1. 化学品哪里来的
oh no
世界上任何物质都是化学物质。
都是化学品。
你这思想怪矣!
2. 化学起源
一、化学的前奏
1.人类文明的起点——火的利用
在几百万年以前,人类过着极其简单的原始生活,靠狩猎为生,吃
的是生肉和野果。根据考古学家的考证,至少在距今50
万年以前,可以找到人类用火的证据,即北京周口店北京猿人生活过的地方发现了经火烧过的动物骨骼化石。
有了火,原始人从此告别了茹毛饮血的生活。吃了熟食后人类增进
了健康,智力也有所发展,提高了生存能力。
后来,人们又学会了摩擦生火和钻木取火,这样,火就可以随身携
带了。于是,人们不再是火种的看管者,而成了能够驾驭火的造火者。
火是人类用来发明工具和创造财富的武器,利用火能够产生各种各
样化学反应这个特点,人类开始了制陶、冶金、酿造等工艺,进入了广
阔的生产、生活天地。
2.历史悠久的工艺——制陶
陶器是什么时候产生的,已很难考证。对陶器的由来,说法不一,
有人推测:人类最原始的生活用容器是用树枝编成的,为了使它耐火和
致密无缝,往往在容器的内外抹上一层粘土。这些容器在使用过程中,
偶尔会被火烧着,其中的树枝都被烧掉了,但粘土不会着火,不但仍旧
保留下来,而且变得更坚硬,比火烧前更好用。这一偶然事件却给人们
很大启发。后来,人们干脆不再用树枝做骨架,开始有意识地将粘土捣
碎,用水调和,揉捏到很软的程度,再塑造成各种形状,放在太阳光底
下晒干,最后架在篝火上烧制成最初的陶器。
大约距今
1万年以前,中国开始出现烧制陶器的窑,成为最早生产陶器的国家。陶器的发明,在制造技木上是一个重大的突破。制陶过程改变了粘土的性质,使粘土的成分二氧化硅、三氧化二铝、碳酸钙(gài),氧化镁(měi)等在烧制过程中发生了一系列的化学变化,使陶器具备了防
水耐用的优良性质。因此陶器不但有新的技术意义,而且有新的经济意
又。它使人们处理食物时增添了蒸煮的办法,陶制的纺轮、陶刀、陶挫
等工具也在生产中发挥了重要的作用,同时陶制储存器可以使谷物和水
便于存放。因此,陶器很快成为人类生活和生产的必需品,特别是定居
下来从事农业生产的人们更是离不开陶器。
3.冶金化学的兴起
在新石器时代后期,人类开始使用金属代替石器制造工具。使用得
最多的是红铜。但这种天然资源毕竟有限,于是,产生了从矿石冶炼金
属的冶金学。最先冶炼的是铜矿,约公元前3800年,伊朗就开始将铜矿 石(孔雀石)和木炭混合在一起加热,得到了金属铜。纯铜的质地比较软,用它制造的工具和兵器的质量都不够好。在此基础上改进后,便出现了青铜器。
到了公元前3000~前2500年,除了冶炼铜以外,又炼出了锡(xī)
和铅(qiān)两种金属。往纯铜中掺入锡,可使铜的熔点降低到800℃左
右,这样一来,铸造起来就比较容易了。铜和锡的合金称为青铜(有时也
含有铅),它的硬度高,适合制造生产工具。青铜做的兵器,硬而锋利,
青铜做的生产工具也远比红铜好,还出现了青铜铸造的铜币。中国在铸
造青铜器上有过很大的成就,如殷朝前期的“司母戊”鼎。它是一种礼
器,是世界上最大的出土青铜器。又如战国时的编钟,称得上古代在音
乐上的伟大创造。因此,青铜器的出现,推动了当时农业、兵器、金融、
艺术等方面的发展,把社会文明向前推进了一步。
世界上最早炼铁和使用铁的国家是中国、埃及和印度,中国在春秋
时代晚期(公元前6世纪)已炼出可供浇铸的生铁。最早的时候用木炭炼
铁,木炭不完全燃烧产生的一氧化碳把铁矿石中的氧化铁还原为金属
铁。铁被广泛用于制造犁铧、铁■(一种锄草工具)、铁锛等农具以及铁
鼎等器物,当然也用于制造兵器。到了公元前8~前7世纪,欧洲等才相
继进入了铁器时代。由于铁比青铜更坚硬,炼铁的原料也远比铜矿丰富,
在绝大部分地方,铁器代替了青铜器。
4.中国的重大贡献——火药和造纸
黑火药是中国古代四大发明之一。为什么要把它叫做“黑火药”呢?
这还要从它所用的原料谈起。火药的三种原料是硫磺、硝(xiāo)石和木
炭。木炭是黑色的,因此,制成的火药也是黑色的,叫黑火药。火药的
性质是容易着火,因此可以和火联系起来,但是这个“药”字又怎样理
解呢?原来,硫磺和硝石在古代都是治病用的药,因此,黑火药便可理
解为黑色的会着火的药。
火药的发明与中国西汉时期的炼丹术有关,炼丹的目的是寻求长生
不老的药,在炼丹的原料中,就有硫磺和硝石。炼丹的方法是把硫磺和
硝石放在炼丹炉中,长时间地用火炼制。在许多次炼丹过程中,曾出现
过一次又一次地着火和爆炸现象,经过这样多次试验终于找到了配制火
药的方法。
黑火药发明以后就与炼丹脱离了关系,一直被用在军事上。古代人
打仗,近距离时用刀枪,远距离时用弓箭。有了黑火药以后,从宋朝开
始,便出现了各种新式武器,例如用弓发射的火药包。火药包有火球和
火蒺藜两种,用火将药线点着,把火药包抛出去,利用燃烧和爆炸杀伤
对方。
大约在公元8世纪,中国的炼丹术传到了阿拉伯,火药的配制方法
也传了过去,后来又传到了欧洲。这样,中国的火药成了现代炸药的“老
祖宗”。这是中国的伟大发明之一。
纸是人类保存知识和传播文化的工具,是中华民族对人类文明的重
大贡献。在使用植物纤维制造的纸以前,中国古代传播文字的方法主要
有:在甲骨(乌龟的腹甲和牛骨)上刻字,即所谓的甲骨文;甲骨数量有
限,后来改在竹简或木简上刻字。可是,孔子写的《论语》所用的竹简
之多,份量之重是可想而知的;另外,用丝织成帛(bó),也可以用来写
字,但大量生产帛却是难以做到的。最后才有了用植物纤维制造的纸,
一直流传到今天。
1957年5月,中国考古工作者在陕西省西安市灞(bà)桥的一座古代
墓葬中发现一些米黄色的古纸。经鉴定这种纸主要由大麻纤维制造,其
年代不会晚于汉武帝(公元前156~公元前87年),这是现存的世界上最
早的植物纤维纸。
提起纸的发明,人们都会想起蔡伦。他是汉和帝时的中常侍。他看
到当时写字用的竹简太笨重,便总结了前人造纸的经验,带领工匠用树
皮、麻头、破布、破鱼网等做原料,先把它们剪碎或切断,放在水里长
时间浸泡,再捣烂成为浆状物,然后在席子上摊成薄片,放在太阳底下
晒干,便制成了纸。它质薄体轻,适合写字,很受欢迎。
造纸是一个极其复杂的化学工艺,它是广大劳动人民智慧的产物。
实际上,蔡伦之前已经有纸了,因此,蔡伦只能算是造纸工艺的改良者。
5.炼丹术与炼金术
当封建社会发展到一定的阶段,生产力有了较大提高的时候,统治
阶级对物质享受的要求也越来越高,皇帝和贵族自然而然地产生了两种
奢望:第一是希望掌握更多的财富,供他们享乐;第二,当他们有了巨
大的财富以后,总希望永远享用下去。于是,便有了长生不老的愿望。
例如,秦始皇统一中国以后,便迫不及待地寻求长生不老药,不但让徐
福等人出海寻找,还召集了一大帮方士(炼丹家)日日夜夜为他炼制丹砂
——长生不老药。
炼金家想要点石成金(即用人工方法制造金银)。他们认为,可以通
过某种手段把铜、铅、锡、铁等贱金属转变为金、银等贵金属。像希腊
的炼金家就把铜、铅、锡、铁熔化成一种合金,然后把它放入多硫化钙
溶液中浸泡。于是,在合金表面便形成了一层硫化锡,它的颜色酷似黄
金(现在,金黄色的硫化锡被称为金粉,可用作古建筑等的金色涂料)。
这祥,炼金家主观地认为“黄金”已经炼成了。实际上,这种仅从表面
颜色而不从本质来判断物质变化的方法,是自欺欺人。他们从未达到过
“点石成金”的目的。
虔诚的炼丹家和炼金家的目的虽然没有达到,但是他们辛勤的劳动
并没有完全白费。他们长年累月置身在被毒气、烟尘笼罩的简陋的“化
学实验室”中,应该说是第一批专心致志地探索化学科学奥秘的“化学
家”。他们为化学学科的建立积累了相当丰富的经验和失败的教训,甚
至总结出一些化学反应的规律。例如中国炼丹家葛洪从炼丹实践中提
出:“丹砂(硫化汞)烧之成水银,积变(把硫和水银二者放在一起)又还
成(交成)丹砂。”这是一种化学变化规律的总结,即“物质之间可以用
人工的方法互相转变”。
炼丹家和炼金家夜以继日地在做这些最原始的化学实验,必定需要
大批实验器具,于是,他们发明了蒸馏器、熔化炉、加热锅、烧杯及过
滤装置等。他们还根据当时的需要,制造出很多化学药剂、有用的合金
或治病的药,其中很多都是今天常用的酸、碱和盐。为了把试验的方法
和经过记录下来,他们还创造了许多技术名词,写下了许多着作。正是
这些理论、化学实验方法、化学仪器以及炼丹、炼金着作,开挖了化学
这门科学的先河。
从这些史实可见,炼丹家和炼金家对化学的兴起和发展是有功绩
的,后世之人决不能因为他们“追求长生不老和点石成金”而嘲弄他们,
应该把他们敬为开拓化学科学的先驱。因此,在英语中化学家(chemist)
与炼金家(alchemist)两个名词极为相近,其真正的含义是“化学源于炼
金术”。
二、创建近代化学理论
——探索物质结构
世界是由物质构成的,但是,物质又是由什么组成的呢?最早尝试
解答这个问题的是我国商朝末年的西伯昌(约公元前1140
年),他认为:
“易有太极,易生两仪,两仪生四象,四象生八卦。”以阴阳八卦来解
释物质的组成。
约公元前1400年,西方的自然哲学提出了物质结构的思想。希腊的
泰立斯认为水是万物之母;黑拉克里特斯认为,万物是由火生成的;亚
里士多德在《发生和消灭》一书中论证物质构造时,以四种“原性”作
为自然界最原始的性质,它们是热、冷、干、湿,把它们成对地组合起
来,便形成了四种“元素”,即火、气、水、土,然后构成了各种物质。
上面这些论证都未能触及物质结构的本质。在化学发展的历史上,
是英国的波义耳第一次给元素下了一个明确的定义。他指出:“元素是
构成物质的基本,它可以与其他元素相结合,形成化合物。但是,如果
把元素从化合物中分离出来以后,它便不能再被分解为任何比它更简单
的东西了。”
波义耳还主张,不应该单纯把化学看作是一种制造金属、药物等从
事工艺的经验性技艺,而应把它看成一门科学。因此,波义耳被认为是
将化学确立为科学的人。
人类对物质结构的认识是永无止境的,物质是由元素构成的,那么,
元素又是由什么构成的呢?1803年,英国化学家道尔顿创立的原子学说
进一步解答了这个问题。
原子学说的主要内容有三点:1.一切元素都是由不能再分割和不能
毁灭的微粒所组成,这种微粒称为原子;2.同一种元素的原子的性质和
质量都相同,不同元素的原子的性质和质量不同;3.一定数目的两种不
同元素化合以后,便形成化合物。
原子学说成功地解释了不少化学现象。随后意大利化学家阿佛加德
罗又于1811年提出了分子学说,进一步补充和发展了道尔顿的原子学
说。他认为,许多物质往往不是以原子的形式存在,而是以分子的形式
存在,例如氧气是以两个氧原子组成的氧分子,而化合物实际上都是分
子。从此以后,化学由宏观进入到微观的层次,使化学研究建立在原子
和分子水平的基础上。
三、现代化学的兴起
19世纪末,物理学上出现了三大发现,即X射线、放射性和电子。
这些新发现猛烈地冲击了道尔顿关于原子不可分割的观念,从而打开了
原子和原子核内部结构的大门,揭露了微观世界中更深层次的奥秘。
热力学等物理学理论引入化学以后,利用化学平衡和反应速度的概
念,可以判断化学反应中物质转化的方向和条件,从而开始建立了物理
化学,把化学从理论上提高到了一个新的水平。
在量子力学建立的基础上发展起来的化学键(分子中原子之间的结
合力)理论,使人类进一步了解了分子结构与性能的关系,大大地促进了
化学与材料科学的联系,为发展材料科学提供了理论依据。
化学与社会的关系也日益密切。化学家们运用化学的观点来观察和
思考社会问题,用化学的知识来分析和解决社会问题,例如能源危机、
粮食问题、环境污染等。
化学与其他学科的相互交叉与渗透,产生了很多边缘学科,如生物
化学、地球化学、宇宙化学、海洋化学、大气化学等等,使得生物、电
子、航天、激光、地质、海洋等科学技术迅猛发展。
化学也为人类的衣、食、住、行提供了数不清的物质保证,在改善
人民生活,提高人类的健康水平方面作出了应有的贡献。
现代化学的兴起使化学从无机化学和有机化学的基础上,发展成为
多分支学科的科学,开始建立了以无机化学、有机化学、分析化学、物
理化学和高分子化学为分支学科的化学学科。化学家这位“分子建筑师”
将运用善变之手,为全人类创造今日之大厦、明日之环宇。
2.元素发现史上的两次奇迹及科学方法研究
陕西省渭南师范专科学校化学系张文根
化学发展史上,从个人发现新元素的数量方面讲,出现过两次奇迹。
值得研究的是,两次奇迹基本上都采用了类似的科学研究方法。
1.戴维与新元素的发现
英国化学家戴维(H·Davy,1778~1829)出生于木刻匠家庭,从小就
喜爱化学实验。他曾用自己的身体试验氧化亚氮(笑气)气体的毒性,发
现其麻醉性,使医学外科手术发生了重大改途;他还发明了安全矿灯,
解决了因火焰引起的瓦斯爆炸,对19世纪欧洲煤矿的安全开采做出了有
益的贡献。但是,他一生最辉煌的成就莫过于新元素的发现。
1799年,意大利物理学家伏特(A·Volta)发现了金属活动顺序,并
应用其发明了伏特电池。次年,英国化学家尼科尔森(W.Nicholson)和
卡里斯尔(A·Carlisle)利用伏特电池成功地分解了水。从此,电在化学
研究中的应用引起了科学家的广泛关注。
1806年,戴维对前人有关电的研究进行了总结,预言这种手段除可
以把水分解为氢气和氧气外,还可能分解其他物质,这一科学思想使他
把电与物质组成联系起来,从而导致了一系列新元素的发现。
1777年之前,对于碱类和碱土类物质的化学成分,人们普遍认为具
有元素性质,是不能再分解的。法国化学家拉瓦锡(A·L·Lavoisier)创
立氧化理论之后,则认为这两类物质都可能是氧化物。1807
年,戴维决心用实验来证实拉瓦锡的见解,同时也想验证一下自己预言的正确性。
最初他用苛性钾或苛性钠的饱和溶液实验,发现碱没有变化,只和
水电解结果一样。通过分析,他认为应该排除水这个干扰因素。于是改
用熔融苛性钾,结果发现阴极白金丝周围出现了燃烧更旺的火焰,说明
由于加热温度过高,分解出的产物立刻又被燃烧了。后来他换用碳酸钾
并通以强电流,但阴极上出现的金属颗粒还是很快被烧掉了。最后,他
总结教训,在密闭坩埚内电解熔融苛性钾,终于拿到了一种银白色金属,
并进行性质实验,发现在水中能剧烈反应,出现淡紫色火焰,显然是该
金属与水作用放出氢气的结果。山此,戴维判断这是一种新金属,取名
为钾。不久,他又从苛性苏打中电解出了金属钠。次年,用同样方法,
他从苦土(MgO)、石灰、菱锶矿(SrCO3)和重晶石(BaCO3)中分别又发现了
新元素镁、钙、锶和钡。
1807年12月,尽管当时英法两国正进行着战争,法国皇帝拿破仑仍
然颁发勋章,以嘉奖戴维的卓越成就。但是,戴维并没有因此骄傲起来。
金属钾被发现以后,他由该金属可从水中分解出氢气受到后发,认为钾
也应该能够分解其他物质。于是在1808年,他将钾与无水硼酸混合,在
铜管中加热,得到了青灰色的非金属硼。这样,不到两年,戴维就发现
了7新元素。如果加上他1810年和1813年确定的氯元素和碘元素,
戴维一生发现和确认的元素就有9种。这一成就在他去逝之前的52
个元素发现史上,无人能与其媲美。
3. 化学是怎样来的。
http://ke..com/view/2507.htm
4. 化学来了哪里
1,这说明你对基本概念和还不是特别熟悉!2,做题时不要着急,要知道 这些知识点都是你看过的,也就是说你有印象,只是一着急 就忘了3,会出现这样的状况 说明你对这类题型练习 不够多 或者练习了错了 没有找原因!错了一定要记 ,要找原因,为什么这样做? 我那样做和答案的区别在哪里!这样一步一步来你的化学提高的 !
5. 化学元素都是从那里来的
大部分是自然界中本来就存在的。
还有一些是人工合成的。
元素是具有相同核电荷数的一类原子的总称。
物质是由元素组成的。
6. 化学的来源
化学(chemistry)是研究物质的性质、组成、结构、变化,以及物质间相互作用关系的科学。世界是由物质组成的,化学则是人类用以认识和改造物质世界的主要方法和手段之一,它是一门历史悠久而又富有活力的学科,它的成就是社会文明的重要标志。
从开始用火的原始社会,到使用各种人造物质的现代社会,人类都在享用化学成果。人类的生活能够不断提高和改善,化学的贡献在其中起了重要的作用。
化学是重要的基础科学之一,在与物理学、生物学、自然地理学、天文学等学科的相互渗透中,得到了迅速的发展,也推动了其他学科和技术的发展。例如,核酸化学的研究成果使今天的生物学从细胞水平提高到分子水平,建立了分子生物学;对地球、月球和其他星体的化学成分的分析,得出了元素分布的规律,发现了星际空间有简单化合物的存在,为天体演化和现代宇宙学提供了实验数据,还丰富了自然辩证法的内容!
第二章 我们身边的物质
【化学的萌芽】
[编辑本段]
原始人类从用火之时开始,由野蛮进入文明,同时也就开始了用化学方法认识和改造天然物质。燃烧就是一种化学现象。掌握了火以后,人类开始熟食;逐步学会了制陶、冶炼;以后又懂得了酿造、染色等等。这些有天然物质加工改造而成的制品,成为古代文明的标志。在这些生产实践的基础上,萌发了古代化学知识。
古人曾根据物质的某些性质对物质进行分类,并企图追溯其本原及其变化规律。公元前4世纪或更早,中国提出了阴阳五行学说,认为万物是由金、木、水、火、土五种基本物质组合而成的,而五行则是由阴阳二气相互作用而成的。此说法是朴素的唯物主义自然观,用“阴阳”这个概念来解释自然界两种对立和相互消长的物质势力,认为二者的相互作用是一切自然现象变化的根源。此说为中国炼丹术的理论基础之一。
公元前4世纪,希腊也提出了与五行学说类似的火、风、土、水四元素说和古代原子论。这些朴素的元素思想,即为物质结构及其变化理论的萌芽。后来在中国出现了炼丹术,到了公元前2世纪的秦汉时代,炼丹术以颇为盛行,大致在公元7世纪传到阿拉伯国家,与古希腊哲学相融合而形成阿拉伯炼丹术,阿拉伯炼金术与中世纪传入欧洲,形成欧洲炼金术,后逐步演进为近代的化学。
炼丹术的指导思想是深信物质能转化,试图在炼丹炉中人工合成金银或修炼长生不老之药。他们有目的的将各类物质搭配烧炼,进行实验。为此涉及了研究物质变化用的各类器皿,如升华器、蒸馏器、研钵等,也创造了各种实验方法,如研磨、混合、溶解、洁净、灼烧、熔融、升华、密封等。
与此同时,进一步分类研究了各种物质的性质,特别是相互反应的性能。这些都为近代化学的产生奠定了基础,许多器具和方法经过改进后,仍然在今天的化学实验中沿用。炼丹家在实验过程中发明了火药,发现了若干元素,制成了某些合金,还制出和提纯了许多化合物,这些成果我们至今仍在利用。
【化学的中兴】
[编辑本段]
16世纪开始,欧洲工业生产蓬勃兴起,推动了医药化学和冶金化学的创立和发展,使炼金术转向生活和实际应用,继而更加注意物质化学变化本身的研究。在元素的科学概念建立后,通过对燃烧现象的精密实验研究,建立了科学的氧化理论和质量守恒定律,随后又建立了定比定律、倍比定律和化合量定律,为化学进一步科学的发展奠定了基础。
19世纪初,建立了近代原子论,突出地强调了各种元素的原子的质量为其最基本的特征,其中量的概念的引入,是与古代原子论的一个主要区别。近代原子论使当时的化学知识和理论得到了合理的解释,成为说明化学现象的统一理论。分子假说提出了,建立了原子分子学说,为物质结构的研究奠定了基础。门捷列夫发现元素周期律后,不仅初步形成了无机化学的体系,并且与原子分子学说一起形成化学理论体系。
通过对矿物的分析,发现了许多新元素,加上对原子分子学说的实验验证,经典性的化学分析方法也有了自己的体系。草酸和尿素的合成、原子价概念的产生、苯的六环结构和碳价键四面体等学说的创立、酒石酸拆分成旋光异构体,以及分子的不对称性等等的发现,导致有机化学结构理论的建立,使人们对分子本质的认识更加深入,并奠定了有机化学的基础。
19世纪下半叶,热力学等物理学理论以入化学之后,不仅澄清了化学平衡和反应速率的概念,而且可以定量地判断化学反应中物质转化的方向和条件。相继建立了溶液理论、电离理论、电化学和化学动力学的理论基础。物理化学的诞生,把化学从理论上提高到一个新的水平。
二十世纪的化学化学是一门建立在实验基础上的科学,实验与理论一直是化学研究中相互依赖、彼此促进的两个方面。进入20世纪以后,由于受到自然科学其他学科发展的影响,并广泛地应用了当代科学的理论、技术和方法,化学在认识物质的组成、结构、合成和测试等方面都有了长足的进展,而且在理论方面取得了许多重要成果。在无机化学、分析化学、有机化学和物理化学四大分支学科的基础上产生了新的化学分支学科。
近代物理的理论和技术、数学方法及计算机技术在化学中的应用,对现代化学的发展起了很大的推动作用。19世纪末,电子、X射现和放射性的发现为化学在20世纪的重大进展创造了条件。
在结构化学方面,由于电子的发现开始并确立的现代的有核原子模型,不仅丰富和深化了对元素周期表的认识,而且发展了分子理论。应用量子力学研究分子结构,产生了量子化学。
从氢分子结构的研究开始,逐步揭示了化学键的本质,先后创立了价键理论、分子轨道理论和佩位场理论。化学反应理论也随着深入到微观境界。应用X射现作为研究物质结构的新分析手段,可以洞察物质的晶体化学结构。测定化学立体结构的衍射方法,有X射线衍射、电子衍射和中子衍射等方法。其中以X射线衍射法的应用所积累的精密分子立体结构信息最多。
研究物质结构的谱学方法也由可见光谱、紫外光谱、红外光谱扩展到核磁共振谱、电子自选共振谱、光电子能谱、射线共振光谱、穆斯堡尔谱等,与计算机联用后,积累大量物质结构与性能相关的资料,正由经验向理论发展。电子显微镜放大倍数不断提高,人们以可直接观察分子的结构。
经典的元素学说由于放射性的发现而产生深刻的变革。从放射性衰变理论的创立、同位素的发现到人工核反应和核裂变的实现、氘的发现、中子和正电子及其它基本粒子的发现,不仅是人类的认识深入到亚原子层次,而且创立了相应的实验方法和理论;不仅实现了古代炼丹家转变元素的思想,而且改变了人的宇宙观。
作为20世纪的时代标志,人类开始掌握和使用核能。放射化学和核化学等分支学科相继产生,并迅速发展;同位素地质学、同位素宇宙化学等交叉学科接踵诞生。元素周期表扩充了,以有109号元素,并且正在探索超重元素以验证元素“稳定岛假说”。与现代宇宙学相依存的元素起源学说和与演化学说密切相关的核素年龄测定等工作,都在不断补充和更新元素的观念。
在化学反应理论方面,由于对分子结构和化学键的认识的提高,经典的、统计的反应理论以进一步深化,在过渡态理论建立后,逐渐向微观的反应理论发展,用分子轨道理论研究微观的反应机理,并逐渐建立了分子轨道对称守恒定律和前线轨道理论。分子束、激光和等离子技术的应用,使得对不稳定化学物种的检测和研究成为现实,从而化学动力学已有可能从经典的、统计的宏观动力学深入到单个分子或原子水平的微观反应动力学。
计算机技术的发展,使得分子、电子结构和化学反映的量子化学计算、化学统计、化学模式识别,以及大规模术技的处理和综合等方面,都得到较大的进展,有的已经逐步进入化学教育之中。关于催化作用的研究,以提出了各种模型和理论,从无机催化进入有机催化和僧物催化,开始从分子微观结构和尺寸的角度核生物物理有机化学的角度,来研究酶类的作用和酶类的结构与其功能的关系。
分析方法和手段是化学研究的基本方法和手段。一方面,经典的成分和组成分析方法仍在不断改进,分析灵敏度从常量发展到微量、超微量、痕量;另一方面,发展初许多新的分析方法,可深入到进行结构分析,构象测定,同位素测定,各种活泼中间体如自由基、离子基、卡宾、氮宾、卡拜等的直接测定,以及对短寿命亚稳态分子的检测等。分离技术也不断革新,离子交换、膜技术、色谱法等等。
合成各种物质,是化学研究的目的之一。在无机合成方面,首先合成的是氨。氨的合成不仅开创了无机合成工业,而且带动了催化化学,发展了化学热力学和反应动力学。后来相继合成的有红宝石、人造水晶、硼氢化合物、金刚石、半导体、超导材料和二茂铁等配位化合物。
在电子技术、核工业、航天技术等现代工业技术的推动下,各种超纯物质、新型化合物和特殊需要的材料的生产技术都得到了较大发展。稀有气体化合物的合成成功又向化学家提出了新的挑战,需要对零族元素的化学性质重新加以研究。无机化学在与有机化学、生物化学、物理化学等学科相互渗透中产生了有机金属化学、生物无机化学、无机固体化学等新兴学科。
酚醛树脂的合成,开辟了高分子科学领域。20世纪30年代聚酰胺纤维的合成,使高分子的概念得到广泛的确认。后来,高分子的合成、结构和性能研究、应用三方面保持互相配合和促进,使高分子化学得以迅速发展。
各种高分子材料合成和应用,为现代工农业、交通运输、医疗卫生、军事技术,以及人们衣食住行各方面,提供了多种性能优异而成本较低的重要材料,成为现代物质文明的重要标志。高分子工业发展为化学工业的重要支柱。
20世纪是有机合成的黄金时代。化学的分离手段和结构分析方法已经有了很大发展,许多天然有机化合物的结构问题纷纷获得圆满解决,还发现了许多新的重要的有机反应和专一性有机试剂,在此基础上,精细有机合成,特别是在不对称合成方面取得了很大进展。
一方面,合成了各种有特种结构和特种性能的有机化合物;另一方面,合成了从不稳定的自由基到有生物活性的蛋白质、核酸等生命基础物质。有机化学家还合成了有复杂结构的天然有机化合物和有特效的药物。这些成就对促进科学的发展起了巨大的作用;为合成有高度生物活性的物质,并与其他学科协同解决有生命物质的合成问题及解决前生命物质的化学问题等,提供了有利的条件。
20世纪以来,化学发展的趋势可以归纳为:有宏观向微观、有定性向定量、有稳定态向亚稳定态发展,由经验逐渐上升到理论,再用于指导设计和开创新的研究。一方面,为生产和技术部门提供尽可能多的新物质、新材料;另一方面,在与其它自然科学相互渗透的进程中不断产生新学科,并向探索生命科学和宇宙起源的方向发展。
7. 化学能最初来源于哪里
楼主的问题,涉及两个方面,不容易回答。
1、有没有独立意义的化学能?
也就是说,化学能是一种独立意义的能量?
对应于一个独立的物理的物理原理?
答案是:化学能,不是独立的物理本质所具有的能量;
化学能,只是其它热能、内能、外界做功的能量转变;
绝大多数的所谓化学能,其实就是热能。
所以,在实质意义上,化学能并不存在。
它只是由别的能量转化而来,例如从静电能转化为热能。
.
.
2、物质的起源,能量的起源问题?
这个更难回答。世界的起源,现在流行的是大爆炸理论。
半个世纪前,这个理论传入国内时,我们进行了各种抵制、扭曲、歪解。
迄今为止,不是从科学谈科学,而是从意识形态谈科学,这样的人依然
遍地皆是。你跟他们科学,他们跟你谈政治;你他们谈政治,他们跟你
谈法律;你跟他们谈法律,他们跟你耍流氓。
物质的起源,既涉及科学,又涉及metaphsics;而metaphysics,我们
已经用对《形而上学》的极度歪解给予定性,任何理性讨论的空间都不
存在。这种不理性,至少应该还会持续50年以上,因为从现在的大学生
的思维中,还看不到一丝丝的转变。
8. 化学从哪儿来到哪儿去化学的发展趋势如何
分析化学学科的发展经历了三次巨大变革:第一次是随着分析化学基础理论,特别是物理化学的基本概念(如溶液理论)的发展,使分析化学从一种技术演变成为一门科学,第二次变革是由于物理学和电子学的发展,改变了经典的以化学分析为主的局面,使仪器分析获得蓬勃发展。目前,分析化学正处在第三次变革时期,生命科学、环境科学、新材料科学发展的要求,生物学、信息科学,计算机技术的引入,使分析化学进入了一个崭新的境界。第三次变革的基本特点:从采用的手段看,是在综合光、电、热、声和磁等现象的基础上进一步采用数学、计算机科学及生物学等学科新成就对物质进行纵深分析的科学;从解决的任务看,现代分析化学已发展成为获取形形色色物质尽可能全面的信息、进一步认识自然、改造自然的科学。
9. 请问化学元素是哪里来的
宇宙大爆炸随着第一批恒星的形成,原子在恒星的内部发生了核聚变反应,进而出现了氦,碳、氧、镁,铁等元素原子核。核聚变是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),发生原子核互相聚合作用,生成新的质量更重的原子核,并伴随着巨大的能量释放的一种核反应形式。
(值得注意的是,不同质量的恒星能引发的核聚变程度不同,太阳主要为氢—氦聚变,重一点的会引发碳—氧—镁聚变,再重的会引发下一轮聚变。总的顺序简略依次为:氢—氦—碳—氧—镁—硅—铁。但无论恒星多重,最终的聚变结果只能是铁,恒星内部不能产生比铁更重的原子核!)
凡是元素周期表上有的(除人造元素外),都是在恒星大炼炉里形成的,铁以后的原子核,只能在超爆中产生。http://ke..com/view/14565.htm
10. 化学是怎样来的
中国的化学起源于古时候道士炼丹;外国的化学最开始是由于炼金术。