导航:首页 > 化学知识 > 化学实验中的干扰系数怎么算

化学实验中的干扰系数怎么算

发布时间:2022-05-28 17:05:58

‘壹’ 化学滴定

滴定是一种化学实验操作也是一种定量分析的手段。它通过两种溶液的定量反应来确定某种溶质的含量。滴定最基本的公式为:
c1 V1 / ν1 = c2 V2 / ν2
其中c为溶液浓度,V为溶液体积,ν为反应方程序中的系数。
原理
滴定过程需要一个定量进行的反应,此反应必须能完全进行,且速率要快,也就是平衡常数、速率常数都要较大。而且反应还不能有干扰测量的副产物,副反应更是不容许的。
在两种溶液的滴定中,已知浓度的溶液装在滴定管里,未知浓度的溶液装在下方的锥形瓶里。通常把已知浓度的溶液叫做标准溶液,它的浓度是与不易变质的固体基准试剂滴定而测得的。
反应停止时,读出用去滴定管中溶液的体积,即可用公式算出浓度。
根据反应类型的不同,滴定分为以下种类:
酸碱中和滴定(利用中和反应)
氧化还原滴定(利用氧化还原反应)
沉淀滴定(利用生成沉淀的反应)
络合滴定(利用络合反应)
指示剂
滴定反应需要灵敏的指示剂来指示反应的完成。指示剂在反应完成时,会迅速变成另一种颜色。这样实验者就可以根据指示剂的变色来确定反应的终止。
中和滴定的指示剂是有机弱酸或弱碱,它们的变色范围在等电点附近。如弱酸的变色(以HIn代表):
HIn (酸色形) = H+ + In-(碱色形)
指示剂一般有两种形态,两种形态呈现不同的颜色。指示剂在变色范围内呈现过渡色。有的指示剂有三种不同颜色的形态。
由于在变色范围时会发生“突跃”现象,颜色会变得很迅速,只要1滴溶液就可以让指示剂完全变色,因此选择指示剂时,只需让反应完成时的pH值落在突跃范围内即可,不必苛求准确。
其他种类滴定的指示剂一般是与某种反应物有灵敏反应的物质。当反应物消耗完毕时,指示剂就会变色。甚至有些反应物也可以作为指示剂,如高锰酸钾

‘贰’ 什么是并发系数,什么是干扰值

并发系数+干扰值=1

‘叁’ 实验 电感耦合等离子体质谱法测定地质样品中Rb、Nb、Cs、Ba、Th等多种元素含量

(1)实验目的

了解四级杆ICP-MS的基本原理,仪器的主要结构;学习仪器基本操作和测试条件的设置方法;掌握一般样品多元素(土壤、岩石、水系沉积物中Rb、Nb、Cs、Ba、Th、U、Ga、Pb、Tl、Be、Bi、Co、Cu、Li、Mn、Mo、W、Zn、Cd、In、Ni 等元素)同时测定及数据处理的方法。

(2)实验原理

电感耦合等离子体质谱法是将被测物质用电感耦合等离子体离子化后,按离子的质荷比分离,根据峰位置和峰强度进行元素的定性及定量分析的方法。由于等离子体内部温度高达几千至10000℃,该条件下化合物分子结构已经被破坏,所以仅适用于元素分析。

(3)实验仪器

电感耦合等离子质谱仪;温控式电热板,最高温度为250℃;分析天平,二级,感量0.01mg;移液器,规格分别为10~100μL、100~1000μL、1~5mL;一次性塑料瓶,容积分别为25mL或50mL。

(4)试剂和溶液

a.蒸馏水经离子交换纯化系统纯化,使用前检验水中待测元素含量,需保证低于方法检出限。

b.硝酸(ρ=1.42g/mL),优级纯或高纯,经亚沸蒸馏纯化后使用。

c.王水(1∶1)。

d.高氯酸。

e.氢氟酸(ρ=1.16g/mL),优级纯或高纯,经亚沸蒸馏纯化后使用。需要特别注意:氢氟酸有毒,并有腐蚀性,操作时须戴手套,防止皮肤接触。

f.内标元素混合溶液:直接分取铑和铼单元素标准储备溶液配制内标元素混合溶液,铑和铼的质量浓度均为10ng/mL。

g.空白溶液:①校准空白溶液为硝酸溶液(5∶9 5);②清洗空白溶液为硝酸溶液(2∶98)。

h.单元素干扰溶液:分别配制钡、铈、镨、钕、锆、锡(质量浓度各为1μg/mL),钛(质量浓度为10μg/mL),铁、钙(质量浓度各为250μg/mL)的单元素溶液,用以求得干扰系数K。

(5)校准标准溶液

用多元素混合标准储备溶液稀释制备校准标准溶液,取1mL多元素混合标准储备溶液至100mL容量瓶中,加入5mL硝酸[(4)b],用去离子水[(4)a]稀释至刻度,摇匀。

(6)试样制备要求

a.试样粒径应小于200目;

b.试样应在105℃下预干燥2~4 h,并置于干燥器中冷却至室温;

c.对易吸水的岩石,应取空气干燥试样,在称样的同时,进行吸附水量的测定,最终以干态计算结果。

(7)分析步骤

A.空白试验

随同试料进行双份空白试验,所用试剂取自同一瓶,加入同等的量。

B.试料分解

称取0.100g样品于聚四氟乙烯塑料坩埚中,加入3mL高纯HCl,2mL高纯HNO3,置于特制的有孔铝电热板上于(110±5)℃下保持1 h。再加入3mL高纯HF,1mL高纯HClO4,在电热板上利用余热过夜。然后在(130±5)℃下加热2 h,再在约150℃下赶酸至高氯酸白烟冒至近干。加2mL王水(1∶1),使盐类溶解,然后移至100mL容量瓶中,高纯水稀释至刻度待测。此溶液可直接用于ICP-MS测定。

C.测定

a.按照仪器操作说明书规定条件启动仪器,选择分析同位素和内标元素,编制样品分析表。

b.进行调谐,仪器点燃后至少稳定30min,期间用质量浓度为1ng/mL的铍、钴、铟、铈、铀的调谐溶液进行仪器参数最佳化调试。在测定过程中通过三通在线引入内标元素混合溶液[(4)f]。

c.进行校准,以校准空白溶液[(4)g①]为零点,一个或多个质量浓度水平的校准标准溶液(5)建立校准曲线。校准数据至少采集3次,取平均值。

d.每批样品测定时,同时测定实验室试剂空白溶液[(7)A]。

e.每批样品测定时,同时分析单元素干扰溶液[(4)h],以获得干扰系数K并进行干扰校正。

f.样品测定中间用清洗空白溶液[(4)g②]清洗系统。

(8)结果计算

A.分析结果的计算

按下式计算固体样品中待测物的质量分数:

现代岩矿分析实验教程

式中:w(B)为样品中待测物B的质量分数(μg/g);ρ为测定溶液中待测物的质量浓度(μg/mL);ρ0为实验室试剂空白溶液中待测物的质量浓度(μg/mL);V为测定溶液体积(mL);m为样品质量(g)。

B.干扰校正

干扰系数K由下式计算得出:

K=ρeqin

式中:ρeq为干扰物标准溶液测得的相当分析物的等效质量浓度(μg/mL);ρin为干扰元素标准溶液的已知质量浓度(μg/mL)。

被分析物的真实质量浓度为

ρtr= ρgr-Kρin

式中:ρtr为扣除干扰后的真实质量浓度(μg/mL);ρgr为被分析物存在于扰时测得的总的质量浓度(μg/mL);K 为干扰系数;ρin为被测样品溶液中干扰物的实测质量浓度(μg/mL)。

‘肆’ 化学,滴定。。。。。。

滴定是一种化学实验操作也是一种定量分析的手段。它通过两种溶液的定量反应来确定某种溶质的含量。滴定最基本的公式为:
c1
V1
/
ν1
=
c2
V2
/
ν2
其中c为溶液浓度,V为溶液体积,ν为反应方程序中的系数。
原理
滴定过程需要一个定量进行的反应,此反应必须能完全进行,且速率要快,也就是平衡常数、速率常数都要较大。而且反应还不能有干扰测量的副产物,副反应更是不容许的。
在两种溶液的滴定中,已知浓度的溶液装在滴定管里,未知浓度的溶液装在下方的锥形瓶里。通常把已知浓度的溶液叫做标准溶液,它的浓度是与不易变质的固体基准试剂滴定而测得的。
反应停止时,读出用去滴定管中溶液的体积,即可用公式算出浓度。
根据反应类型的不同,滴定分为以下种类:
酸碱中和滴定(利用中和反应)
氧化还原滴定(利用氧化还原反应)
沉淀滴定(利用生成沉淀的反应)
络合滴定(利用络合反应)
指示剂
滴定反应需要灵敏的指示剂来指示反应的完成。指示剂在反应完成时,会迅速变成另一种颜色。这样实验者就可以根据指示剂的变色来确定反应的终止。
中和滴定的指示剂是有机弱酸或弱碱,它们的变色范围在等电点附近。如弱酸的变色(以HIn代表):
HIn
(酸色形)
=
H+
+
In-(碱色形)
指示剂一般有两种形态,两种形态呈现不同的颜色。指示剂在变色范围内呈现过渡色。有的指示剂有三种不同颜色的形态。
由于在变色范围时会发生“突跃”现象,颜色会变得很迅速,只要1滴溶液就可以让指示剂完全变色,因此选择指示剂时,只需让反应完成时的pH值落在突跃范围内即可,不必苛求准确。
其他种类滴定的指示剂一般是与某种反应物有灵敏反应的物质。当反应物消耗完毕时,指示剂就会变色。甚至有些反应物也可以作为指示剂,如高锰酸钾

‘伍’ 系统内干扰是怎么计算

用奈氏第一准则判断是否存在码间干扰 方法如下: (1)首先根据数字基带信号或已知条件确定ωb、或fb; (2)将传输函数H(ω)按ωb或fb大小的间隔对称地将其划分成许多片段,这些片段分为中间段和两边段,这种划分直到所有这些片段能覆盖整个H(ω)为止; (3)将两边的各个片段平移到中间段; (4)将平移后的结果相加,得等效传输特性Heq(ω); (5)若等效传输特性Heq(ω)满足奈氏第一准则,则不存在码间干扰,否则将存在码间干扰。 矢量信号发生器中的基带滤波器 基带成形滤波器是为了限制带宽而设置的,为了不引入码间干扰,一般使用滚降升余弦滤波器(raise cosine filter),这种滤波器的关键参数是滚降系数α,α越小,则滤波器频率响应越陡峭,信号占用带宽越小。 自适应均衡技术自适应均衡技术是在色散信道上消除码间干扰的一种有效措施;可以较好地克服较大容量的数字微波通信系统的多径衰落。 由相关检出电路从前后脉冲检出相对某判决点(例如S0点)要求的误差,用误差信号去控制加权电路,对产生码间干扰的脉冲成分进行加权,以便消除码间干扰。往往取C=1(标准化值),其他加权系数在-l到+1的范围内变化。 扩频信号除有抗干扰作用外,还有抗多径的作用,即扩频信号可有抗多径引起的码间干扰作用。但扩频码序列本身必须有尖锐的自相关函数。 产生误码的最主要原因是信号失落,在录音过程中或在使用过程中,由于磁带或唱片上的缺陷、灰尘和擦伤以及磁粉脱落等引起的信息损失,就是信号失落。此外,走带或驱动机构的抖晃和磁带伸长引起的速度偏差。代码之间的相互干扰(码间干扰)以及其他噪声,也是造成误码的原因。因此,在数字音响系统中,为了减少误码率,高保真重放信号,必须在基本的PCM编码之后进行纠错编码。 纠错编码有一套系统的理论和方法,奇偶校验码就是一种检错码,它是在信息序列后面附加一个校验位C。

‘陆’ 亚甲基蓝最大吸收波长是多少

亚甲基蓝最大吸收波长是664nm。

先用紫外扫描出亚甲基蓝的吸收峰,找出最大的吸收波长(1个或者多个),在确定未知物的最大吸收波长的时候还要排除其他杂质在该波长的干扰系数最小就可以了。pH对亚甲基蓝吸收有较大影响,pH过低会使吸收向高波数移动,同时强度降低。

分析鉴定

在化学实验中,分析纯亚甲基蓝可用作化学试剂中的吸附指示剂,也可用以沉淀高氯酸盐和铼酸盐,催化光度测定硒和钼等。

同时,亚甲蓝还具有氧化性,可以氧化一些还原性较强的物质,自身被还原成无色的还原态亚甲蓝(有人称亚甲基白)。在被还原后,还原态的亚甲蓝便具有一定的还原性,可以被一些氧化性物质,如空气中的氧氧化,又生成氧化态的蓝色亚甲蓝。因此亚甲蓝可用于氧化-还原滴定,也可用来示范氧化-还原振荡反应,最典型的是蓝瓶子实验。

以上内容参考:网络-亚甲基蓝

‘柒’ 种主、次、痕元素量的测定 电感耦合等离子体原子发射光谱法

1 范围

本方法规定了地球化学勘查试样中次量、痕量元素钡、铍、铈、钴、铜、镧、锂、锰、镍、钪、锶、钒、锌及主量元素氧化钙、三氧化二铁、氧化镁及氧化钠十七个元素的测定方法。

本方法适用于水系沉积物及土壤试料中以上各元素量的测定。

本方法检出限(3S)及测定范围见表1及表2。

表1 主量元素检出限及测定范围

表2 次量及痕量元素检出限及测定范围

2 规范性引用文件

下列文件中的条款通过本方法的本部分的引用而成为本部分的条款。

下列不注日期的引用文件,其最新版本适用于本方法。

GB/T20001.4 标准编写规则第4部分:化学分析方法。

GB/T14505 岩石和矿石化学分析方法总则及一般规定。

GB6379 测试方法的精密度通过实验室间试验确定标准测试方法的重复性和再现性。

GB/T14496—93 地球化学勘查术语。

3 方法提要

试料经盐酸、硝酸、氢氟酸、高氯酸冷溶过夜,次日加热分解至高氯酸白烟冒尽;盐酸溶解后,移入10mL带塞塑料管中,定容。将溶液引入等离子炬中,在已选定的波长测量各元素离子及原子的发射光谱强度,由仪器自带计算机计算各元素含量,并校正基体的影响,直接打印出各元素含量的分析报告。

4 试剂

除非另有说明,在分析中仅使用确认为分析纯的试剂和蒸馏水(去离子水)或亚沸蒸馏水。在空白试验中,若已检测到所用试剂中含有大于本方法所列出的各该元素方法检出限的量,并确认已经影响试料中该元素低量的测定时,应净化试剂。

4.1 高氯酸(ρ1.67g/mL)

优级纯。

4.2 硝酸(ρ1.40g/mL)

4.3 盐酸(ρ 1.19g/mL)

4.4 氢氟酸(ρ1.13g/mL)

优级纯。

4.5 盐酸(1+1)

4.6 盐酸(1+9)

4.7 硝酸(1+1)

4.8 硫酸(ρ1.84g/mL)

优级纯。

4.9 硫酸(1+1)

4.10 钡标准溶液[ρ(Ba)=1.000mg/mL]

称取1.5160g已于105℃干燥2h后的光谱纯无水氯化钡,置于100mL烧杯中,加入50mL水及10mL盐酸(4.3)溶解后,移入1000mL容量瓶中,用水稀释至刻度,摇匀,备用。

4.11 钴标准溶液[ρ(Co)=100μg/mL]

称取0.1000g纯度[w(Co)=99.9%]的金属钴,置于250mL烧杯中,加入20mL硝酸(4.7)微热溶解后,移入1000mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.12 铜标准溶液[ρ(Cu)=100μg/mL]

称取0.1000g纯度[w(Cu)=99.95%]的金属铜,置于100mL烧杯中,加入20mL硝酸(4.7)微热溶解,移入1000mL容量瓶中,用水稀释至刻度,摇匀,备用。

4.13 镧标准溶液[ρ(La)=100μg/mL]

称取0.1173g已经800℃灼烧过的光谱纯氧化镧,置于 100mL烧杯中,用水润湿,加入10mL盐酸(4.5)微热溶解,移入1000mL容量瓶中,用水稀释至刻度,摇匀,备用。

4.14 锰标准溶液[ρ(Mn)=1.000mg/mL]

称取1.000g纯度为[w(Mn)=99.95%]的金属锰,置于 100mL烧杯中,加入20mL硝酸(4.7)微热溶解,移入1000mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.15 镍标准溶液[ρ(Ni)=100μg/mL]

称取0.1000g纯度为[w(Ni)=99.95%]的金属镍,置于100mL烧杯中,加入20mL硝酸(4.7)微热溶解,移入1000mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.16 锶标准溶液[ρ(Sr)=1.000mg/mL]

称取2.4153g已在干燥器中干燥一昼夜的光谱纯硝酸锶,置于250mL烧杯中,加水溶解,移入1000mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.17 钒标准溶液[ρ(V)=200μg/mL]

称取0.4593g已于干燥器中干燥两天以上的光谱纯偏钒酸铵(NH4VO3),置于100mL烧杯中,加入20mL硝酸(4.7)微热溶解,移入1000mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.18 锌标准溶液[ρ(Zn)=250μg/mL]

称取0.2500g纯度为[w(Zn)=99.95%]的金属锌,置于100mL烧杯中,加入20mL盐酸(4.5)微热溶解,移入1000mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.19 铍标准溶液[ρ(Be)=50μg/mL]

称取0.1388g已经1000℃灼烧过的光谱纯氧化铍,置于 100mL烧杯中,加入10mL硫酸(4.9)微热溶解,移入1000mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.20 铈标准溶液[ρ(Ce)=100μg/mL]

称取0.1228g纯度为[w(CeO2)=99.95%]的二氧化铈于 100mL烧杯中,加入20mL硝酸(4.7)及几滴过氧化氢,盖上表皿,加热溶解,冷却,移入1000mL容量瓶中,用水稀释至刻度,摇匀,备用。

4.21 钪标准溶液[ρ(Sc)=1.00mg/mL]

称取0.1534g纯度为[w(Sc2O3)=99.95%]的三氧化二钪于 100mL烧杯中,加入20mL盐酸(4.3),盖上表皿,在控温电热板上加热溶解。用少许水吹洗表皿,继续蒸至湿盐状,加10mL盐酸(4.3),移入100mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.22 铝标准溶液[ρ(Al2O3)=10.0mg/mL]

称取5.2925g纯度[w(Al)=99.95%]的金属铝于250mL烧杯中,加入100mL盐酸(4.3)及少许硝酸助溶,待溶解后再加入100mL盐酸(4.3),移入1000mL容量瓶中,用水稀释至刻度,摇匀,备用。

4.23 铁标准溶液[ρ(Fe2O3)=5.00mg/mL]

称取5.000g光谱纯的三氧化二铁置于250mL烧杯中,加入100mL盐酸(4.3)溶解,移入1000mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.24 氧化钙标准溶液[ρ(CaO)=5.00mg/mL]

称取8.9239g经120℃烘干2h后的光谱纯碳酸钙于250mL锥瓶中,加入50mL水,盖上表面皿,沿壁分次加入50mL盐酸(4.3)溶解,使碳酸钙全部溶解,并煮沸除出二氧化碳,冷却,移入1000mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.25 氧化镁标准溶液[ρ(MgO)=5.00mg/mL]

称取5.000g经800℃灼烧1h后的氧化镁,置于250mL烧杯中,加入100mL盐酸(4.5)微热溶解,移入1000mL容量瓶中,并用水稀释至刻度,摇匀,备用。

4.26 钛标准溶液[ρ(Ti)=1.00mg/mL]

称取1.6680g经1000℃灼烧过的光谱纯二氧化钛,置于30mL瓷坩埚中,加入15g焦硫酸钾,加瓷坩埚盖后放入高温炉中,升温至700℃熔融约30min至全熔,取出冷却,用100mL盐酸(4.5)浸取。洗出坩埚,加热直至溶液清亮,冷却。移入1000mL容量瓶中,补加100mL盐酸(4.5),并用水稀释至刻度,摇匀,备用。

4.27 锂标准溶液[ρ(Li)=100μg/mL]

称取0.5323g经105℃干燥2h后的光谱纯碳酸锂,置入150mL三角烧杯中,盖上表皿,沿杯壁加入10mL盐酸(4.5)溶解。加热微沸除去二氧化碳,冷却后移入1000mL容量瓶中,用水稀释至刻度,摇匀,备用。

4.28 氧化钠标准溶液[ρ(Na2O)=1.00mg/mL]

称取1.8859g经500℃灼烧30min后的光谱纯氯化钠于100mL烧杯中,用水溶解,移入1000mL容量瓶中,用水稀释至刻度,摇匀,备用。

4.29 混合标准工作溶液

见表3。

表3 混合标准工作溶液的元素组合及其浓度

4.29.1 ρ(Co)=1.0μg/mL、ρ(Cu)=2.0μg/mL、ρ(Ni)=2.0μg/mL、ρ(V)=4.0μg/mL、ρ(Zn)=5.0μg/mL、ρ(La)=2μg/mL、ρ(Mn)=25μg/mL、ρ(Sr)=25μg/mL、ρ(Ba)=50μg/mL。分取50.00mL钡标准溶液(4.10)、10.00mL钴标准溶液(4.11)、20.00mL铜标准溶液(4.12)、20.00mL镧标准溶液(4.13)、25.00mL锰标准溶液(4.14)、20.00mL镍标准溶液(4.15)、25.00mL锶标准溶液(4.16)、20.00mL钒标准溶液(4.17)、20.00mL锌标准溶液(4.18)于1000mL容量瓶中,用盐酸(4.6)稀释至刻度,摇匀。

4.29.2 ρ(Be)=0.25μg/mL分取5.00mL铍标准溶液(4.19)于1000mL容量瓶中,用盐酸(4.6)稀释至刻度,摇匀。

4.29.3 ρ(Ti)=60μg/mL、ρ(MgO)=250μg/mL、ρ(CaO)=500μg/mL、ρ(Fe2O3)=1000μg/mL、ρ(Al2O3)=1500μg/mL。分取15.00mL三氧化二铝标准溶液(4.22)、20.00mL三氧化二铁标准溶液(4.23)、10.00mL氧化钙标准溶液(4.24)、5.00mL氧化镁标准溶液(4.25)、6.00mL钛标准溶液(4.26)于100mL容量瓶中,用盐酸(4.6)稀释至刻度,摇匀。

4.29.4 ρ(Li)=5.0μg/mL、ρ(Na2O)=250μg/mL 分取5.00mL锂标准溶液(4.27)、25.00mL氧化钠标准溶液(4.28),置于100mL容量瓶中,用盐酸(4.6)稀释至刻度,摇匀。

4.29.5 ρ(Ce)=2.0μg/mL、ρ(Sc)=20μg/mL 分取20.00mL铈标准溶液(4.20)、20.00mL钪标准溶液(4.21),置于1000mL容量瓶中,用盐酸(4.6)稀释至刻度,摇匀。

5 仪器及材料

5.1 电感耦合等离子体原子发射光谱仪

工作条件参见附录A。其他型号的电感耦合等离子体原子发射光谱仪,凡达到附录A中A.3条款指标的均可使用。

5.2 光电倍增管

波长范围:190nm~7800nm。

5.3 等离子体炬管(三轴同心石英炬管)

5.4 玻璃同轴雾化器

5.5 双层玻璃雾化室

5.6 聚四氟乙烯坩埚

规格:30mL。

5.7 具有刻度的带塞塑料试管

规格:10mL。

6 分析步骤

6.1 试料

试料粒径应小于0.097mm,经室温干燥后,装入磨口小玻璃瓶中备用。

试料量。称取0.1g试料,精确至0.0002g。

6.2 空白试验

随同试料分析全过程做双份空白试验。

6.3 质量控制

选取同类型水系沉积物或土壤一级标准物质2个~4个样品,随同试料同时分析。

6.4 测定

6.4.1 称取0.1000g试料(6.1)置于30mL聚四氟乙烯坩埚(5.6)中,加几滴水润湿。加入2mL高氯酸(4.1)、2mL硝酸(4.2)、3mL盐酸(4.3)、3mL氢氟酸(4.4)。置于控温电热板上,加坩埚盖,放置过夜。次日,升温至110℃,保持1.5~2h。揭去盖子,升温至240℃,直至高氯酸白烟冒尽,加入2mL盐酸(4.5),趁热浸取,冷却。移入具有刻度的10mL带塞塑料管(5.7)中,用水稀释至刻度,摇匀,备用。

6.4.2 将仪器开机预热30min,在电感耦合等离子体原子发射光谱仪上,按附录A中A.1仪器工作条件,在各元素设定的波长处,同时测定试料溶液和工作曲线各元素浓度的强度值,由仪器自带的计算机按附录B进行基体校正,给出浓度直读结果,并打印出分析报告。

6.5 工作曲线的绘制

采用高低两点工作溶液标准化。低点为不含待测元素的盐酸溶液(4.6);高点为人工配制的混合标准工作溶液(4.29.1至4.29.5),5个高点工作溶液的元素组合及其浓度见表3。按6.4.2手续测定并储存在计算机内,由系统软件进行运算,并计算试料中各元素的浓度值。

7 分析结果的计算

由计算机对被测元素进行基体校正(见附录B),按下式计算各元素含量:

区域地球化学勘查样品分析方法

式中:mi——从工作曲线上查得试料溶液中经基体校正(参见附录B)后被测元素i的量,μg;m0——从工作曲线上查得空白试验溶液中被测元素的量,μg;m——试料质量,g。

8 精密度

各主量、次量、痕量元素的精密度见表4至表20。

表4 精密度[w(Ba),10-6

表5 精密度[w(Be),10-6

表6 精密度[w(Ce),10-6

表7 精密度[w(Co),10-6

表8 精密度[w(Cu),10-6

表9 精密度[w(La),10-6

表10 精密度[w(Li),10-6

表11 精密度[w(Mn),10-6

表12 精密度[w(Ni),10-6

表13 精密度[w(Sc),10-6

表14 精密度[w(Sr),10-6

表15 精密度[w(V),10-6

表16 精密度[w(Zn),10-6

表17 精密度[w(CaO),10-2

表18 精密度[w(TFe2O3),10-2

表19 精密度[w(MgO),10-2

表20 精密度[w(Na2O),10-2

附 录 A

(资料性附录)

A.1 仪器工作条件

表A.1 仪器工作条件

A.2 分析元素波长

表A.2 分析元素波长

A.3 仪器参数

A.3.1 仪器分辨率≤0.04nm。

A.3.2 精密度:在仪器预热40min后,用浓度为1μg/mL的标准溶液测量10次,其相对标准偏差应≤1.5%。

A.3.3 稳定性:在仪器预热40min后,用浓度为1μg/mL的标准溶液在2h内,每间隔10min测量一次,共测量12次,其相对标准偏差应≤3%。

A.3.4 工作曲线线性:工作曲线线性相关系数≥0.999。

附 录 B

(资料性附录)

B.1 基体元素的干扰校正

为扣除基体元素对各分析元素的干扰,采用基体校正法。即求出基体元素对各分析元素的乘法干扰系数KMj和加法干扰系数KAj,将KMj和KAj填入分析程序,计算机即根据系统软件按下式自动校正分析结果:

区域地球化学勘查样品分析方法

式中:Ci——校正后分析元素i的分析结果;Cci——未校正的分析元素i的分析结果;KMj—干扰元素j的乘法干扰系数;Cj——干扰元素j的浓度;KAj——干扰元素j的加法干扰系数。

式中:Ci、Cci、Cj是主量元素以氧化物化学计量时,其计量单位为%;次量及痕量元素是以元素态化学计量时,其计量单位为μg/g。由于使用了干扰系数KMj和KAj,基本上消除了基体效应和谱线干扰。

B.2 使用法国JY公司JY38/48型电感耦合等离子体原子发射光谱仪

干扰系数见表B.1。

表B.1 干扰系数

续表

附 录 C

(资料性附录)

C.1 从实验室间试验结果得到的统计数据和其他数据

如表C.1至表C.17。

本方法精密度协作数据是由多个实验室进行方法合作研究所提供的结果进行统计分析得到的。

表C.1至表C.17中不需要将各浓度的数据全部列出,但至少列出3个或3个以上浓度所统计的参数。

C.1.1 列出了试验结果可接受的实验室个数(即除了经平均值及方差检验后,属界外值而被舍弃的实验室数据)。

C.1.2 列出了方法的相对误差参数,计算公式为。公式中为多个实验室测量平均值,x0为I级标准物质的标准值。

C.1.3 列出了方法的精密度参数,计算公式为,公式中Sr为重复性标准差;SR为再现性标准差。为了与GB/T20001.4所列参数的命名一致,本方法精密度表列称谓为:“重复性变异系数”及“再现性变异系数”。

C.1.4 列出了方法的相对准确度参数。相对准确度是指测定值(平均值)占真值的百分比。

表C.1 Ba统计结果表

表C.2 Be统计结果表

表C.3 Ce统计结果表

表C.4 Co统计结果表

表C.5 Cu统计结果表

表C.6 La统计结果表

表C.7 Li统计结果表

表C.8 Mn统计结果表

表C.9 Ni统计结果表

表C.10 Sc统计结果表

表C.11 Sr统计结果表

表C.12 V统计结果表

表C.13 Zn统计结果表

表C.14 CaO统计结果表

表C.15 TFe2O3统计结果表

表C.16 MgO统计结果表

表C.17 Na2O统计结果表

附加说明

本方法由中国地质调查局提出。

本方法由武汉综合岩矿测试中心技术归口。

本方法由武汉综合岩矿测试中心负责起草。

本方法主要起草人:熊采华。

本方法精密度协作试验由武汉综合岩矿测试中心江宝林、叶家瑜组织实施。

‘捌’ 化学反应级数怎么算

在不同级数的速率方程中,速率常数k的单位不一样,一般为Ln-1·mol1-n·s-1,n为反应的反应级数。

基元反应和简单反应的反应级数n可以是整数一、二、三级(只有少数反应为三级),而复杂反应的反应级数n也可以是分数、负数和零级(光化反应、表面催化反应一般是零级)。

负数级表示增加该物质的浓度反而使反应速率下降。但反应速率方程不具有简单的浓度乘积形式者,反应级数的概念就失去了意义。

(8)化学实验中的干扰系数怎么算扩展阅读

一级反应应用:

实验时,首先设计在药物制剂的各类降解反应中,尽管有些药物的降解反应机制十分复杂,但多数药物及其制剂可按零级、一级、伪一级反应处理。

实验温度与取样时间,然后将样品放入各种不同温度的恒温水浴中,定时取样测定其浓度(或含量),求出各温度下不同时间药物的浓度变化。以药物浓度或浓度的其他函数对时间作图,以判断 反应级数。若lgC对t作图得一直线,则为一级反应。

再由直线 斜率求出各温度下的速度常数,然后按前述方法求出 活化能和t0.9。要想得到预期的结果,除了精心设计实验外,很重要的问题是对实验数据进行正确的处理。

化学动力学参数(如反应级数、k、E、t1/2)的计算,有图解法和统计学方法,后一种方法比较准确、合理,故近年来在 稳定性的研究中广泛应用

‘玖’ 典量法测定铜含量时,如果分析矿石或合金中的铜,应怎样分解试样试液中含有的干扰

先将矿石或合金中的铜转化成Cu2+
在乙酸酸性溶液中,Cu2+与过量的KI反应,析出的碘用Na2S2O3标准溶液滴定,用淀粉作指示剂,反应如下:

2Cu2++4I-═2CuI↓+I2

I2+2S2O32-═2I-+S4O62-

反应需加入过量的KI,一方面可促使反应进行完全,另方面使形成I3-,以增加I2的溶解度。

为了避免CuI沉淀吸附I2,造成结果偏低,须在近终点(否则SCN-将直接还原Cu2+)时加入SCN-,使CuI转化成溶解度更小的CuSCN,释放出被吸附的I2。

溶液的pH一般控制在3.0~4.0之间,酸度过高,空气中的氧会氧化I2(Cu2+对此氧化反应有催化作用);酸度过低,Cu2+可能水解,使反应不完全,且反应速度变慢,终点拖长。一般采用NH4F缓冲溶液,一方面控制溶液酸度,另一方面也能掩蔽Fe3+,消除Fe3+氧化I-对测定的干扰。

硫代硫酸钠(Na2S2O3·5H2O)一般都含有少量杂质,如S、Na2SO3、Na2SO4、Na2CO3、NaCl等,还容易风化和潮解,须用间接法配制。Na2S2O3易受水中溶解的CO2、O2和微生物的作用而分解,故应用新煮沸冷却的蒸馏水来配制;此外,Na2S2O3在日光下,酸性溶液中极不稳定,在pH=9~10时较为稳定,所以在配制时还需加入少量Na2CO3,配制好的标准溶液应贮存于棕色瓶中置于暗处保存。长期使用的Na2S2O3标准溶液要定期标定。通常用K2Cr2O7作基准物标定Na2S2O3的浓度,反应为:

Cr2O72-+6I-+14H+═2Cr3++3I2+7H2O

析出的碘再用标准Na2S2O3溶液滴定。

3 器皿和试剂

1mol·L-1Na2S2O3溶液(称取12.5gNa2S2O3·5H2O用新煮沸并冷却的蒸馏水溶解,加入0.1gNa2CO3,用新煮沸并冷却的蒸馏水稀释至500mL,贮存于棕色瓶中,于暗处放置7~14天后标定),0.5%淀粉溶液,6mol·L-1HCl,20%KI溶液,10%KSCN溶液,0.1mol·L-1Na2S2O3溶液,0.02mol·L-1K2Cr2O7溶液,1mol·L-1 H2SO4溶液。

4 实验步骤

4.1 Na2S2O3溶液的标定

移取0.02mol·L-1 K2Cr2O7标准溶液25.00mL于锥形瓶中,加入5mL20%KI溶液、5mL6mol·L-1HCl溶液。立即盖上表面皿,轻轻摇匀,于暗处放置5min,再加水稀释至100mL。用待标定的Na2S2O3溶液滴定至浅黄绿色时,加入5mL淀粉溶液,继续滴定到蓝色刚好消失,即为终点(终点呈Cr3+的绿色)。

4.2 铜盐的测定

准确称取铜盐试样0.6~0.7g,置于锥形瓶中,加入1mol·L-1H2SO4溶液5mL,蒸馏水40mL,溶解后,加入20%KI溶液5mL,立即用0.1mol·L-1Na2S2O3标准溶液滴定至浅黄色,然后加入5mL淀粉指示剂,滴定至浅蓝色,再加入10%KSCN溶液10mL,摇匀,继续用Na2S2O3溶液滴定到蓝色刚好消失,此时溶液为粉色的CuSCN悬浊液。

第二种方法:

碘量法测定铜
1、方法提要:
试样经酸分解后,用乙酸铵调节酸度,在PH3.0-4.0的微酸性溶液中铜(Ⅱ)与碘化钾作用游离出碘,以淀粉为指示剂,用硫代硫酸钠标准溶液滴定。其主要反应如下:2Cu2++4I-=2CuI↓+I2
I2+2S2O32-=2I+S4O62-
试样中存在的主要干扰元素有砷、锑、铁等,砷和锑用氢溴酸挥发除去,加入氟化氢铵掩蔽铁(Fe3+能将碘化钾氧化产生I2干扰测定,加入氟化氢铵使之形成稳定的FeF63-配合物离子消除干扰)。加入硫氰酸钾使CuI白色沉淀吸附的I2释放出来(CuI↓+SCN-=CuSCN↓+I-)以防结果偏低,只能临近终点时加入否则6Cu2++7SCN-+4H2O=6CuSCN+SO42-+CN-+8H+使结果偏低。NO2-对测定有干扰可在试样分解时加热至冒三氧化硫白烟将其驱除,或加尿素使其分解。五价钒在测定条件下氧化I-严重干扰测定,所以对含钒试样本法不适用。
2、试剂:
2.1 盐酸。
2.2 硝-硫混酸(7+3)。
2.3 乙酸-乙酸铵溶液(PH=5):称取90g乙酸铵于400mL烧杯中,加入150mL水和100mL冰乙酸,待溶解后用水稀释至300mL混匀。
2.4 氟化氢铵饱和溶液:贮存于塑料瓶中。
2.5 淀粉溶液(5g/L):称取1g淀粉用水润湿,加入200mL沸水,,再煮至透明冷却,内加少许碘化汞可防腐。
2.6 KSCN(400g/L):称取40g硫氰酸钾于400mL烧杯中,加100mL水溶解后(PH<7)加2gKI溶解后加2mL(0.5%)淀粉溶液,滴加碘溶液(约0.04mol/L)至恰好呈蓝色,再用硫代硫酸钠标准溶液滴定至蓝色刚好消失。
2.7 氢溴酸。
2.8 硫代硫酸钠标准溶液c(Na2S2O3)=0.03mol/L。
3、分析步骤:
称取0.2000g试样于400mL缩口烧杯中,用水润湿,加入10mL盐酸,于低温处加热3-5min取下稍冷加入7mL硝-硫混酸(7+3)摇匀,低温处加热溶解至冒三氧化硫白烟(含碳高的试样应加少量高氯酸破坏碳)。取下稍冷用滴瓶沿杯壁加入3mL氢溴酸蒸发至干,冷却,水洗表皿杯壁体积约至20mL,加热使盐类溶解,取下冷却,补加2mL(100g/L)三氯化铁溶液,向溶液滴加乙酸-乙酸铵溶液(PH=5)至红色不再加深并过量3-5mL,然后滴加氟化氢铵饱和溶液至红色消失并过量1mL,摇匀。向溶液中加入2-3g碘化钾,摇匀,迅速用硫代硫酸钠标准溶液滴定至淡黄色,加入2mL淀粉溶液(5g/L)继续滴至浅蓝色,加入1mLKSCN(400g/L)激烈振荡至蓝色加深,再滴定至蓝色恰好消失,即为终点。
4、计算:
T×V
Cu(%)=—————×100
m
式中:T——硫代硫酸钠标准溶液对铜的滴定系数,g/mL。
V——消耗硫代硫酸钠标准溶液的体积,mL。、
m——称取试样量,g。

阅读全文

与化学实验中的干扰系数怎么算相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:747
乙酸乙酯化学式怎么算 浏览:1411
沈阳初中的数学是什么版本的 浏览:1363
华为手机家人共享如何查看地理位置 浏览:1054
一氧化碳还原氧化铝化学方程式怎么配平 浏览:894
数学c什么意思是什么意思是什么 浏览:1423
中考初中地理如何补 浏览:1312
360浏览器历史在哪里下载迅雷下载 浏览:712
数学奥数卡怎么办 浏览:1402
如何回答地理是什么 浏览:1035
win7如何删除电脑文件浏览历史 浏览:1063
大学物理实验干什么用的到 浏览:1494
二年级上册数学框框怎么填 浏览:1713
西安瑞禧生物科技有限公司怎么样 浏览:1008
武大的分析化学怎么样 浏览:1256
ige电化学发光偏高怎么办 浏览:1345
学而思初中英语和语文怎么样 浏览:1667
下列哪个水飞蓟素化学结构 浏览:1431
化学理学哪些专业好 浏览:1493
数学中的棱的意思是什么 浏览:1072