⑴ 碳纤维的主要化学成分化学式
碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa亦高于钢。因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。材料的比强度愈高,则构件自重愈小,比模量愈高,则构件的刚度愈大,从这个意义上已预示了碳纤维在工程的广阔应用前景,综观多种新兴的复合材料(如高分子复合材料、金属基复合材料、陶瓷基复合材料)的优异性能, 不少人预料,人类在材料应用上正从钢铁时代进入到一个复合材料广泛应用的时代。
顾名思义,它不仅具有碳材料的固有本征特性,又兼备纺织纤维的柔软可加工性,是新一代增强纤维。与传统的玻璃纤维(GF)相比,杨氏模量是其3 倍多;它与凯芙拉纤维(KF-49)相比,不仅杨氏模量是其2倍左右,而且在有机溶剂、酸、碱中不溶不胀,耐蚀性出类拔萃。有学者在1981年将PAN基CF浸泡在强碱NaOH 溶液中,时间已过去20多年,它至今仍保持纤维形态。
碳纤维是含碳量高于90%的无机高分子纤维 。其中含碳量高于99%的称石墨纤维。碳纤维的轴向强度和模量高,无蠕变,耐疲劳性好,比热及导电性介于非金属和金属之间,热膨胀系数小,耐腐蚀性好,纤维的密度低,X射线透过性好。但其耐冲击性较差,容易损伤,在强酸作用下发生氧化,与金属复合时会发生金属碳化、渗碳及电化学腐蚀现象。因此,碳纤维在使用前须进行表面处理。
碳纤维可分别用聚丙烯腈纤维、沥青纤维、粘胶丝或酚醛纤维经碳化制得;按状态分为长丝、短纤维和短切纤维;按力学性能分为通用型和高性能型 。通用型碳纤维强度为1000兆帕(MPa)、模量为100GPa左右。高性能型碳纤维又分为高强型(强度2000MPa、模量250GPa)和高模型(模量300GPa以上)。强度大于4000MPa的又称为超高强型;模量大于450GPa的称为超高模型。随着航天和航空工业的发展,还出现了高强高伸型碳纤维,其延伸率大于2%。用量最大的是聚丙烯腈PAN基碳纤维。
碳纤维可加工成织物、毡、席、带、纸及其他材料。碳纤维除用作绝热保温材料外,一般不单独使用,多作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,构成复合材料。碳纤维增强的复合材料可用作飞机结构材料、电磁屏蔽除电材料、人工韧带等身体代用材料以及用于制造火箭外壳、机动船、工业机器人、汽车板簧和驱动轴等。
没化学式,这是一种复合结构的化工产品
⑵ 简述丙烯晴制备碳纤维的化学方程式
丙烯腈不能制备碳纤维,聚丙烯腈可以用于制备碳纤维。
所以如果题主想要用丙烯腈制备碳纤维,则必须先让其聚合,产生聚丙烯腈才可。
丙烯腈是CH2=CH-CN,而聚丙烯腈是-[CH2-CHCN-]_n-.
聚丙烯腈化学式要写作n个丙烯腈,因此它碳化制备碳纤维的化学方程式是:
6-[CH2-CHCN-]_n- =加热=9nH2+3nN2 +18nC(碳纤维)。
⑶ 碳纤维的物理化学性能
碳纤维的物理性能
优点:
1)密度小,质量轻,比强度高。碳纤维的密度为 1.5~2g/cm3,相当于钢密度的 1/4,铝合金密度的 1/2。而其比强度比刚大 16 倍,比铝合金大 12倍。
2)强度高。其拉伸强度可达 3000~4000MPa ,弹性比钢大 4~5倍,比铝大6~7倍。
3)弹性模量高。
4)具有各向异性,热膨胀系数小,导热率随温度的升高而下降,耐骤冷、急热,即使从几千度的高温突然降到常温也不会炸裂。
5) 导电性好, 25℃时高模量纤维为 775μΩ/cm,高强度纤维为 1500μΩ/cm。
6)耐高温和耐低温性好。碳纤维可在 2000℃下使用,在 3000℃非氧化气氛下不融化、不软化。在 -180℃低温下,钢铁变得比玻璃脆,而碳纤维依旧很柔软,也不脆化。
缺点:耐冲击性较差,容易损伤。 (碳纤维复合材料 抗拉不抗穿刺,生活中避免让碳纤维产品碰到锋利的小石子,或尖锐物体,以防止发生破裂现象。)
碳纤维的化学性能
优点:
1)耐酸性能好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸、苯、丙酮等介质侵蚀。将碳纤维放在浓度为 50% 的盐酸、硫酸、磷酸中, 200 天后其弹性模量、强度和直径基本没有变化;在 50% 浓度的硝酸中只是稍有膨胀,其耐腐蚀性能超过黄金和铂金。
2)此外,还有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性。
缺点:
在强酸作用下发生氧化,与金属复合时会发生金属碳化、渗碳及电化学腐蚀现象。因此,碳纤维在使用前须进行表面处理。
⑷ 碳纤维如何加工
现代碳纤维产业化的途径是前体纤维碳化工艺。用这三种原纤维生产碳纤维的工艺包括稳定化处理(200-400摄氏度的空气,或用耐火试剂进行化学处理)、碳化(400-1400摄氏度,氮)和石墨化(1800摄氏度以上,在氩气氛中)。为了提高碳纤维与复合材料基体的结合性能,需要进行表面处理、上浆和干燥等工艺。
另一种制造碳纤维的方法是气相生长。在催化剂存在下,甲烷和氢气的混合物在1000度时可以发生反应。生产最大长度为50 cm的不连续短碳纤维。其结构不同于聚丙烯腈基或沥青基碳纤维。易石墨化,力学性能好,导电率高,形成层间化合物。
(4)碳纤维材如何化学醋化扩展阅读:
碳纤维的发展:
20世纪90年代初,高性能和超高性能碳纤维问世。预计未来的工作将致力于改进工艺、扩大生产、降低成本和开发应用程序。一些特殊的碳纤维,如抗氧化碳纤维(提高复合材料的使用温度)、低纤维碳纤维(制作0.035mm超薄预浸带)。
高导热性和低电阻碳纤维(满足屏蔽电磁和射频干扰,并释放多余热量)、低热膨胀系数碳纤维(用于卫星天线系统、镜子等)、中空碳纤维(用于飞机制造)工业上,提高复合材料、核反应堆高温过滤介质的冲击韧性)。
随着科学和工程的发展,生物大分子血清和血浆介质的分离和活性炭纤维将得到极大的发展。在不久的将来,气相生长碳纤维的连续生产将取得显着进展,工业化的日期也不会太远。
参考资料来源:网络—碳纤维
⑸ 碳纤维主要原材料是什么
碳纤维主要是腈纶和粘胶纤维做原料,经高温氧化碳化而成。
碳纤维由碳元素组成的一种特种纤维。具有耐高温、抗摩擦、导电、导热及耐腐蚀等特性 外形呈纤维状、柔软、可加工成各种织物,由于其石墨微晶结构沿纤维轴择优取向,因此沿纤维轴方向有很高的强度和模量。碳纤维的密度小,因此比强度和比模量高。
碳纤维的主要用途是作为增强材料与树脂、金属、陶瓷及炭等复合,制造先进复合材料。碳纤维增强环氧树脂复合材料,其比强度及比模量在现有工程材料中是最高的。
(5)碳纤维材如何化学醋化扩展阅读:
人造纤维主要有粘胶纤维、硝酸酯纤维、醋酯纤维、铜铵纤维和人造蛋白纤维等,其中粘胶纤维又分普通粘胶纤维和有突出性能的新型粘胶纤维(如高湿模量纤维、超强粘胶纤维和永久卷曲粘胶纤维等)。
合成纤维主要有聚酰胺6纤维(中国称锦纶或尼龙6),聚丙烯腈纤维(中国称腈纶),聚酯纤维(中国称涤纶),聚丙烯纤维(中国称丙纶),聚乙烯醇缩甲醛纤维(中国称维纶)以及特种纤维(包括用四氟乙烯聚合制成的耐腐蚀纤维。
耐200℃以上温度的耐高温纤维,强度大于10克/旦、模量大于200克/旦的高强度、高模量纤维,以及难燃纤维、弹性体纤维、功能纤维等)。
20世纪50年代开展合成纤维的改性研究,主要是用物理或化学方法改善合成纤维的吸湿、染色、抗静电、抗燃、抗污、抗起球等性质,同时还增加了化学纤维的品种。
⑹ 碳纤维复合材料成型方法及工艺
复合材料加工工艺是在同一基础上根据不同材料的特性及应用目的而不断衍生发展的。碳纤维复合材料在发挥质轻、强度大的基础上,也会根据应用对象的差异而采用不同的成型工艺,从而尽可能地发挥出碳纤维所具有的特殊性能。下面小编针对适用于碳纤维复合材料的成型工艺及其应用以及碳纤维复合材料的成型方法。希望能够给大家带来帮助。
一、碳纤维复合材料的成型方法
1、模压法。这种方法是将早已预浸树脂的的碳纤维材料放入金属模具中,加压后使多余的胶液溢出来,然后高温固化成型,脱膜后成品就出来了,这种方法最适合用来制作汽车零件。
22、手糊压层法。将浸过胶后的碳纤维片剪形叠层,或是以便铺层一边刷上树脂,再热压成型。这个方法可以随便选择纤维的方向、大小和厚度,被广泛使用。注意的是铺层后的形状要小于模具的形状,这样纤维在模具内受压时就不会挠曲。
33、真空袋热压法。在模具山叠层,并覆上耐热薄膜,利用柔软的口袋向叠层施加压力,并在热压灌中固化。
44、缠绕成型法。将碳纤维单丝缠绕在碳纤维轴上,特别适用于制作圆柱体和空心器皿。
55、挤拉成型法。先将碳纤维完全浸润,通过挤拉除去树脂和空气,然后在炉子里固化成型。这种方法简单,适用于制备棒状、管状零件。
二、碳纤维复合材料成型工艺
1.手糊成型:
在模具工作面上涂敷脱模剂、胶衣,将剪裁好的碳纤维预浸布铺设到模具工作面上,刷涂或喷涂树脂体系胶液,达到需要的厚度后,成型固化、脱模。在制备技术高度发达的今天,手糊工艺仍以工艺简便、投资低廉、适用面广等优势在石油化工容器、贮槽、汽车壳体等许多领域广泛应用。其缺点是质地疏松、密度低,制品强度不高,而且主要依赖于人工,质量不稳定,生产效率很低。
2.喷射成型:
属于手糊工艺低压成型中的一类,使用短切纤维和树脂经过喷枪混合后,压缩空气喷洒在模具上,达到预定厚度后,再手工用橡胶锟按压,然后固化成型。为改进手糊成型而创造的一种半机械化成型工艺,在工作效率方面有一定程度的提高,用以制造汽车车身、船身、浴缸、储罐的过渡层。
3.层压成型:
将逐层铺叠的预浸料放置于上下平板模之间加压加温固化,这种工艺可以直接继承木胶合板的生产方法和设备,并根据树脂的流变性能,进行改进与完善。层压成型工艺主要用来生产各种规格、不同用途的复合材料板材。具有机械化和自动化程度高、产品质量稳定等特点,但是设备一次性投资大。
4.缠绕成型:
将经过树脂胶液浸渍的连续纤维或布带按一定规律缠绕到芯模上,然后固化、脱模成为复合材料制品的工艺。碳纤维缠绕成型可充分发挥其高比强度、高比模量以及低密度的特点,可用于制造圆柱体、球体及某些正曲率回转体或筒形碳纤维制品。
5.拉挤成型:
将浸渍树脂胶液的连续碳纤维丝束、带或布等,在牵引力的作用下,通过挤压模具成型、固化,连续不断地生产长度不限的型材。拉挤成型是复合材料成型工艺中的一种特殊工艺,其优点是生产过程可完全实现自动化控制,生产效率高。拉挤成型制品中纤维质量分数可高达80%,浸胶在张力下进行,能充分发挥增强材料的作用,产品强度高,其制成品纵、横向强度可任意调整,可以满足制品的不同力学性能要求。该工艺适合于生产各种截面形状的型材,如工字型、角型、槽型、异型截面管材以及上述截面构成的组合截面型材。
6.液态成型:
将液态单体合成为高分子聚合物,再从聚合物固化反应为复合材料的过程改为直接在模具中同时一次完成,既减少了工艺过程中的能量消耗,又缩短了模塑周期(只需约2分钟便可完成一件制品)。但这种工艺的应用,必须以精确的管道输送和计量以及温度压力自动控制为基础,属于高分子材料和近代高新科学技术的交叉范畴,目前的应用还不是很广。
7.真空热压罐:
将单层预浸料按预定方向铺叠成的复合材料坯料放在热压罐内,在一定温度和压力下完成固化过程。热压罐是一种能承受和调控一定温度、压力范围的专用压力容器。坯料被铺放在附有脱模剂的模具表面,然后依次用多孔防粘布(膜)、吸胶毡、透气毡覆盖,并密封于真空袋内,再放入热压罐中。加温固化前先将袋抽真空,除去空气和挥发物,然后按不同树脂的固化制度升温、加压、固化。固化制度的制定与执行是保证热压罐成型制件质量的关键。该种成型工艺适用于制造飞机舱门、整流罩、机载雷达罩,支架、机翼、尾翼等产品。
8.真空导入:
简称VIP,在模具上铺“干”碳纤维复合材料,然后铺真空袋,并抽出体系中的真空,在模具腔中形成一个负压,利用真空产生的压力把不饱和树脂通过预铺的管路压入纤维层中,让树脂浸润增强材料,最后充满整个模具,制品固化后,揭去真空袋材料,从模具上得到所需的制品。该工艺在1950年就出现了专利记录,但在近几年才得到发展。在真空环境下树脂浸润碳纤,制品中产生的气泡极少,制品的强度更高、质量更轻,产品质量比较稳定,而且降低了树脂的损耗,仅用一面模具就可以得到两面光滑平整的制品,能较好地控制产品厚度。一般应用于船艇工业中的方向舵、雷达屏蔽罩,风电能源中的叶片、机舱罩,汽车工业中的各类车顶、挡风板、车厢等。
总结:随着碳纤维复合材料应用的深入和发展,碳纤维复合材料的成型方式也在不断地以新的形式出现,但是碳纤维复合材料的诸种成型工艺并非按照更新淘汰的方式存在的,在实际应用中,往往是多种工艺并存,实现不同条件、不同情况下的最好效应。同时碳纤维重量比铝轻,强度却高于钢,又有耐腐蚀、耐高温、模量高等优点,被称为“新兴材料之王”。碳纤维的产品在很多领域都有应用。希望以上的这些知识能够帮到大家,祝大家生活愉快。
⑺ 碳纤维的制备方式
工业化生产碳纤维按原料路线可分为聚丙烯腈(PAN)基碳纤维、沥青基碳纤维和粘胶基碳纤维三大类,但主要生产前两种碳纤维。由粘胶纤维制取高力学性能的碳纤维必须经高温拉伸石墨化,碳化收率低,技术难度大,设备复杂,原料丰富碳化收率高,但因原料调制复杂、产品性能较低,亦未得到大规模发展;由聚丙烯腈纤维原丝制得的高性能碳纤维,其生产工艺较其他方法简单,产量约占全球碳纤维总产量的90%以上。 碳纤维可分别用聚丙烯腈纤维、沥青纤维、粘胶丝或酚醛纤维经碳化制得。应用较普遍的碳纤维主要是聚丙烯腈碳纤维和沥青碳纤维。碳纤维的制造包括纤维纺丝、热稳定化(预氧化)、碳化、石墨化等4个过程。其间伴随的化学变化包括,脱氢、环化、预氧化、氧化及脱氧等。
从粘胶纤维制取高力学性能的碳纤维必须经高温拉伸石墨化,碳化收率低,技术难度大、设备复杂,产品主要为耐烧蚀材料及隔热材料所用;由沥青制取碳纤维,原料来源丰富,碳化收率高,但因原料调制复杂、产品性能较低,亦未得到大规模发展;由聚丙烯腈纤维原丝可制得高性能的碳纤维,其生产工艺较其它方法简单力学性能优良,自20世纪60年代后在碳纤维工业发展良好。
聚丙烯腈基碳纤维的生产主要包括原丝生产和原丝碳化两个过程。
原丝生产过程主要包括聚合、脱泡、计量、喷丝、牵引、水洗、上油、烘干收丝等工序。
碳化过程主要包括放丝、预氧化、低温碳化、高温碳化、表面处理、上浆烘干、收丝卷绕等工序。
PAN基碳纤维的制备
聚丙烯腈碳纤维是以聚丙烯腈纤维为原料制成的碳纤维,主要作复合材料用增强体。无论均聚或共聚的聚丙烯腈纤维都能制备出碳纤维。为了制造出高性能碳纤维并提高生产率,工业上常采用共聚聚丙烯腈纤维为原料。对原料的要求是:杂质、缺陷少;细度均匀,并越细越好;强度高,毛丝少;纤维中链状分子沿纤维轴取向度越高越好,通常大于80%;热转化性能好。
生产中制取聚丙烯腈纤维的过程是:先由丙烯腈和其他少量第二、第三单体(丙烯酸甲醋、甲叉丁二脂等)共聚生成共聚聚丙烯腈树脂(分子量高于 6到8万),然后树脂经溶剂(硫氰酸钠、二甲基亚矾、硝酸和氯化锌等)溶解,形成粘度适宜的纺丝液,经湿法、干法或干湿法进行纺丝,再经水洗、牵伸、干燥和热定型即制成聚丙烯腈纤维。若将聚丙烯腈纤维直接加热易熔化,不能保持其原来的纤维状态。制备碳纤维时,首先要将聚丙烯腈纤维放在空气中或其他氧化性气氛中进行低温热处理,即预氧化处理。预氧化处理是纤维碳化的预备阶段。一般将纤维在空气下加热至约270℃,保温0.5h到3h,聚丙烯腈纤维的颜色由白色逐渐变成黄色、棕色,最后形成黑色的预氧化纤维。是聚丙烯腈线性高分子受热氧化后,发生氧化、热解、交联、环化等一系列化学反应形成耐热梯型高分子的结果。再将预氧化纤维在氮气中进行高温处理1600℃的碳化处理,则纤维进一步产生交联环化、芳构化及缩聚等反应,并脱除氢、氮、氧原子,最后形成二维碳环平面网状结构和层片粗糙平行的乱层石墨结构的碳纤维。
由PAN原丝制备碳纤维的工艺流程如下:PAN原丝→预氧化→碳化→石墨化→表面处理→卷取→碳纤维。
第一、原丝制备,聚丙烯腈和粘胶原丝主要采用湿法纺丝制得,沥青和酚醛原丝则采用熔体纺丝制得。制备高性能聚丙烯腈基碳纤维需采用高纯度、高强度和质量均匀的聚丙烯腈原丝,制备原丝用的共聚单体为衣康酸等。制备各向异性的高性能沥青基碳纤维需先将沥青预处理成中间相、预中间相(苯可溶各向异性沥青)和潜在中间相(喹啉可溶各向异性沥青)等。作为烧蚀材料用的粘胶基碳纤维,其原丝要求不含碱金属离子。
第二、预氧化(聚丙烯腈纤维200到300℃)、不融化(沥青200到400℃)或热处理(粘胶纤维240℃),以得到耐热和不熔的纤维,酚醛基碳纤维无此工序。
第三、碳化,其温度为:聚丙烯腈纤维1000到1500℃,沥青1500到1700℃,粘胶纤维400到2000℃。
第四、石墨化,聚丙烯腈纤维为2500到3000℃,沥青2500到2800℃,粘胶纤维3000到3200℃。
第五、表面处理,进行气相或液相氧化等,赋予纤维化学活性,以增大对树脂的亲和性。
第六、上浆处理,防止纤维损伤,提高与树脂母体的亲和性。所得纤维具有各种不同的断面结构。 世界碳纤维产量达到每年4万吨以上,全世界主要是日本美国德国以及韩国等少数国家掌握了碳纤维生产的核心技术,并且有规模化大生产。
当前,全球碳纤维核心技术被牢牢掌控在少数发达国家手中。一方面,以美日为首的发达国家始终保持着对中国碳纤维行业严格的技术封锁;另一方面,国外碳纤维行业领先企业开始进入中国市场,中国本土碳纤维企业的压力大增。虽然中国加大了对碳纤维行业的引导和扶持力度,但在较大的技术差距下,国产碳纤维的突围之路仍然坎坷。 中国对碳纤维的研究开始于20世纪60年代,80年代开始研究高强型碳纤维。多年来进展缓慢,但也取得了一定成绩。进入21世纪以来发展较快,安徽率先引进了500吨每年原丝、200吨每年PAN基碳纤维,使中国碳纤维工业进入了产业化。随后一些地方相继加入碳纤维生产行列。
从2000年开始中国碳纤维向技术多元化发展,放弃了原来的硝酸法原丝制造技术,采用以二甲基亚砜为溶剂的一步法湿法纺丝技术获得成功。利用自主技术研制的少数国产T700碳纤维产品已经达到国际同类产品水平。随着中国对碳纤维的需求量日益增长,碳纤维已被列为国家化纤行业重点扶持。2005年全球碳纤维市场仅为9亿美元,而2013年达到100亿美元,预计到2022年有望达到400亿美元,碳纤维复合材料的应用也将进入全新的时代。中国碳纤维产业化采取自主开发和引进相结合的道路,到“十一五“末期基本实现了相当于日本T300的国产碳纤维规模生产线,并且有一些企业已形成了T700以上水平的百吨生产线。
2011年中国碳纤维市场规模达到6811吨,然而,受供应不足的影响,国内碳纤维市场发展相对较为缓慢,预计未来几年,随着供应量的提升,中国碳纤维行业的需求量也将保持着较快速度的增长。
技术的落后直接导致中国碳纤维产品质量与进口产品之间的明显差距,也极大地限制了国产碳纤维产品在高端领域的应用。有数据显示,中国碳纤维产品在应用上集中于低端领域,在碳纤维质量要求较高的航空航天领域的应用比例仅为3%,远远没达到国际上碳纤维行业在航空航天领域应用占比的平均水平;而在质量要求相对较低的运动休闲用品领域,碳纤维的应用比例却高达80%左右,四倍于国际上碳纤维在运动休闲用品领域应用的平均水平。但国产碳纤维落后的技术却制约着中国碳纤维行业健康稳健发展。
中国高性能碳纤维都依赖进口,日本的碳纤维产量更是占全球市场份额的60%。2016年2月15日,中国突破日本管制封锁研制出高性能碳纤维。
⑻ 谁知道碳纤维是通过什么原理进行加固的呢详细一点的哦。
碳纤维加固包括碳纤维布加固和碳纤维板加固两种。复合材料采购网介绍碳纤维材料用于混凝土结构加固修补的研究始于80年代美、日等发达国家。我国的这项技术起步很晚,但随着我国经济建设和交通事业的飞速发展,现有建筑中有相当一部分由于当时设计荷载标准低造成历史遗留问题,一些建筑由于使用功能的改变,难以满足当前规范使用的需求,亟需进行维修、加固。常用的加固方法有很多,如:加大截面法、外包钢加固法、粘钢加固法、碳纤维加固法等。碳纤维加固修补结构技术是继加大混凝土截面、粘钢之后的又一种新型的结构加固技术
⑼ 碳纤维是什么材料
碳纤维是含碳量在90%以上的高强度高模量纤维。
碳纤维耐高温居所有化纤之首,用腈纶和粘胶纤维做原料,经高温氧化碳化而成,是制造航天航空等高技术器材的优良材料。
由碳元素组成的一种特种纤维,由于其石墨微晶结构沿纤维轴择优取向,因此沿纤维轴方向有很高的强度和模量。碳纤维的密度小,因此比强度和比模量高。
(9)碳纤维材如何化学醋化扩展阅读:
碳纤维是军事强国必争之材
实际上,被誉为“新材料之王”的碳纤维,特别是在军用上的高强度碳纤维原丝及其生产技术,是西方国家严格禁运的最重要技术。
由于其可用于国防军工制造武器,一定强度以上的碳纤维需要获得批准才能出口,达到与核武器技术相提并论的禁运等级。
在冷战时期,碳纤维生产技术属于技术密集型和政治敏感材料,以美国为首的巴黎统筹委员会对当时的社会主义阵营实行禁运。
战争结束后,由于碳纤维的高技术含量、高利润回报,西方国家仍然对发展中国家实施禁运,尤其是在聚丙烯腈(PAN)原丝生产技术进口方面,即使有的国家已加入了世界贸易组织,也没有多少改变。
参考资料来源:网络-碳纤维
参考资料来源:人民网-“新材料之王”碳纤维为军事强国的必争之材
⑽ 碳纤维材料是什么
碳素纤维
碳素纤维的学名叫做“聚丙烯腈基碳纤维”,是由碳纤维于相关的基体树脂(如环氧树脂)制备的符合材料。
由于它特有的耐高温(>3000℃),耐烧蚀,热膨胀系数小,及高比强度、高比模量等等特性,广泛应用于航天、航空、化工、电子、体育器械、纺织、化工机械及医学领域。