‘壹’ 物理化学修复可用来修复哪些污染
物理/化学修复技术主要基于土壤理化性质和重金属的不同特性,通过物理/化学手段来分离或固定土壤中的重金属,达到清洁土壤和降低污染物环境风险和健康风险的技术手段。
物理/化学技术实施方便灵活,周期较短,适用于多种重金属的处理,在重金属污染土壤的工程修复中得到广泛应用,但该技术实施的工程量较大,实施成本较高,在一定程度上限制其推广应用。
1、客土、换土、去表土和深耕翻土法
这些适合于小面积污染土壤的治理。这些方法最初在英国、荷兰、美国等国家被采用,达到了降低污染物危害的目的,是一种切实有效的治理方法。但该方法需耗费大量的人力、财力和物力,成本较高,且未能从根本上清除重金属,存在占用土地、渗漏和二次污染等问题,因此不是一种理想的治理土壤重金属污染的方法。
2、土壤淋洗
土壤淋洗是指用淋洗剂去除土壤中重金属污染物的过程,选择高效的淋洗助剂是淋洗成功的关键。淋洗法可用于大面积、重度污染土壤的治理,尤其是在轻质土和砂质土中效果较好,但对渗透系数很低的土壤效果不太好。土壤淋洗需添加昂贵的淋洗液,且淋洗液对地下水也有污染风险;另一方面,淋洗液在淋洗土壤重金属的同时也将植物必需的 Ca 和 Mg 等营养元素淋洗出根际,造成植物营养元素的缺失。
3、热解吸法
热解吸技术是采用直接或间接的方式对重金属污染土壤进行连续加热,温度到达一定的临界温度时土壤中的某些重金属(如 Hg、Se 和 As)将挥发,收集该挥发产物进行集中处理,从而达到清除土壤重金属污染物目的的技术。热解吸技术的一大缺陷是耗能,加热土壤必须要消耗大量的能量,提高了修复的成本。另一个问题是挥发污染物的收集和处置问题。
4、玻璃化技术
玻璃化技术指将重金属污染土壤置于高温高压的环境下,待其冷却后形成坚硬的玻璃体物质,这时土壤重金属被固定,从而达到阻抗重金属迁移目的的技术。玻璃化技术最早在核废料处理方面应用,但是由于该技术需要消耗大量的电能,其成本较高而没有得到广泛的应用。
5、电动修复
电动修复是指向重金属污染土壤中插入电极施加直流电压导致重金属离子在电场作用下进行电迁移、电渗流、电泳等过程,使其在电极附近富集进而从溶液中导出并进行适当的物理或化学处理,实现污染土壤清洁的技术。电动修复技术目前还主要停留在实验室研究阶段,在污染场地的应用案例比较少。
‘贰’ 污染土壤修复通常有哪些措施
向土壤中施用石灰、碱性磷酸盐、氧化铁、碳酸盐和硫化物等化学改良剂,加速有机物的分解,使重金属固定在土壤中,降低重金属在土壤及土壤植物体的迁移能力,使其转化成为难溶的化合物,减少农作物的吸收,以减轻土壤中重金属的毒害。针对有机物污染,用植物、细菌、真菌联合加速有机物降解。针对无机物污染,利用植物修复可以把一部分重金属从土壤中带走。
增加土壤有机质含量、砂掺粘改良性土壤,增加和改善土壤胶体的种类和数量,增加土壤对有害物质的吸附能力和吸附量,从而减少污染物在土壤中的活性。发现、分离和培养新的微生物品种,以增强生物降解作用。
2、强化污染土壤环境管理与综合防治,大力发展清洁生产
控制和消除土壤污染源,组织有关部门和科研单位,筛选污染土壤修复实用技术,加强污染土壤修复技术集成,选择有代表性的污灌区农田和污染场地,开展污染土壤治理与修复。重点支持一批国家级重点治理与修复示范工程,为在更大范围内修复土壤污染提供示范、积累经验。合理利用污染土地,严重污染的土壤可改种非食用经济作物或经济林木以减少食品污染。科学地进行污水灌溉,加强土壤污灌区的监测和管理,了解水中污染物的成分、含量及其动态,避免带有不易降解的高残留污染物随机进入土壤。
增施有机肥,提高土壤有机质含量,增强土壤胶体对重金属和农药的吸附能力。强化对农药、化肥、除草剂等农用化学品管理。增施有机肥同时采取防治措施,不仅可以减少对土壤的污染,还能经济有效地消灭病、虫、草害,发挥农药的积极效能。在生产中合理施用农药、化肥,控制化学农药的用量、使用范围、喷施次数和喷施时间,提高喷洒技术,改进农药剂型,严格限制剧毒、高残留农药的使用,大力发展高效、低毒、低残留农药。大力发展生物防治措施。
大力推广闭路循环、无毒工艺,以减少或消除污染物的排放。对工业“三废”进行回收净化处理,化害为利,严格控制污染物的排放量和浓度。大力推广和发展清洁生产。
针对土壤污染物的种类,种植有较强吸收能力的植物,降低有毒物质的含量,或通过生物降解净化土壤,通过改变耕作制度、换土、深翻等手段,施加抑制剂改变污染物质在土壤中的迁移转化方向,减少农作物的吸收,提高土壤pH值,促使镉、汞、铜、锌等形成氢氧化物沉淀。
根据土壤的特性、气候状况和农作物生长发育特点,既要防治病虫害对农作物的威胁,又要把化肥、农药对环境和人体健康的危害限制在最低程度。利用物理、物理化学原理治理污染土壤。大力开展植树造林,提高森林覆盖率,维护森林生态系统平衡。
3、调控土壤氧化还原条件
调节土壤氧化还原电位,使某些重金属污染物转化为难溶态沉淀物,控制其迁移和转化,降低污染物的危害程度。调节土壤氧化还原电位主要是通过调节土壤水分管理和耕作措施实现。
4、改变耕作制度,实行翻土和换土
改变耕作制度会引起土壤环境条件的变化,消除某些污染物的危害。对于污染严重的土壤,采取铲除表土和换客土的方法;对于轻度污染的土壤,采取深翻土或换无污染客土的方法。
5、采用农业生态工程措施
在污染土壤上繁殖非食用的种子、种经济作物,从而减少污染物进入食物链的途径;或利用某些特定的动植物和微生物较快地吸走或降解土壤中的污染物质,从而达到净化土壤的目的。
6、工程治理
利用物理(机械)、物理化学原理治理污染土壤,是一种最为彻底、稳定、治本的措施,但投资大,适于小面积的重度污染区,主要有隔离法、清洗法、热处理、电化法等。近年来,把其他工业领域,特别是污水、大气污染治理技术引入土壤治理,为土壤污染治理研究开辟了新途径。
‘叁’ 治理土壤污染可以采取哪些方法
治理土壤污染一般是比较困难的,特别是大面积的治理更困难。常用的措施:把污染物质浓度高的上层翻至下层,而把浓度低的下层翻至上层,以此稀释耕层中污染物质的浓度。如果耕层以下土层中污染物质浓度高,则此法无效。此外,土层浅薄,翻耕法也无效。再者,为使翻上来的心土熟化,还必须考虑施用土壤改良剂和增加施肥量。
施用客土系指在现有的污染土上覆上一层未污染土壤。换土系指将受污染的耕层挖除至适当深度后再填入未污染土壤。覆盖客土使耕地地面增高,因此在稻田的情况下会使水浆管理产生困难,所以客土量是受限制的,客土效果常常是不大的。目前,采取换土的办法居多。无论客土、换土或深翻,对小面积污染严重的土壤均可采用。但对换下来的土壤一定要妥善处理,客土的厚度一般为10~25厘米。将污染的土壤深翻到下层也可以。这些工程都很大,一般的人力手工操作难以办到。故对大面积的换土与深翻,适用于机械操作。
了解有害金属元素的特性及其在土壤中的活动,对于研究某些能使作物减少吸收该元素的方法来说,是极为重要的。在自然条件下重金属的自然背景值保持着极为缓慢的动平衡而很少发生变化。与此相反,在耕种条件下人为活动使土壤环境发生变化,从而也使土壤中重金属的活动发生变化。这就是说,在自然土壤中这些物质的变化是在很长的时间里完成的,而在耕种土壤中这些变化是在极短的时间里完成的,这些变化对制定减少有毒物质吸收的措施则是很重要的。从这一观点出发,改良受重金属污染的土壤的根本措施是施用客土,但是我们不能在任何情况下总是局限于追求永久性效果,排土、客土这样的根本性措施也不是一成不变。即使是采取这样的根本性措施也要作到因地制宜,在污染程度轻而不宜于采取排土、客土措施的情况下,可考虑利用土壤中污染物质的特性(难溶化),施用改良剂来防治土壤污染。在土壤受重金属(如镉、铜、锌等)污染的情况下,施用石灰性物质提高土壤pH可使重金属形成氢氧化物沉淀;施用促进还原的有机物质可使重金属形成硫化物沉淀;施用磷酸盐物质可使重金属形成难溶性磷酸盐;利用离子拮抗减少植物对重金属的吸收,所有这些措施都可考虑采用。
‘肆’ 生态化学修复
生态化学修复是集植物修复技术、微生物修复技术和化学修复技术为一体的综合性技术。它是近年来新兴发展起来的一种高新技术,被认为是21世纪解决土壤污染问题最有发展前景的技术,同时是生态修复理论研究领域的重点课题之一。生态化学修复的应用,是非常环保的一种手段,其最终产物是水、二氧化碳等不会造成二次污染的物质,由于其投资相对较低、应用范围广、操作简便、处理效果好,在灾毁土地生态修复中很容易被接受。
‘伍’ 什么是化学修复
指引起突变的化学物质。已知的有烷化剂、碱基类似物(base analog)、羟胺(hydroxylamine)、吖啶色素等。
常用化学诱变剂的种类及作用机制
(一)烷化剂
是栽培作物诱发突变的最重要的一类诱变剂。药剂带有一个或多个活泼的烷基。通过烷基置换,取代其它分子的氢原子称为"烷化作用"所以这类物质称烷化剂。
烷化剂分为以下几类:
烷基磺酸盐和烷基硫酸盐
代表药剂:甲基磺酸乙酯(EMS)、硫酸二乙酯(DES)
2. 亚硝基烷基化合物
代表药剂:亚硝基乙基脲(NEH)、N-亚硝基-N-乙基脲烷(NEU)
3. 次乙胺和环氧乙烷类
代表药剂:乙烯亚胺(EI)
4. 芥子气类
氮芥类、硫芥类
烷化剂的作用机制--烷化作用 作用重点是核酸,导致DNA断裂、缺失或修补。
(二)核酸碱基类似物
这类化合物具有与DNA碱基类似的结构。
代表药剂:
5-溴尿嘧啶(BU)、5-溴去氧尿核苷(BudR) 为胸腺嘧啶(T)的类似物
2-氨基嘌呤(AP) 为腺嘌呤(A)的类似物
马来酰肼(MH) 为尿嘧啶(U)的异构体
作用机制:作为DNA的成份而渗入到DNA分子中去,使DNA复制时发生配对错误,从而引起有机体变异。
(三)其它诱变剂
亚硝酸 能使嘌呤或嘧啶脱氨,改变核酸结构和性质,造成DNA复制紊乱。HNO2还能造成DNA双链间的交联而引起遗传效应。
叠氮化钠(NaN3) 是一种呼吸抑制剂,能引起基因突变,可获得较高的突变频率,而且无残毒。
‘陆’ 土壤修复的化学方法有哪些
总体划分可以分为物理,化学和生物方法。物理方法可以包括机械翻土,客土等稀释方法。但是这种方法的缺点在于,可能会导致土壤的物理化学性质改变,因为深层土壤的氧化还原电位不一样,所以翻土后可能会让一些物质发生氧化还原反应,产生负效应。化学方法包括电化学、淋洗、气提等等。但是化学方法的问题是,所用的药剂可能会产生二次污染。生物方法一种环境友好型方法。比如植物修复,微生物修复,以及植物-微生物联合修复。但是此方法的缺点是修复周期较长,往往需要几年到几十年的时间。综上所述,每种方法有各自的优缺点,一般在实际修复工程中,需要联合几种不同的技术来达到最优的效果。
‘柒’ 土壤化学还原修复常用的还原剂
土壤化学还原修复常用的还原剂有臭氧、过氧化氢、高锰酸钾等。使其与污染物质发生化学反应来实现净化土壤的目的。化学氧化法适用于土壤和地下水同时被有机物污染的修复。
相关信息
1、化学修复技术发展较早,主要有土壤固化-稳定化技术、淋洗技术、氧化还原技术、光催化降解技术和电动力学修复等。
2、固化-稳定化技术是将污染物在污染介质中固定,使其处于长期稳定状态,普遍应用于土壤重金属污染的快速控制修复方法,对同时处理多种重金属复合污染土壤具有明显的优势。
3、淋洗技术,土壤淋洗修复技术是将水或含有冲洗助剂的水溶液、酸碱溶液、络合剂或表面活性剂等淋洗剂注入到污染土壤或沉积物中,洗脱和清洗土壤中的污染物的过程。淋洗的废水经处理后达标排放,处理后的土壤可以再安全利用。
4、氧化-还原技术,土壤化学氧化-还原技术是通过向土壤中投加化学氧化剂,例如臭氧、过氧化氢、高锰酸钾等还原剂。化学氧化法适用于土壤和地下水同时被有机物污染的修复。
5、光催化降解技术土壤光催化降解技术是一项新兴的深度土壤氧化修复技术,可应用于农药等污染土壤的修复。电动力学修复是通过电化学和电动力学的复合作用,例如电渗、电迁移和电泳等。驱动污染物富集到电极区,进行集中处理或分离的过程。电动修复技术已进入现场修复应用。
‘捌’ 重金属污染土壤修复原理
植物修复技术是以植物忍耐和超量积累某种或某些化学元素的理论为基础,利用植物及其共存微生物体系清除环境中污染物的一项环境污染治理技术。目前国内外对植物修复技术的基础理论研究和推广应用大多限于重金属元素,因此狭义的植物修复技术也主要指利用植物清除污染土壤中的重金属。但是,随着对重金属植物修复技术研究的深入,特别是重金属耐受和超积累植物及其根际微生物共存体系的研究,植物修复技术的涵义和应用得到了延伸。如美国阿岗国家实验室利用野生植物建立各种生物反应器,净化石油天然气生产过程中产生的污水及其污染物,如Newman等(1997)用白杨树来修复三氯乙烯(TCE)污染的地下水。在这些植物修复技术中,根际耐性微生物和化学添加剂的强化作用使修复效果更加理想,大大改进了植物修复技术。
植物修复是生物治污工程中一个非常独特的治理技术,与物理的、化学的和微生物的处理技术相比,有其独特的优点;但同时植物修复技术本身及发展过程中也存在一些问题,需要进一步研究解决。植物修复技术的优缺点具体见表5-1。
表5-1 植物修复技术的优缺点(Glass 2000)
优点 缺点
成本低廉 修复时间较长,处理过程比物理化学处理慢
原位的、主动的修复 不能修复所有污染对象,只针对浅层地下水、表层土壤和沉积物
净化与美化环境 生物降解产物的生物毒性还不清楚
增加土壤有机质和肥力 超积累植物吸收重金属的分子、生化、生理过程有待深入阐明,限制了植物修复的潜力发挥
环境扰动小 食草动物对修复植物的取食行为使污染物进入食物链
大面积处理 修复植物的后期处置问题难以解决
易为公众所接受 外来修复植物种类可能对当地的土壤、生物多样性产生不良影响
‘玖’ 土壤污染修复技术方法有哪些
一、植物修复技术
从20 世纪80 年代问世以来,利用植物资源与净化功能的植物修复技术迅速发展[4,5]。植物修复技术包括利用植物超积累或积累性功能的植物吸取修复[6,7,8] 、利用植物根系控制污染扩散和恢复生态功能的植物稳定修复[9] 、利用植物代谢功能的植物降解修复[10] 、利用植物转化功能的植物挥发修复[4 ] 、利用植物根系吸附的植物过滤修复[4] 等技术;可被植物修复的污染物有重金属、农药、石油和持久性有机污染物、炸药、放射性核素等。其中,重金属污染土壤的植物吸取修复技术在国内外都得到了广泛研究,已经应用于砷、镉、铜、锌、镍、铅等重金属以及与多环芳烃复合污染土壤的修复[6,7,11,12],并发展出包括络合诱导强化修复[13] 、不同植物套作联合修复、修复后植物处理处置的成套集成技术[1]。这种技术的应用关键在于筛选具有高产和高去污能力的植物,摸清植物对土壤条件和生态环境的适应性。近年来,中国在重金属污染农田土壤的植物吸取修复技术应用方面在一定程度上开始引领国际前沿研究方向。但是,虽然开展了利用苜蓿、黑麦草等植物修复多环芳烃、多氯联苯和石油烃的研究工作[1],但是有机污染土壤的植物修复技术的田间研究还很少,对炸药、放射性核素污染土壤的植物修复研究则更少。
植物修复技术不仅应用于农田土壤中污染物的去除,而且同时应用于人工湿地建设、填埋场表层覆盖与生态恢复、生物栖身地重建等。近年来,植物稳定修复技术被认为是一种更易接受、大范围应用、并利于矿区边际土壤生态恢复的植物技术,也被视为一种植物固碳技术和生物质能源生产技术;为寻找多污染物复合或混合污染土壤的净化方案,分子生物学和基因工程技术应用于发展植物杂交修复技术[14] ;利用植物的根圈阻隔作用和作物低积累作用[15],发展能降低农田土壤污染的食物链风险的植物修复技术正在研究。
二、微生物修复技术
微生物能以有机污染物为唯一碳源和能源或者与其他有机物质进行共代谢而降解有机污染物。利用微生物降解作用发展的微生物修复技术是农田土壤污染修复中常见的一种修复技术。这种生物修复技术已在农药或石油污染土壤中得到应用。在中国,已构建了农药高效降解菌筛选技术、微生物修复剂制备技术和农药残留微生物降解田间应用技术;也筛选了大量的石油烃降解菌,复配了多种微生物修复菌剂,研制了生物修复预制床和生物泥浆反应器,提出了生物修复模式[1]。近年来,开展了有机胂和持久性有机污染物如多氯联苯和多环芳烃污染土壤的微生物修复技术工作。分离到能将PAHs 作为唯一碳源的微生物如假单胞菌属、黄杆菌属等,以及可以通过共代谢方式对4 环以上PAHs 加以降解的如白腐菌等[16]。建立了菌根真菌强化紫花苜蓿根际修复多环芳烃的技术和污染农田土壤的固氮植物2根瘤菌2菌根真菌联合生物修复技术[17,18 ]。总体上,微生物修复研究工作主要体现在筛选和驯化特异性高效降解微生物菌株,提高功能微生物在土壤中的活性、寿命和安全性,修复过程参数的优化和养分、温度、湿度等关键因子的调控等方面。微生物固定化技术因能保障功能微生物在农田土壤条件下种群与数量的稳定性和显着提高修复效率而受到青睐。通过添加菌剂和优化作用条件发展起来的场地污染土壤原位、异位微生物修复技术有:生物堆沤技术、生物预制床技术、生物通风技术和生物耕作技术等。运用连续式或非连续式生物反应器、添加生物表面活性剂和优化环境条件等可提高微生物修复过程的可控性和高效性[19,20]。目前,正在发展微生物修复与其他现场修复工程的嫁接和移植技术,以及针对性强、高效快捷、成本低廉的微生物修复设备,以实现微生物修复技术的工程化应用。
污染土壤物理修复技术
物理修复是指通过各种物理过程将污染物(特别是有机污染物) 从土壤中去除或分离的技术。热处理技术是应用于工业企业场地土壤有机污染的主要物理修复技术,包括热脱附[21] 、微波加热[22] 和蒸气浸提[23] 等技术,已经应用于苯系物、多环芳烃、多氯联苯和二英等污染土壤的修复。
一、热脱附技术
热脱附是用直接或间接的热交换,加热土壤中有机污染组分到足够高的温度,使其蒸发并与土壤介质相分离的过程。热脱附技术具有污染物处理范围宽、设备可移动、修复后土壤可再利用等优点,特别对PCBs这类含氯有机物,非氧化燃烧的处理方式可以显着减少二恶英生成[21]。目前欧美国家已将土壤热脱附技术工程化,广泛应用于高污染的场地有机污染土壤的离位或原位修复,但是诸如相关设备价格昂贵、脱附时间过长、处理成本过高等问题尚未得到很好解决,限制了热脱附技术在持久性有机污染土壤修复中的应用[24]。发展不同污染类型土壤的前处理和脱附废气处理等技术,优化工艺并研发相关的自动化成套设备正是共同努力的方向。
二、蒸气浸提技术
土壤蒸气浸提(简称SVE) 技术是去除土壤中挥发性有机污染物(VOCs) 的一种原位修复技术。它将新鲜空气通过注射井注入污染区域,利用真空泵产生负压,空气流经污染区域时,解吸并夹带土壤孔隙中的VOCs 经由抽取井流回地上;抽取出的气体在地上经过活性炭吸附法以及生物处理法等净化处理,可排放到大气或重新注入地下循环使用。SVE具有成本低、可操作性强、可采用标准设备、处理有机物的范围宽、不破坏土壤结构和不引起二次污染等优点。苯系物等轻组分石油烃类污染物的去除率可达90 %[25 ]。深入研究土壤多组分VOCs 的传质机理,精确计算气体流量和流速,解决气提过程中的拖尾效应,降低尾气净化成本,提高污染物去除效率,是优化土壤蒸气浸提技术的需要。
化学/物化修复技术
相对于物理修复,污染土壤的化学修复技术发展较早,主要有土壤固化-稳定化技术、淋洗技术、氧化2还原技术、光催化降解技术和电动力学修复等。
一、固化-稳定化技术
固化-稳定化技术是将污染物在污染介质中固定,使其处于长期稳定状态,是较普遍应用于土壤重金属污染的快速控制修复方法,对同时处理多种重金属复合污染土壤具有明显的优势[26 ]。美国环保署将固化/稳定化技术称为处理有害有毒废物的最佳技术。[5] 中国一些冶炼企业场地重金属污染土壤和铬渣清理后的堆场污染土壤也采用了这种技术。国际上已有利用水泥固化-稳定化处理有机与无机污染土壤的报道[27 ]。
根据EPA的定义,固化和稳定化具有不同的含义。固定化技术是将污染物囊封入惰性基材中,或在污染物外面加上低渗透性材料,通过减少污染物暴露的淋滤面积达到限制污染物迁移的目的;稳定化是指从污染物的有效性出发,通过形态转化,将污染物转化为不易溶解、迁移能力或毒性更小的形式来实现无害化,以降低其对生态系统的危害风险。固化产物可以方便地进行运输,而无需任何辅助容器;而稳定化不一定改变污染土壤的物理性状。
固化技术具有工艺操作简单、价格低廉、固化剂易得等优点,但常规固化技术也具有以下缺点,如固化反应后土壤体积都有不同程度的增加,固化体的长期稳定性较差等。而稳定化技术则可以克服这一问题,如近年来发展的化学药剂稳定化技术,可以在实现废物无害化的同时,达到废物少增容或不增容,从而提高危险废物处理处置系统的总体效率和经济性;还可以通过改进螯合剂的结构和性能使其与废物中的重金属等成分之间的化学螯合作用得到强化,进而提高稳定化产物的长期稳定性,减少最终处置过程中稳定化产物对环境的影响。由此可见,稳定化技术有望成为土壤重金属污染修复技术领域的主力。