确证药物作用的靶标,然后有目的的寻找药物。化学基因组学药物发现模式的一般程序包括靶点发现、组合化学合成、高通量筛选等。
二、 化学基因组学药物发现模式的关键过程及其优势
1. 靶点发现与药物设计
寻找药物靶点是新药开发的第一步。人类基因计划的研究结果为揭示人类疾病机理提供了大量的信息,这些与疾病相关的基因或者蛋白质都可以作为潜在的药物靶点。利用基因与蛋白质的对应关系,分析蛋白的功能,明确其对应于何种疾病;并对蛋白质进行纯化、结晶,利用X晶体衍射技术,确定蛋白的结构,从而寻找到药物作用的靶点。
目前的一些基因组学技术为药物最佳的靶标的确认提供了机遇。这些技术可以分为:致病蛋白质确认的综合技术(global strategy) 和致病蛋白质部分表征的靶标专一技术(target – specific strategy) 。前者着眼于药物靶标的确认和序列分析方面,包括计算机同源校准,差示基因表达分析,整体蛋白组分析;后者则对基因功能给出合理的阐释,包括基因敲除(gene knockout) ,反义mRNA 和核酶抑制以及计算机模拟对基因产物结构和功能的预测。在疾病细胞或动物模型的活性检测及临床研究中可以进一步了解靶点与疾病间的关系,实现对靶基因或蛋白质的功能分析,从分子水平上揭示疾病机理及其治疗机制。
在靶标生物大分子的功能被阐明,三维结构被测定后,药物分子的设计就可以开始了。随着计算机科学的发展,出现了功能先进的图形工作站,使得许多药物分子设计的新方法快速发展。20世纪90年代,药物分子设计已成为一种实用化的工具介入到了药物研究的各个环节,并已成为创新药物研究的核心技术这一。据统计,由于分子模拟和计算机辅助药物设计的介入,使得药物研发的周期缩短了0.9年。
药物设计方法可分成两类:基于小分子的药物设计(LBDD)和基于受体的生物大分子结构的药物设计(SBDD)。LBDD主要根据现有药物的结构、理化性质与活性关系的分析,建立定量构效关系或药效基团模型,预测新化合物的活性;SBDD根据受体生物大分子(蛋白质、核酸等)的三维结构(晶体结构、核磁共振结构、低温电镜结构或计算机模拟结构),用理论计算和分子模拟方法建立小分子-受体复合物的三维结构,预测小分子-受体的相互作用,在此基础上设计与受体结合互补的新分子。
2. 组合化学合成
组合化学(combinatorial chemistry)最初是为了满足高通量筛选技术对大量的新化合物库的需求而产生的。它为高通量筛选提供了物质基础,扩大了药物筛选的范围,适应了化学基因组学快速筛选的要求。组合化学可以通过可靠的化学反应系统合成大量的有机分子。根据同一种受体大分子的三维结构可设计出不同的先导化合物,每一个先导化合物可以作为一种母核( scaffold) ,然后对母核进行结构改造,用不同的基团和分子碎片由母核的不同部位向受体的不同方位“延伸”,这样可得到不同的化合物。在药物筛选过程中,不同分子结构的样品库,可用于不同疾病、不同模型的筛选。
组合合成在药物发现方面应用最早的一个例子是在由Lilly研究实验室发表的一篇文章中描述的肽库合成。之后,又用于开发HIV蛋白酶的潜在五肽抑制剂。除了肽库的合成,组合化学在其他化合物库的合成上也取得了很大的进步。到目前为止,组合化学在发展了十余年后,最大的贡献是提供了一套全新的研究思维模式,即组合模式。组合化学的根本是如何从多样性的化学库中将最期望得到的分子筛选出来。
组合化学库的合成通常使用固相化学技术。固相合成技术包括4个部分:(1)固定相;(2)连接基团;(3)活性官能团的选择性保护和脱保护策略;(4)化学反应及条件优化。另外除了使用固相化学合成之外,组合化学有时候也采用液相法。有过有合适的化学条件,如产率很高或通过简单的液液萃取就可以获得产物,液相化合物库合成也是极其合适的。
组合化学和与之相适应的筛选方法高通量筛选技术的有机结合,促进了新药开发领域的发展,已经成为新药发现和开发过程中的核心技术。尤其是小分子化合物库的引入更是让组合化学在药物发现的领域更加具有现实意义。
3. 高通量筛选
高通量筛选(HTS) 是20 世纪后期发展起来的一项新技术,具有快速、微量、高特异性、高灵敏度、高度自动化和充分利用药用资源的特点,常和组合化学联合使用。HTS 是化学基因组学技术平台的关键技术,为药物发现提供了新的途径,提高了药物筛选速度。例如利用功能超高通量筛选(uHTS) 鉴定出的肾上腺素G蛋白偶联受(GPCR) 靶标的先导化合物的化学空间物理常数,与MDL 药物数据库(MDDR) 中调节同一靶标的已知化合物的参数进行比较,显示新的先导化合物在化学空间上与以往的调节剂有所不同,同时显示新的靶标作用,它给出了药物发现和靶标确证的唯一可选择的先导化合物结构。
高通量药物筛选所采用的是细胞水平和分子水平的筛选模型,由这些模型所筛选出来的结果,要根据具体情况加以分析,而且需要采用必要的其他试验方法加以验证:
(1)样品与靶点的相互作用。药物的治疗作用,多数是由于药物与机体内生物大分子特定位点(靶点) 相结合而产生的。药物与靶点相互作用,达到相互间结合,根据分子间相互作用的原理建立筛选模型,可以筛选出的与特定靶点具有亲和力的样品。
(2)对酶活性的影响。在以酶抑制药为筛选目标进行筛选时,根据分子间相互作用原理筛选具有亲和力的化合物,也可以根据酶活性作为检测指标筛选影响酶活性的化合物。采用酶活性(观察反应底物的减少或产物的增加) 作为观察指标,可直接说明药物的作用,这种筛选模型在高通量筛选中被广泛采用。
(3)对细胞的作用。以整体细胞作为药物作用的对象,观察被筛选样品对整体细胞的影响。这种作用方式可能是通过某一具体的靶点,也可能是作用于多靶点,其产生的效应是在整体细胞条件下获得的,可以反映整体细胞对药物作用的反应。
采用高通量筛选方法发现和开发药物一般有如下几个步骤:
(1)初筛和复筛。初筛以后,选择具有活性的化合物,采用系列浓度,进行同一模型的复筛,阐明其对该靶点的作用特点、作用强度和量效关系,由此发现活性化合物(样品) 。
(2)深入筛选。在初筛和复筛的基础上,将得到的样品,采用与初筛不同但相关的分子、细胞模型作进一步的筛选,包括证明样品的选择性、细胞毒性,以及其他性质。
(3)确证筛选。对深入筛选获得的先导化合物或优化后被选定的活性最好的化合物进行更深入广泛的研究,包括药理作用、药物代谢过程、一般毒性等多方面的筛选,以确定其开发前景。将符合要求的样品确定为药物候选化合物,进入开发研究程序,即临床前研究,为临床研究准备必要的资料。
三、总结
化学基因组学药物发现模式作为一种药物发现的新方法,结合了组合化学、高通量筛选、计算机辅助药物设计、蛋白质组学等等技术,加快药物发现的速度。另外,化学基因组学作为一种新的药物研发模式,在小分子药物研究中有独特的优势,促进了小分子药物的开发进程。而药物发现作为药物研究的第一步,它的效率提高,使整个医药水平、制药工业的发展上了一个新的台阶。
参考文献:
[1] 尚鲁庆,徐文方。化学基因组学与药物发现。食品与药品,2005,7(3):5-8.
[2] 杜冠华。 新药发现与高通量药物筛选。医药导报,2001 ,6( 20 ):339-340.
[3] Selzer P M, Brutsche S , Wiesner P , et al . Target2based drug discovery for the developent of novel antiinfectives[J ] . Int J Med Microbiol , 2000 ,290(2) :191 - 201.
[ 4] Gonzalez J E , Negulescu P A. Intracellular detection assays for high throughlput screening[J ] . Curr Opin Bitechnol , 1998 ,9 (6) :624 – 631
[5]彭涛。组合化学及其在药物开发中的应用。计算机与应用化学,2005,22(2):103-107.
[6]王宝雷,李正名,臧洪俊. 基因组学对基于结构的药物设计的影响[J] . 化学进展,2002 ,15(6):505 - 510.
C. 什么是高通量筛选什么是组合生化
组合化学用来快速合成小分子化合物的库,高通量筛选用来快速测试这些小分子的生物活性。
生物技术这个说法就大了,高通量筛选属于生物技术,组合化学是属于化学的。
新药研发里面,药物化学一块里面组合化学在没什么活性数据的时候,是一个不错的选择,但是如果结构活性关系已经有了,合成就会更针对性,组合化学用处就少了。生物活性也可以不用高通量筛选,但是效率就太差了。
D. 组合化学的定义及特点
组合化学是一门将化学合成、组合理论、计算机辅助设计及机械手结合一体,并在短时间内将不同构建模块用巧妙构思,根据组合原理,系统反复连接,从而产生大批的分子多样性群体,形成化合物库(compound library),然后,运用组合原理,以巧妙的手段对库成分进行筛选优化,得到可能的有目标性能的化合物结构的科学。
组合化学与传统合成有显着的不同。传统合成方法每次只合成一个化合物;组合合成用一个构建模块的n个单元与另一个构建模块的n个单元同时进行一步反应,得到n×n个化合物;若进行m步反应,则得到(n×n)m个化合物。有人作过统计,一个化学家用组合化学方法在2~6周的工作量,十个化学家用传统合成方法要花费一年的时间才能完成。所以,组合化学大幅度提高了新化合物的合成和筛选效率,减少了时间和资金的消耗,成为20世纪末化学研究的一个热点。
组合化学的合成技术及对传统药物合成化学的冲击组合化学合成技术
组合化学合成包括化合物库的制备、库成分的检测及目标化合物的筛选三个步骤。化合物库的制备包括固相合成和液相合成两种技术,一般模块的制备以液相合成为主,而库的建立以固相合成为主。
固相技术 液相技术
优点 纯化简单,过滤即达纯化目的,反应完全;合成方法可实现多设计;操作过程易实现自动化 反应条件成熟,不需调整;无多余步骤;适用范围宽。
缺点 发展不完善;反应中,连接和切链是多余步骤;载体与链接的范围有限 ;反应可能不完全;纯化困难;不易实现自动化。
1多针同步合成
多针同步合成是固相合成的基该方法。将96只带有载体针的小棒固定在同一块板上,其位置与96孔滴度板相对应,然后在96个孔中分别加入不同的反应物及试剂,即可同步合成96个样品。
Dewitt等对此法进行改进,使用下图装置(装置图 动画),在玻璃管的上端加一个硅橡胶垫片,可用注射器加样,管的外面有一个列管式夹层,可对反应物加热或冷却。
他们以此装置合成40个乙酰脲衍生物和具有生理活性的1,4-苯并二氮卓衍生物。(反应式6-43 动画)
2混合-分离随机合成法
1991年Lam等报道了以树脂为载体,进行随机合成,可以同步合成上百万个分子,并提出一珠一肽的概念。首先将19种保护的天然氨基酸分别连在树脂上,混合脱除保护,再分成19份分别与19种保护氨基的氨基酸进行偶联反应,可以得到19×19种连在树脂上的二肽,如此进行五次,可合成出195=
2,476,099种连在树脂上的侧链保护的五肽,脱除侧链保护但不从树脂上切下,可得到由近2.5万连在树
脂上的不同肽段的五肽组成的肽库。此法保证同一树脂上的肽段序列是相同的,即“一珠一肽”。
用该肽库与受体分子反应,可形成显色络合物的肽段树脂就会由无色变为有色,在显微镜下把显色的树脂拣出,用8摩尔/升的盐酸胍洗掉络合物后,用微量多肽测序仪即可测出该肽序列。
Lam等用该法合成的五肽库对抗β-内啡肽的单克隆抗体进行了亲和性研究,找到天然抗原位点肽的六个有效类似物,还用该肽库进行了结合抗生蛋白链菌素的研究,找到一些有结合作用的肽段。
(混分法示意图)
一珠一肽法的优点是可以同步合成大量的化合物,并可对多种受体进行筛选,但只适合于合成能微量测定的样品,如多肽和寡核苷酸,应用范围不广。
3编码确定结构的同步合成
编码确定结构的同步合成法在同步合成时,引入另一个容易合成且在合成后可以通过微量分析测定结构的分子,以该分子作为密码来确定与其同时合成的目标分子的结构。
Mikolaiev 等在1993年报道了Selectide编码合成方法,即在一个树脂上合成一个非肽类化合物或其它不可测序的化合物时,在其上合成一个作为编码用的多肽。
该法常用含多功能团的化合物如Lys等作为目标分子与编码分子的连接点,每一个氨基酸代表目标分子中的一个组成部分,在混合-分离合成法中,每安装一个构建模块,就向目标分子的编码臂上偶联一个代表该构建模块的氨基酸,合成并测定活性后,活性分子结构可以通过测定同一树脂珠上多肽的序列而给出。
药物的开发是一个耗时耗费的过程,据报道,一种新药从开始研制到上市,需8~10年的时间,研究费用高达2~5亿美元。药物的研制历程之所以这样长,很重要的原因是先导化合物的发现与优化速度缓慢。组合化学能够大大加快化合物库的合成及筛选速度,从而大大加快了新药的研制速度。
应用
1新材料的开发
十年来,已报道许多以组合化学方法开发的新材料,如抗磁材料、磷光材料、介电材料、铁电材料、半导体、催化剂、沸石和聚合物及复合材料等。
2催化剂筛选
催化剂传统的筛选法是试凑法,工作量大,效率不高。
科学家们用各种方法设计和建立了催化剂库,对催化剂进行快速筛选,已取得不少成果。
美国Pure大学开发一种自动制备并检测沸石分子筛的系统,每个式样板有8~19个反应室(150-300微升),每次可同时试验六块板,产品用离心方法回收,最后形成的组合库用X-射线散射技术检测或用电子显微镜筛选,仅消耗很少试剂就取得很多数据。
由于催化反应是放热反应,有活性的催化剂可红外成相。Steven J.Taylor和James P.Morken利用红外热谱仪对载有3000多个潜在催化剂库的聚合物珠进行筛选,找出两个活性有机化合物作为亲核酰化的有效催化剂。
Wilhelm F.Maier 和助手组装了由37种氧化物组成的催化剂库,测定其在100℃对己烯-1氢化的催化活性,红外成相表明有四个点比衬底热,即表明这四个点有活性。活性与非活性点温差非常小,不到0.7℃,但像0.1℃的温差也能可靠地检测。
加州大学Selim M.Senkan教授发展了一基于激光的方法,以快速筛选环己烯脱氢成苯的固相催化剂库,筛选出由80%铂、10%钯和10%铟组成的三元混合物,比库中其他成员生成的苯多。66个成员库使用全自动装置制备,制备和筛选只需两天半时间。
3新药物的合成与筛选
迄今为止,组合化学最多的应用是新药物的设计、合成和筛选方面。R.F.Service在Science撰文,认为组合化学方法创制的新药将冲击21世纪的药物市场。美国及欧洲已涌现一批组合化学公司,杜邦制药公司的研究者将组合化学(随机设计,合理筛选)与合理药物设计(合理设计,随机筛选)两种不同的方法联用设计合成了新奇的胶原酶抑制剂,能够抑制引起癌转移和关节炎的胶原酶(Coll-agenases),这些工作有利于获得更加有效的抑制癌细胞转移和治疗关节炎的新药。
Beatrice Ruhland 以组合化学法,把同手性氨基酸衍生的胺键合到Tenta GelS树脂上,并与非手性烯酮和芳香醛或α,β-不饱和醛发生环加成反应合成了一些3-氨基-2-氮杂环丁酮--制备α-酰胺基-β-内酰胺,包括许多重要的抗生素的前体。发现该反应有很高的cis选择性,二种非对映体cis β-内酰胺比率为1:1到3:1。
1994年,Ellman小组应用多针同步合成系统二次共合成192种结构不同的1,4-苯并二氮杂卓衍生物,并测定了这些化合物对缩胆囊肽(CCK)A受体的结合作用。
Haskell-Luevano,C.等1999年报道以组合化学法固态合成951个化合物,这些化合物用显色生物试验在10μM测试,显示对MC1R分型的活性。选择其中二种重新合成、纯化和鉴定,一种鉴定结构为2的,对鼠的MC1R分型EC50为42.5μM,为进一步研究非肽杂环兴奋剂提供新的起点。
4新农药的合成和筛选
1962年,美国女作家蕾切尔·卡逊撰写《寂静的春天》一书,提出农药杀害野生动物、危害儿童健康、污染表土的问题,引起各国的关注。随后,一批高毒、高残留农药被禁用,并促使农药的研究和生产向提高原药固有的活性及其使用效率和效果,降低农药用量,提高农药对人、畜和作物的安全性,改善与环境的相容性,减少对非靶标生物和生态环境的负面影响的方向发展。
十年来,组合化学法结合高通量的筛选,大大加快农药研究开发的速度,如艾格福公司每年可合成5万个新化合物;诺华公司的筛选能力是每年10万个新化合物;捷利康公司1995~1997年,化合物的筛选能力从每年1万个提高到10万个,1998年为12万个,2000年为20万个。
John J.Parlow 利用分子反应活性的互补性/分子识别技术(CMR/R)平行合成具有除草活性的取代杂环酰胺化合物,生物试验结果表明化合物3有一定的除草活性。(反应式6-46 动画)
他们把3(结构式3)分成两部分。先对A部分的杂环进行改造,改变环上的原子和取代基,得到56个化合物,但生物试验表明它们的活性不如3大;接着对B部分进行改造,以不同的取代基取代苯环C或D的不同部位,得到68个化合物,生物试验表明化合物4(结构式4)的生物活性是3的4倍。
展望
21世纪是绿色化学的世纪。绿色化学要求将原子重新巧妙组合,实现零排放的原子经济反应,生产环境友好产品。所以,组合化学是实现绿色化学的必经之路。
正如中国军事医学研究所胡文祥所长在《广义组合化学》一文所指出的:任何成功的事情或事物都是巧妙的合理的组合。1234567七个音符可以组合成最美妙的音乐旋律,赤、橙、黄、绿、青、蓝、紫七色光可以组合成美丽的画卷和五彩缤纷的世界;喜、怒、哀、乐、悲、恐、惊七种感情可以组合成斑斓的人生。我们相信元素周期表上109种元素的巧妙组合,将为绿色化学、为美化地球环境谱写不朽的篇章。组合化学从一诞生起,便显示出强大的生命力,十余年来,在有机(包括药物)领域得到了蓬勃发展。21世纪的化学将更多地向生命、材料领域渗透,对于这个领域内的合成化学家来说,组合化学提供了一条新的化学合成思路。虽然还面临着诸如缺乏系统有效的平行检测手段等困难,但随着电脑技术和自动化水平的提高及新型检测仪器的研制,这些困难将逐步被解决。
作者:吉民 定价:¥ 35.00 元
出版社:化学工业出版社 出版日期:2004年06月
ISBN:7-5025-5500-5 开本:16 开
类别:有机化学化工 页数:304 页
简介
本书从组合化学的角度出发,详细分析了合成策略,以此为基础着重介绍了固相组合和液相组合的合成方法、组合化学的筛选及低聚物的合成等内容。同时强调了组合化学在高通量筛选和新药发现中的作用,并且对组合化学的进展做了展望。
目录
第1章组合合成策略7
混合?裂分法7
树脂珠技术9
茶叶袋法10
平行合成法10
使用树脂珠的反应器械14
多中心合成法15
空间定位平行合成法15
混合试剂合成法16
参考文献16
第2章组合合成方法——固相组合合成18
载体19
树脂珠19
多针22
圆片24
薄片25
结合分子28
酸不稳定结合分子31
碱不稳定结合分子34
安全制动结合分子37
氨基甲酸酯结合分子38
硅结合分子/无痕迹结合分子40
光不稳定结合分子41
烯丙基官能团化结合分子42
多处可裂(多官能团)结合分子42
多中心结构库模板43
方酸44
经Baylis?Hillmann反应得到的模板45
2?溴乙酰基)吡咯作为模板51
用烯酮作为模板54
反应类型59
亲电和亲核取代反应60
取代反应63
杂环合成63
环加成反应66
缩合反应67
酰胺形成及相关反应69
及相关反应69
麦克尔加成69
烯烃形成69
氧化反应69
还原反应69
参考文献70
第3章组合合成方法——液相组合合成76
与固相组合合成相比较77
混合物的合成78
已用于液相组合化学的反应80
酰化反应80
胺的磺化80
脲、硫脲和氨基甲酸酯的制备81
烷化和加成反应81
还原胺化81
胺的芳基化81
经缩合反应形成碳?碳键81
钯催化的碳?碳键的形成81
氢化和还原81
多组分反应81
环化反应82
其他反应82
反应顺序83
纯化85
固相束缚试剂85
固相萃取86
液相萃取88
氟的合成89
在可溶性聚合物载体上的合成91
6树枝状载体93
高聚物试剂的使用94
参考文献95
第4章组合化学库的筛选97
混合物库97
在珠筛选法97
解缠绕法98
编码105
多处可裂的结合分子115
含单独化合物的库115
参考文献116
第5章组合化合物库的鉴定118
红外光谱法(IR)118
傅里叶?红外显微镜学118
衰减全反射光谱127
其他的红外光谱方法129
核磁共振法130
在珠分析法130
高分辨质子魔角旋转核磁共振133
3质谱138
组合化合物分析138
样品分析与纯化的高通量系统154
参考文献160
第6章组合合成的低聚物165
6?1类肽165
亚单体法165
单体合成法167
3拟肽物167
彻底烷基化多肽168
类肽169
低聚氨基甲酸酯169
磺酰肽和插烯磺酰氨肽170
聚?N?酰胺172
寡脲174
线性寡脲174
低聚环脲和环硫脲174
硫脲175
脲类肽175
含杂环低聚物175
聚甲基吡咯和咪唑175
含噻唑环和?唑环的多肽176
寡聚四氢呋喃176
聚异?唑啉177
寡聚噻吩177
含吡咯啉酮的低聚物177
其他合成低聚物178
反假肽178
插烯多肽179
氮杂化物和氮杂多肽179
多肽180
四取代氨基酸的多肽180
聚羟基化合物181
多肽核酸181
肽键在一个位置上的修饰182
硫代酰胺假肽182
酰胺键被还原的多肽182
羟基酰胺键的多肽183
羟乙胺肽键电子等排体184
参考文献184
第7章自动组合合成188
单个化合物的平行合成189
实验室制备效率189
实验室自动化设备190
分散型自动化系统191
中心控制和功能型多组分系统192
中心自动的样品导向多组分系统192
高通量纯化和分析193
自动纯化193
微反应系统简介194
参考文献195
第8章组合生物合成196
克隆生物合成功能基因簇196
遗传工程及新药研究197
1靶向基因失活197
单基因表达198
基因簇的表达202
合成起始单位变异203
酶亚基的重组装203
组合生物合成的应用212
寡糖类抗生素生物合成基因的运用212
其他来源基因的运用——地球上的新化合物212
对酶变换其底物特异性212
参考文献213
第9章用作化学传感器的分子接受器215
超分子识别部位215
大环肽类217
组合接受器库218
环肽作为化学传感器的超分子识别部位219
参考文献222
第10章高通量筛选与新药发现224
高通量药物筛选224
对高通量筛选的要求225
高通量药物筛选的组成226
化合物资源226
微反应系统227
筛选模型227
高灵敏度检测系统229
自动化操作系统230
数据采集传输处理系统231
高通量筛选的特点231
高通量药物筛选的过程232
高通量筛选系统简介233
虚拟筛选234
参考文献236
第11章催化反应的高通量实验238
1HTE技术用于催化反应238
库设计和试验策略240
合成方法242
测试方法243
多路径反应器244
参考文献246
第12章计算机辅助化合物库设计247
化合物库设计理论248
相似性原则249
分子描述250
二维指纹250
三点药效团251
其他描述251
分子相似性方法252
亲和力指纹252
特征树253
碎片的自动化结构重合254
描述有效性研究254
和3D描述的对比254
随机设计和合理化设计的比较255
三点药效团和2D指纹比较256
局部相似——相似性半径256
化合物选择技巧257
设计组合化合物库258
参考文献262
第13章组合化学进展264
丝氨酸及半胱氨酸蛋白酶抑制剂265
真菌I型蛋白香叶基转移酶(GGTase?1)抑制剂267
KDR受体酪氨酸激酶抑制剂268
自动形成靶向化合物库设计270
优先GPCR配体272
拮抗剂274
胺的合成277
多样性导向合成280
Katritsky苯并三唑固相合成法283
多组分缩合285
E. 组合化学的发展历史
1963年,Merrifield利用固相技术合成了多肽,作到了产物与反应试剂的有效分离,为组合化学的发展奠定了基础。
20世纪80年代中期以后,一些科学家开始将组合原理应用到化学合成领域(最初主要是肽库的合成),其中以Houghten的“茶叶袋”(teabags)法和Furka的混分(mixand split)最具代表性,混分法的出现更是标志着组合化学进入了一个崭新的发展阶段。
近六七年来伴随着电脑的普及和自动化水平的提高,组合化学由最初的药物合成领域延伸到有机小分子及无机材料合成领域,大大加速了新药、新材料的发现速度。
F. 什么是组合化学
组合化学(combinatorialchemistry)是近十几年来刚刚兴起的一门新学科。经过短短的十余年特别是近六七年的发展,组合化学已渗透到药物、有机、材料、分析等化学的诸多领域,随着自动化水平的提高,组合化学已成为目前化学领域最活跃的领域之一。
组合化学的出现大大加速了化合物的合成与筛选速度,有人作过这样的统计:1个化学家用组合化学方法2~6周的工作量,就需要10个化学家用传统化学方法花费一年的时间来完成。由此,组合化学对很多领域的化学合成方法带来了冲击。组合化学的出现是药物合成化学上的一次革新,是近年来药物领域的最显着的进步之一,以至于国外许多医药公司的实验室纷纷成立了专门从事组合化学的研究小组;组合化学出现以前,新材料的开发一直沿用试凑法(try and derror),效率很低,而且浪费了大量的人力、物力. 进入20世纪90年代以来,组合化学在材料合成领域取得了突破性进展,成为未来开发新材料的必由之路。正因如此,组合化学从其一诞生起,便引起了科学家的广泛兴趣,发展也可谓日新月异。本文拟从组合化学的发展历史、原理、方法及应用等几个方面做一简单介绍。
1、组合化学的发展历史
组合化学起源于人们对自然界认识、研究的加深。众所周知,自然界仅有20种天然的氨基酸,而这些氨基酸却组成了千千万万种形态、功能各异的蛋白质。原因有很多,其中很重要的一点就是氨基酸在构成蛋白质时,彼此之间有很多种不同的连接顺序,这就是组合原理的体现。例如,20种氨基酸,根据组合原理,可形成206种不同的六肽(而且还不考虑空间构象)。1963年,Merrifield利用固相技术合成了多肽,作到了产物与反应试剂的有效分离,为组合化学的发展奠定了基础。20世纪80年代中期以后,一些科学家开始将组合原理应用到化学合成领域(最初主要是肽库的合成),其中以Houghten的“茶叶袋”(teabags)法和Furka的混分(mixand split);最具代表性,混分法的出现更是标志着组合化学进入了一个崭新的发展阶段。近六七年来伴随着电脑的普及和自动化水平的提高,组合化学由最初的药物合成领域延伸到有机小分子及无机材料合成领域,大大加速了新药、新材料的发现速度。
2、组合化学的定义
我们可以为组合化学下这样一个定义:组合化学是一门将化学合成、组合理论、计算机辅助设计及机械手结合一体,并在短时间内将不同构建模块用巧妙构思,根据组合原理,系统反复连接,从而产生大批的分子多样性群体,形成化合物库(compound library),然后,运用组合原理,以巧妙的手段对库成分进行筛选优化,得到可能的有目标性能的化合物结构的科学。
3、组合化学在有机领域的应用
组合化学在有机领域最引人注目的成就是对传统药物合成化学的冲击。药物的开发是一个耗时耗费的过程,据报道,一种新药从开始研制到上市,需8~10年的时间,研究费用高达2~5亿美元。药物的研制历程之所以这样长,很重要的原因是先导化合物的发现与优化速度缓慢。组合化学能够大大加快化合物库的合成及筛选速度,从而大大加快了新药的研制速度,经过十几年的发展,组合化学方法已成为新药研制的必由之路,它的出现被誉为近年来药物合成领域的最显着的进步之一。
4、展 望
组合化学从一诞生起,便显示出强大的生命力,十余年来,在有机(包括药物)领域得到了蓬勃发展。21世纪的化学将更多地向生命、材料领域渗透,对于这个领域内的合成化学家来说,组合化学无疑为他们提供了一条新的化学合成思路。虽然目前还面临着诸如缺乏系统有效的平行检测手段等困难,但我们相信,随着电脑技术和自动化水平的提高及新型检测仪器的研制,这些困难将逐步被解决。21世纪的组合化学发展前景一片光明。
G. 计算机辅助药物分子设计的目录
第一章药物研究及计算机辅助药物分子设计1
第一节 药物研究和开发的历史及现状1
第二节现代药物研究的四大技术支柱3
一、分子生物学、基因组学及蛋白质组学3
二、组合化学5
三、高通量筛选6
四、与药物研究相关的信息科学及技术7
第三节计算机辅助药物分子设计11
一、概述11
二、CADD方法的分类12
第二章计算化学中的最优化方法17
第一节 引论17
一、 最优化问题概述17
二、 数学预备知识18
三、最优化条件26
第二节数值最优化方法30
一、最优化算法的基本结构30
二、无约束问题的最优化方法33
第三章计算化学中的非数值最优化方法54
第一节引论54
一、计算复杂性54
二、局部搜索算法56
三、组合优化问题算法设计的思路58
第二节模拟退火63
第三节遗传算法77
第四节神经网络94
一、人工神经网络基本模型简介94
二、用于优化计算的网络模型连续型Hopfield网络96
三、自组织网100
第四章分子力场和力场参数化106
第一节分子力场的势函数形式108
第二节分子力场的分类115
一、 传统力场115
二、第二代力场118
三、 通用力场120
四、其他力场121
第三节力场参数的拟合121
第五章构象分析方法139
第一节小分子的构象分析方法139
一、系统搜索方法139
二、片段连接方法142
三、随机搜索方法143
四、距离几何方法143
五、分子动力学方法146
六、基于遗传算法的构象分析方法148
第二节蛋白质结构的预测149
第六章分子动力学164
第一节积分方法165
第二节初始化167
第三节粒子受力的求算 169
第四节边界条件173
第五节非键相互作用能的处理175
一、截断值方法175
二、FMM方法177
三、Barnes?Huts算法180
四、周期性边界条件方法181
第六节约束条件动力学186
第七节恒温和恒压分子动力学188
第八节分子动力学轨迹分析189
第七章溶剂效应197
第一节显示溶剂模型198
第二节连续介质模型199
一、表面加和模型199
二、泊松?玻耳兹曼模型202
三、GB/SA模型208
四、模型多级矩展开方法213
五、极化的连续介质模型213
六、SMx系列溶剂化模型215
第八章结合自由能计算218
第一节 引言218
一、 熵增加原理和Gibbs自由能218
二、受体?配体结合的亲和力220
三、自由能计算方法的分类223
第二节自由能微扰和热力学积分方法223
三、FEP和TI在药物设计中的应用227
第三节基于主方程的自由能计算方法229
一、MM/PBSA方法的原理229
二、MM/PBSA方法的应用230
三、MM/PBSA方法的发展和完善232
第四节基于经验方程的自由能预测234
一、B?hm的自由能预测模型234
二、Eldredge的自由能预测模型235
三、Head的自由能预测模型236
第五节LIE方法237
第九章定量构效关系方法研究246
第一节 二维定量构效关系方法246
一、Hansch法246
二、Free?Wilson法250
三、各种参数250
第二节建立定量构效关系模型的统计方法263
一、回归分析263
二、遗传算法265
三、人工神经网络267
第三节三维定量构效关系方法268
一、距离几何3D?QSAR268
二、分子形状分析270
三、比较分子场分析方法272
四、虚拟受体方法277
第四节QSAR的应用281
一、2D?QSAR的应用281
二、3D?QSAR的应用287
参考文献289
第十章 药效团模型方法295
第一节药效团模型的表达296
一、药效特征元素296
二、几何约束299
第二节药效团模型的识别300
一、药效团识别的基本步骤301
二、分子叠合和活性构象301
第三节基于药效团模型的数据库搜索303
一、基于药效团的数据库搜索303
二、柔性构象搜索304
第四节药效团识别系统305
一、Receptor305
二、Apex?3D306
三、DISCO307
四、GASP308
五、CATALYST309
六、几种药效团识别系统的性能比较311
第五节药效团模型方法的应用314
一、Muscarinic M3受体拮抗剂的设计315
二、5?HT3受体拮抗剂的设计317
三、MC增生抑制剂的设计318
四、PKC抑制剂的设计319
五、HIV?1整合酶抑制剂的设计320
第十一章分子对接方法325
第一节分子对接的原理325
一、分子对接的理论基础325
二、分子对接方法的分类326
三、分子对接方法中的重要问题326
第二节几种有代表性的分子对接方法327
一、DOCK328
二、AUTODOCK332
三、FlexX335
四、Affinity337
五、LigandFit340
六、SFDOCK341
第三节虚拟筛选的策略343
第四节分子对接在药物设计中的应用345
一、胸苷酸合成酶抑制剂的设计348
二、DHFR抑制剂的设计349
三、EGFR和抑制剂间相互作用模式的研究349
第十二章从头设计方法354
第一节从头设计方法的分类354
一、片段定位法355
二、位点连接法356
三、片段连接法357
四、逐步生长法360
第二节几种重要的从头设计方法362
一、GRID362
二、MCSS363
三、HINT365
四、LUDI366
五、Leapfrog369
第三节从头设计在药物开发中的应用371
一、fⅩa抑制剂的设计372
二、全新FKBP?12配体的设计373
第十三章分子三维结构数据库和虚拟组合化学377
第一节三维结构数据库378
一、剑桥结构数据库379
二、国家癌症研究所380
三、Available Chemicals Directory 3D(ACD?3D)380
四、Available Chemicals Directory?Screening(ACD?SC)381
五、MDL Drug Data Report 3D(MDDR?3D)381
六、Comprehensive Medicinal Chemistry(CMC)381
七、类似物设计的结构数据库BIOSTER382
八、Chapman & Hall Dictionary of Natural Proct(DNP)382
九、Metabolite382
十、Toxicity382
十一、中草药三维结构数据库383
第二节分子结构的拓扑表达和结构转化385
一、分子结构的拓扑表达386
二、分子三维结构的转化387
第三节数据库搜索技术388
一、子结构匹配388
二、相似性搜索392
第四节重要的三维结构搜索系统395
一、MDL/Base395
二、Unity396
第五节计算组合化学方法396
第十四章药代动力学特征和毒性的预测405
第一节药代动力学特征的预测406
一、脂水分配系数406
二、脑血分配系数414
三、肠通透性420
四、水溶性422
第二节分子毒性的预测425
一、引论425
二、计算机辅助的化合物毒性预测方法427
三、常见化合物毒性预测软件436
第十五章EGF?R和抑制剂间相互作用模式的研究447
第一节酪氨酸蛋白激酶447
一、PTK的结构特征447
二、EGF?R的结构特征448
三、EGF?R抑制剂的分类450
第二节苯胺喹唑啉类抑制剂的三维构效关系454
第三节EGF?R和喹唑啉类抑制剂结合模式的预测466
第十六章HIV?1蛋白酶抑制剂的设计476
第一节HIV?1病毒的结构和侵袭靶细胞的机制476
第二节基于HIV蛋白酶的抑制剂设计480
附录一分子模拟方法中常用概念和名词495
一、分子坐标表示495
二、分子表面498
三、分子图形显示模型500
四、量化计算常见术语简介502
附录二药物分子设计中常用软件列表505
1?大型分子模拟软件系统505
2?小型分子模拟软件系统507
3?小型药物设计软件系统508
4?常用量化计算软件509
5?分子力学、分子动力学和蒙特卡罗模拟软件510
6?QSAR和分子参数计算软件513
7?药效团模拟软件518
8?分子对接软件519
9?从头设计方法522
10?分子相似性和差异性分析以及组合库设计524
11?药代动力学和毒性预测软件526
12?蛋白质三维结构模建、结构评估和活性位点预测软件529
13?数据库搜索软件532
14?分子叠合532
15?二维转三维和文件格式转换软件533
16?分子显示软件534
17?求解PB方程的软件536
18?化学软件开发包536
19?国内主要软件代理商的相关信息537
H. 多肽合成的基本原理是什么
多肽合成
多肽合成又叫肽链合成,是一个固相合成顺序一般从C端(羧基端)向N端(氨基端)合成。过去的多肽合成是在溶液中进行的称为液相合成法。合肥合生生物多肽的合成主要分为两条途径:化学合成多肽和生物合成多肽。
多肽合成的原理
多肽合成就是如何把各种氨基酸单位按照天然物的氨基酸排列顺序和连接方式连接起来。由于氨基酸在中性条件下是以分子内的两性离子形式(H3+NCH(R)COO-)存在,因此,氨基酸之间直接缩合形成酰胺键的反应在一般条件下是难于进行的。
氨基酸酯的反应活性较高。在100℃下加热或者室温下长时间放置都能聚合生成肽酯,但反应并没有定向性,两种氨基酸a1和a2的酯在聚合时将生成a1a2…、a1a1…、a2a1…等各种任意顺序的混合物。
为了得到具有特定顺序的合成多肽,采用任意聚合的方法是行不通的,合肥合生生物而只能采用逐步缩合的定向多肽合成方法。一般是如下式所示,即先将不需要反应的氨基或羧基用适当的基团暂时保护起来,然后再进行连接反应,以保证多肽合成的定向进行。
式中的X和Q分别为氨基和羧基的保护基,它不仅可以防止乱接副反应的发生,还具有能消除氨基酸的两性离子形式,并使之易溶于有机溶剂的作用。
Q在有的情况下也可以不是共价连接的基团,而是由有机强碱(如三乙胺)同氨基酸的羧基氢离子组成的有机阳离子。Y为一强的吸电子基团,它能使羧基活化,而有利于另一氨基酸的自由氨基,对其活化羧基的羧基碳原子进行亲核进攻生成酰胺键。
由此所得的连接产物是N端和C端都带有保护基的保护肽,要脱去保护基后才能得到自由的肽。如果肽链不是到此为止,而是还需要从N端或C端延长肽链的话,则可以先选择性地脱去X或Q,然后再同新的N保护氨基酸(或肽)或C保护的氨基酸(或肽)进行第二次连接,并依次不断重复下去,直到所需要的肽链长度为止。
对于长肽的多肽合成来说,一般有逐步增长和片段缩合两种伸长肽链的方式,前者是由起始的氨基酸(或肽)开始。每连接一次,接长一个氨基酸,后者则是用N保护肽同C保护肽缩合来得到两者长度相加的新的长肽链。
对于多肽合成中含有谷氨酸、天冬氨酸、赖氨酸、精氨酸、组氨酸、半胱氨酸等等带侧链功能团的氨基酸的肽来说,为了避免由于侧链功能团所带来的副反应,一般也需要用适当的保护基将侧链基团暂时保护起来。
多肽的固相合成
多肽的合成是氨基酸重复添加的过程,通常从C端向N端(氨基端)进行合成。多肽固相合成的原理是将目的肽的第一个氨基酸C端通过共价键与固相载体连接,再以该氨基酸N端为合成起点,经过脱去氨基保护基和过量的已活化的第二个氨基酸进行反应,接长肽链,重复操作,达到理想的合成肽链长度,最后将肽链从树脂上裂解下来,分离纯化,获得目标多肽。
1、Boc多肽合成法
Boc方法是经典的多肽固相合成法,以Boc作为氨基酸α-氨基的保护基,苄醇类作为侧链保护基,Boc的脱除通常采用三氟乙酸(TFA)进行。多肽合成时将已用Boc保护好的N-α-氨基酸共价交联到树脂上,TFA切除Boc保护基,N端用弱碱中和。
肽链的延长通过二环己基碳二亚胺(DCC)活化、偶联进行,最终采用强酸氢氟酸(HF)法或三氟甲磺酸(TFMSA)将合成的目标多肽从树脂上解离。在Boc多肽合成法中,为了便于下一步的多肽合成,反复用酸进行脱保护,一些副反应被带入实验中,例如多肽容易从树脂上切除下来,氨基酸侧链在酸性条件不稳定等。
2、Fmoc多肽合成法
Carpino和Han以Boc多肽合成法为基础发展起来一种多肽固相合成的新方法——Fmoc多肽合成法。
Fmoc多肽合成法以Fmoc作为氨基酸α-氨基的保护基。其优势为在酸性条件下是稳定的,不受TFA等试剂的影响,应用温和的碱处理可脱保护,所以侧链可用易于酸脱除的Boc保护基进行保护。
肽段的最后切除可采用TFA/二氯甲烷(DCM)从树脂上定量完成,避免了采用强酸。同时,与Boc法相比,Fmoc法反应条件温和,副反应少,产率高,并且Fmoc基团本身具有特征性紫外吸收,易于监测控制反应的进行。Fmoc法在多肽固相合成领域应用越来越广泛。
多肽液相分段合成
随着多肽合成的发展,多肽液相分段合成(即多肽片段在溶液中依据其化学专一性或化学选择性,自发连接成长肽的合成方法)在多肽合成领域中的作用越来越突出。其特点在于可以用于长肽的合成,并且纯度高,易于纯化。
多肽液相分段合成主要分为天然化学连接和施陶丁格连接。天然化学连接是多肽分段合成的基础方法,局限在于所合成的多肽必须含半光氨酸(Cys)残基,因而限定了天然化学连接方法的应用范围。天然化学连接方法的延伸包括化学区域选择连接、可除去辅助基连接、光敏感辅助基连接。
施陶丁格连接方法是另一种基础的片段连接方法,其为多肽片段连接途径开拓了更广阔的思路。正交化学连接方法是施陶丁格连接方法的延伸,通过简化膦硫酯辅助基来提高片段间的缩合率。
其他多肽合成方法
1、氨基酸的羧内酸酐法(NCA)
氨基酸的羧内酸酐的氨基保护基也可活化羧基。
NCA的原理:在碱性条件下,氨基酸阴离子与NCA形成一个更稳定的氨基甲酸酯类离子,在酸化时该离子失去二氧化碳,生成二肽。生成的二肽又与其他的NCA结合,反复进行。
NCA适用于短链肽片段的多肽合成,其周期短、操作简单、成本低、得到产物分子量高,在目前多肽合成中所占比例较大,技术也较为通用。
2、组合化学法
20世纪80年代,以固相多肽合成为基础提出了组合化学法,即氨基酸的构建单元通过组合的方式进行连接,合成出含有大量化合物的化学库,并从中筛选出具有某种理化性质或药理活性化合物的一套多肽合成策略和筛选方案。
组合化学法的多肽合成策略主要包括:混合-均分法、迭代法、光控定位组合库法、茶叶袋法等。组合化学法的最大优点在于可同时合成多种化合物,并且能最大限度地筛选各种新化合物及其异构体。
3、酶解法
酶解法是用生物酶降解植物蛋白质和动物蛋白质,获得小分子多肽。酶解法因其多肽产量低、投资大、周期长、污染严重,未能实现工业化生产。酶解法获得的多肽能够保留蛋白质原有的营养价值,并且可以获得比原蛋白质更多的功能,更加绿色,更加健康。
4、基因工程法
基因工程法主要以DNA重组技术为基础,通过合适的DNA模板来控制多肽的序列合成。有研究者通过基因工程法获得了准弹性蛋白-聚缬氨酸-脯氨酸-甘氨酸-缬氨酸-甘氨酸肽(VPGVG)。
利用基因工程技术生产的活性多肽还有肽类抗生素、干扰素类、白介素类、生长因子类、肿瘤坏死因子、人生长激素,血液中凝血因子、促红细胞生成素,组织非蛋白纤溶酶原等。
基因工程法合成多肽具有表达定向性强,安全卫生,原料来源广泛和成本低等优点,但因存在高效表达,不易分离,产率低的问题,难以实现规模化生产。
5、发酵法
发酵法是从微生物代谢产物中获得多肽的方法。虽然发酵法的成本低,但其应用范围较窄,因为现在微生物能够独立合成的聚氨基酸只有ε-聚赖氨酸(ε-PL)、γ-聚谷氨酸(γ-PGA)和蓝细菌肽。
合肥合生生物主要提供:多肽合成、定制多肽、同位素标记肽、人工胰岛素、磷酸肽、生物素标记肽、荧光标记肽(Cy3、Cy5、Fitc、AMC等)、目录肽、偶联蛋白(KLH、BSA、OVA等)、化妆品肽、多肽文库构建、抗体服务、糖肽、订书肽、药物肽、RGD环肽等。请移步网络搜“合肥合生生物”即可
I. 什么是高通量筛选技术
以分子水平和细胞水平的实验方法为基础,以微板形式作为实验工具载体,以自动化操作系统执行试验过程,以灵敏快速的检测仪器采集实验结果数据,以计算机分析处理实验数据,在同一时间检测数以千万的样品,并以得到的相应数据库支持运转的技术体系。
高通量筛选技术具有微量、快速、灵敏和准确等特点。简言之就是可以通过一次实验获得大量的信息,并从中找到有价值的信息。
高通量筛选技术可以在短时间内对大量候选化合物完成筛选,经过近十年的发展,已经成为比较成熟的技术,不仅仅应用于对组合化学库的化合物筛选,还更多地应用于对现有化合物库的筛选。
(9)组合化学库一般有多少分子扩展阅读
目前世界各大药物生产商都建立有自己的化合物库和高通量筛选机构,对有潜力形成药物的化合物进行篦梳式的筛选。
一个高通量药物筛选体系包括微量和半微量的药理实验模型、样品库管理系统、自动化的实验操作系统、高灵敏度检测系统以及数据采集和处理系统,这些系统的运行保证了筛选体系能够并行操作搜索大量候选化合物。
高通量筛选技术结合了分子生物学、医学、药学、计算科学以及自动化技术等学科的知识和先进技术,成为当今药物开发的主要方式。完整的高通量筛选体系由于高度的整合和自动化,因而又被称作“药物筛选机器人系统”。
J. 药物筛选的分类
高通量筛选最初是伴随组合化学而产生的一种药物筛选方式。1990年代末,组合化学的出现改变了人类获取新化合物的方式,人们可以通过较少的步骤在短时间内同时合成大量化合物,在这样的背景下高通量筛选的技术应运而生。高通量筛选技术可以在短时间内对大量候选化合物完成筛选,经过发展,已经成为比较成熟的技术,不仅仅应用于对组合化学库的化合物筛选,还更多地应用于对现有化合物库的筛选。世界各大药物生产商都建立有自己的化合物库和高通量筛选机构,对有潜力形成药物的化合物进行篦梳式的筛选。
一个高通量药物筛选体系包括微量和半微量的药理实验模型、样品库管理系统、自动化的实验操作系统、高灵敏度检测系统以及数据采集和处理系统,这些系统的运行保证了筛选体系能够并行操作搜索大量候选化合物。高通量筛选技术结合了分子生物学、医学、药学、计算科学以及自动化技术等学科的知识和先进技术,成为当今药物开发的主要方式。完整的高通量筛选体系由于高度的整合和自动化,因而又被称作“药物筛选机器人系统。 虚拟药物筛选是药物筛选技术发展的另一个方向,由于实体的药物筛选需要构建大规模的化合物库,提取或培养大量实验必须的靶酶或者靶细胞,并且需要复杂的设备支持,因而进行实体的药物筛选要投入巨额的资金,虚拟药物筛选是将药物筛选的过程在计算机上模拟,对化合物可能的活性作出预测,进而对比较有可能成为药物的化合物进行有针对性的实体体筛选,从而可以极大地减少药物开发成本。
根据计算原理,虚拟药物筛选分为基于小分子结构的筛选和基于药物作用机理的筛选两类,前者通过对已知具有相同作用机理的化合物进行定量构效关系研究,绘制出药物的药效团模型,依照模型对化合物数据库进行搜索,这种筛选技术本质上是一种数据库搜索技术;后者主要应用分子对接技术,实施这种筛选需要获知药物作用靶标的分子结构,通过分子模拟手段计算化合物库中的小分子与靶标结合的能力,预测候选化合物的生理活性。 建立合理的药效团模型、准确测定或预测靶标蛋白质的分子结构、精确和快速地计算候选化合物与靶标相互作用的自由能变化是进行虚拟药物筛选的关键,也是限制虚拟筛选准确性的瓶颈。虽然虚拟筛选的准确性有待提高,但是其快速廉价的特点使之成为发展最为迅速的药物筛选技术之一。