㈠ 那位大哥能帮我找到吡咯N位H化学位移的实验值
化学位移:
由于有机分子中各种质子受到不同程度的屏蔽效应,因此在核磁共振谱的不同位置上出现吸收峰。
但这种屏蔽效应所造成的差异是非常小的,难以精确的测出其绝对值,因此需要一个参照物来做对比,常用四甲基硅烷(CH3)4Si作为标准物质,并人为将其吸收峰出现的位置定为零。
公式:
某一物质吸收峰的位置与标准质子吸收峰位置之间的差异称为该物质的化学位移(chemical shift),常以δ表示:
化学位移(δ)=【υ样品—υTMS / υ0(核磁共振仪所用频率)】*1000000
式中,υ样品为样品吸收峰的频率,υTMS为四甲基硅烷吸收峰的频率。由于所得的数据很小,一般只有百万分之几,故乘以1000000。
㈡ 在打碳谱时,氘代吡啶的化学位移值是多少
Bruker TOPSPIN中怎么处理无法标定化学位移的碳谱
这是 topspin2.1 PL0或其他PL比较低的版本的bug。手工检峰的信息排在检峰文件的最后面,所以plot时候,就会把手工检峰的结果硬放到所有的峰的最右侧。
㈢ 什么是化学位移影响化学位移的因素有哪些
化学位移是NMR(核磁共振波谱)的术语。 表征在不同化学环境下的不同 H-1, C-13, P-31, N-15等元素在波谱上出现的位置。
就外部因素来说, 氘代溶剂对化学位移有一定影响, 如用氘代氯仿和氘代DMSO会导致同一H或C 的化学位移有变化, 但不是很大。
影响化学位移的主要因素是所测元素周围的化学环境。 例如烯烃上的H或C的化学位移比饱和烷烃的H或C的化学位移要大的多, 即在低场出现。
更具体和详细的内容请参考有关的波谱专着。
㈣ 核磁共振的图谱的剖析
1H核磁共振图谱提供了积分曲线、化学位移、峰形及偶合常数等信息。图谱的剖析就是合 理地分析这些信息,正确地推导出与图谱相对应的化合物的结构。通常采用如下步骤。
⑴标识杂质峰在1H-NMR谱中,经常会出现与化合物无关的杂质峰,在剖析图谱前,应 先将它们标出。最常见的杂质峰是溶剂峰,样品中未除尽的溶剂及测定用的氘代溶剂中夹杂的 非氘代溶剂都会产生溶剂峰。为了便于识别它们,下表列出了最常用溶剂的化学位移。 常用溶剂的化学位移常用溶剂 化学位移 常用溶剂 化学位移 环己烷 1.40 丙酮 2.05 苯 7.20 乙酸 2.058.50(COOH)* 氯仿 7.27 四氢呋喃 (α)3.60(β)1.75 乙腈 1.95 二氧六环 3.55 1,2-二氯乙烷 3.69 二甲亚砜 2.50 水 4.7 N,N-二甲基甲酰胺 2.77,2.95,7.5(CHO)* 甲醇 3.354.8* 硅胶杂质 1.27 乙醚 1.163.36 吡啶 (α)8.50(β)6.98(γ)7.35 *数值随测定条件而有变化。 还有两个需要标识的峰是旋转边峰和13C同位素边峰。在1H-NMR测定时,旋转的样品管 会产生不均匀的磁场,导致在主峰两侧产生对称的小峰,这一对小峰称为旋转边峰,旋转边峰与 主峰的距离随样品管旋转速度的改变而改变。在调节合适的仪器中旋转边峰可消除。13C与1H 能发生偶合并产生裂分峰,这对裂分峰称为13C同位素边峰。由于13C的大然丰度仅为1.1%,只有在浓度很大或图谱放大时才会发现13C同位素边峰。
⑵根据积分曲线计算各组峰的相应质子数,若图谱中已直接标出质子数,则此步骤可省。
⑶根据峰的化学位移确定它们的归属。
⑷根据峰的形状和偶合常数确定基团之间的互相关系。
⑸采用重水交换的方法识别活泼氢由于一OH,一NH2,一COOH上的活泼氢能与D2O发生交换。而使活泼氢的信号消失,因此对比重水交换前后的图谱可以基本判别分子中是否含有活泼氢。
⑹综合各种分析,推断分子结构并对结论进行核对。
㈤ 氘代dmso的加入几滴氘代重水化学位移是多少
活泼氢一般在氢谱中会因浓度的变化而产生位移,可以配高浓度和低浓度的来观察。还有就是活泼氢在质子溶剂,比如氘水,氘代甲醇中会被氘代而不出峰;而在氘代DMSO、吡啶中一般会出峰。碳谱无法判断活泼氢。
㈥ 在HNMR谱图中,化学位移位于7.2ppm处的信号是
b
四氯化碳没信号,氘氯氘代不完全400M的信号就在7.26,3个氯吸电子去屏蔽后移向低场,TMS的信号是零点,不然还锁什么场,水峰1.5,甲醇甲基在3左右,羟基宽峰乱飘,不过也就在3-5附近
㈦ 氘代试剂是如何生产的不活泼的氢是如何氘代的
20世纪60年代,核磁共振仪器面世,主要由德国布鲁克和美国瓦利安研制垄断生产,该仪器有广泛的商业用途:医用,科研,考古等众多领域。
核磁共振仪器需要使用大量氘代试剂,氘代试剂用于避免普通溶剂氢原子干扰,从而准确的分析出有机分子氢元素比例。目前已形成独立核磁学科。
目前主要提供氘代试剂的也只有少量企业:欧洲主要使用adamas阿达玛斯氘代试剂,美国为美国同位素公司氘代试剂,还有像sigma其它试剂提供商。
由化学位移、偶合常数及峰面积积分曲线分别提供含氢官能团、核间关系及氢分布等三方面的信息[1] 。峰面积和氢核数目的关系。
在1H-NMR谱上,各吸收峰覆盖的面积与引起该吸收的氢核数目成正比。峰面积常以积分曲线高度表示。积分曲线的画法由左至右,即由低磁场向高磁场。
积分曲线的总高度(用cm或小方格表示)和吸收峰的总面积相当,即相当于氢核的总个数。而每一相邻水平台阶高度则取决于引起该吸收峰的氢核数目。
当知道元素组成时,即知道该化合物总共有多少个氢原子时,根据积分曲线便可确定图谱中各峰所对应氢原子数目,即氢分布;如果不知道元素组成,但图谱中有能判断氢原子数目的基团(如甲基、羟基、取代芳环等),以此为基准也可以判断化合物中各种含氢官能团的氢原子数目。
㈧ 同一种化合物质在不同氘代试剂中化学位移不一样吗
一般情况是不一样的,因为溶剂对化学位移有影响。
不过,同一物质,其相对化学位移是一样的。
㈨ 化学位移值50.88代表什么基团
化学位移是NMR(核磁共振波谱)的术语。 表征在不同化学环境下的不同 H-1, C-13, P-31, N-15等元素在波谱上出现的位置。 就外部因素来说, 氘代溶剂对化学位移有一定影响, 如用氘代氯仿和氘代DMSO会导致同一H或C 的化学位移有变化