❶ 化学镍金的工艺控制
1 除油缸
一般情况﹐PCB沉镍金采用酸性除油剂来处理制板﹐其作用在于去除铜面之轻度油脂及氧化物﹐达到铜面清洁及增加润湿效果的目的。它应当具备不伤Soider Mask(绿油)﹐低泡型易水洗的特点。
除油缸之后通常为二级市水洗﹐如果水压不稳定或经常变化﹐则将逆流水洗设计为三及市水洗更佳。
2 微蚀缸
微蚀的目的在于清洁铜面氧化及前工序遗留残渣﹐保持铜面新鲜及增加化学镍层的密着性﹐常用微蚀液为酸性过硫酸钠溶液。
Na2S2O8﹕80~120g/L
硫酸﹕20~50ml/L
沉镍金生产也有使用硫酸双氧水或酸性过硫酸钾微蚀液来进行的。
由于铜离子对微蚀速率影响较大﹐通常须将铜离子的浓度控制有5~25g/L﹐以保证微蚀速率处于0.5~1.5μm﹐生产过程中﹐换缸时往往保留1/5~1/3缸母液(旧液)﹐以保持一定的铜离子浓度﹐也有使用少量氯离子加强微蚀效果。
另外﹐由于带出的微蚀残液﹐会导致铜面在水
洗过程中迅速氧化﹐所以微蚀后水质和流量以及浸泡时间都须特别考虑。否则﹐预浸缸会产生太多的铜离子﹐继而影响钯缸寿命。所以﹐在条件允许的情况下(有足够的排缸)﹐微蚀后二级逆流水洗之后﹐再加入5%左右的硫酸浸洗﹐经二级逆流水洗之后进入预浸缸。
3 预浸缸
预浸缸在制程中没有特别的作用﹐只是维持活化缸的酸度以及使铜面在新鲜状态(无氧化物)下﹐进入活化缸。
理想的预浸缸除了Pd之外﹐其它浓度与活化缸一致。实际上﹐一般硫酸钯活化系列采用硫酸作预浸剂﹐盐酸把钯活化系列采用盐酸作预浸剂﹐也有使用铵盐作预浸剂(PH值另外调节)。否则﹐活化制程失去保护会造成钯离子活化液局部水解沉淀。
4 活化缸
活化的作用是在铜面析出一层钯﹐作为化学镍起始反应之催化晶核。其形成过程则为Pd与Cu的化学置换反应。
从置换反应来看﹐Pd与Cu的反应速度会越来越慢﹐当Pd与Cu完全覆盖后(不考虑浸镀的疏孔性)﹐置换反应即会停止﹐但实际生产中﹐人们不可能也不必要将铜面彻底活化(将铜面完全覆盖)。从成本上讲﹐这会使Pd的消耗大幅大升。更重要的是﹐这容易造成渗镀等严重品质问题。
由于Pd的本身特性﹐活化缸存在着不稳定这一因素﹐槽液中会产生细微的(5m滤芯根本不可能将其过滤)钯颗粒﹐这些颗粒不但会沉积在PCB的Pad位上﹐而且会沉积在基材﹑绿油以及缸壁上。当其积累到一定程度﹐就有可能造成PCB渗镀以及缸壁发黑等现象。
影响钯缸稳定性的主要原因除了药水系列不同之外﹐钯缸控制温度和钯离子浓度则是首要考虑的问题。温度越低﹐钯离子浓度越低﹐越有利于钯缸的控制。但不能太低﹐否则会影响活化效果﹐引起漏镀发生。
通常情况下﹐钯缸温度设定在20~30℃﹐其控制范围应在±1℃﹐而钯离子浓度则控制在20~40ppm﹐至于活化效果﹐则按需要选取适当的时间。
当槽壁及槽底出现灰黑色的沉积物﹐则需硝槽处理。其过程为﹕
加入1﹕1硝酸﹐启动循环泵2小时以上或直到槽壁灰黑色沉积物完全除去为止。适当时可考虑加热﹐但不可超过50℃﹐以免空气污染。
另外﹐也有人认为活化带出的钯离子残液在水洗过程中会造成水解﹐从而吸附在基材上引起渗镀﹐所以﹐应在活化逆流水洗之后﹐多加硫酸或盐酸的后浸及逆流水洗的制程。
事实上﹐正常情况下﹐活化带出的钯离子残液体﹐在二级逆流水洗过程中可以被洗干净。吸附在基材上的微量元素﹐在镍缸中不足以导致渗镀的出现。另一方面﹐如果说不正常因素导致基材吸附大量活化残液﹐并不是硫酸或盐酸能将其洗去﹐只能从根源去调整钯缸或镍缸。增加后浸及逆流水洗﹐其作用只是避免水中Pd含量太多而影响镍缸。
需要留意的是﹐水洗缸中少量的Pd带入镍缸﹐并不会对镍缸造成太大的影响﹐所以不必太在意活化后水洗时间太短﹐一般情况下﹐二级水洗总时间控制在1~3min为佳。尤其重要的是﹐活化后水洗不可使用超声波装置﹐否则﹐不但导致大面积漏镀﹐而且渗镀问题依然存在。
5 沉镍缸
化学沉镍是通过Pd的催化作用下﹐NaH2PO2水解生成原子态H﹐同时H原子在Pd催化条件下﹐将镍离子还原为单质镍而沉积在裸铜面上。
作为化学沉积的金属镍﹐其本身也具备催化能力。由于其催化能力劣于钯晶体﹐所以反应初期主要是钯的催化作用在进行。当镍的沉积将钯晶体完全覆盖时﹐如果镍缸活性不足﹐化学沉积就会停止﹐于是漏镀问题就产生了。这种渗镀与镍缸活性严重不足所产生的漏镀不同﹐前者因已沉积大约20μ的薄镍﹐因而漏镀Pad位在沉金后呈现白色粗糙金面﹐而后者根本无化学镍的沉积﹐外观至发黑的铜色。
从化学镍沉积的反应看出﹐在金属沉积的同时﹐伴随着单质磷的析出。而且随着PH值的升高﹐镍的沉积速度加快的同时﹐磷的析出速度减慢﹐结果则是镍磷合金的P含量降低。反之﹐随着PH值的降低﹐镍磷含金的P含量升高。
化学镍沉积中﹐磷含量一般在7~11%之间变化。镍磷合金的抗蚀性能优于电镀镍﹐其硬度也比电镀镍高。
在化学沉镍的酸性镀液中﹐当PH<3时﹐化学镍沉积的反应就会停止﹐而当PH>6时﹐镀液很容易产生Ni(OH)2沉淀。所以一般情况﹐生产中PH值控制在4.5~5.2之间。由于镍沉积过程产生氢离子(每个镍原子沉积的同时释放4个氢离子)﹐所以生产过程中PH的变化是很快的﹐必须不断添补碱性药液来维持PH值的平衡。
通常情况下﹐氯水和氢氧化钠都可以用于生产维持PH值的控制﹐两者在自动补药方面差别不大﹐但在手动补药时就应特别关注。加入氨水时﹐可以观察到蓝色镍氨络离子出现﹐随即扩散时蓝色消失﹐说明氨水对化学镍是良好的PH调整剂。在加入氢氧化钠溶液时﹐槽液立即出现白色氢氧化镍沉淀粉末析出﹐随着药水扩散﹐白色粉末在槽液的酸性环境下缓慢溶解。所以﹐当使用氢氧化钠溶液作为化学镀的PH调整剂时﹐其配制浓度不能太高﹐加药时应缓慢加入。否则会产生絮状粉末﹐当溶解过程未彻底完成前﹐絮状粉末就会出现镍的沉积﹐必须将槽液过滤干净后﹐才可以重新开始生产。
在化学镍沉积的同时﹐会产生亚磷酸盐(HPO3)的副产物﹐随着生产的进行﹐亚磷酸盐浓度会越来越高﹐于是反应速度受生成物浓度的长高而抑制﹐所以镍缸寿命末期与初期的沉积速度相差1/3则为正常现象。但此先天不足可采用调整反应物浓度方式予以弥补﹐开缸初期Ni浓度控制在4.60g/L﹐随着MTO的增加Ni浓度控制值随之提高﹐直至5.0g/L停止。以维持析出速度及磷含量的稳定﹐以确保镀层品质。
影响镍缸活性最重要的因素是稳定剂的含量﹐常用的稳定剂是Pb(CH3COO)2或硫脲﹐也有两种同时使用的。稳定剂的作用是控制化学沉镍的选择性﹐适量的稳定剂可以使活化后的铜面发生良好的镍沉积﹐而基材或绿油部分则不产生化学沉积。当稳定剂含量偏低时﹐化学沉镍的选择性变差﹐PCB表面稍有活性的部分都发生镍沉积﹐于是渗镀问题就发生了。当稳定剂含量偏高时﹐化学沉积的选择性太强﹐PCB漏铜面只有活化效果很好的铜位才发生镍沉积﹐于是部分Pad位出现漏镀的现象。
镀覆PCB的装载量(以裸铜面积计)应适中﹐以0.2~0.5dm/L为宜。负载太大会导致镍缸活性逐渐升高﹐甚至导致反应失控﹔负载太低会导致镍缸活性逐渐降低﹐造成漏镀问题。在批量生产过程中﹐负载应尽可能保持一致﹐避免空缸或负载波动太大的现象。否则﹐控制镍缸活性的各参数范围就会变得很窄﹐很容易导致品质问题发生。
镀液应连续过滤﹐以除去溶液中的固体杂质。镀液加热时﹐必须要有空气搅拌和连续循环系统﹐使被加热的镀液迅速传播。当槽内壁沉积镍层时﹐应该及时倒缸(将药液移至另一备用缸中进行生产)﹐然后用25%~50%(V/V)的硝槽进行褪除﹐适当时可考虑加热,但不可超过50℃。
至于镍缸的操作控制﹐在温度方面﹐不同系列沉镍药水其控制范围不同。一般情况下﹐镍缸操作范围86±5℃﹐有的药水则控制在81±5℃。在生产中﹐具体设定根据试板结果来定﹐不同型号的制板﹐有可能操作温度不同。通常一个制板的良品操作范围只有±2℃﹐个别制板也有可能小于±1℃。在浓度控制方面﹐采用对Ni的控制来调节其它组分的含量﹐当Ni浓度低于设定值时﹐自动补药器开始添加一定数量的药水来弥补所消耗的Ni﹐而其它组分则依据Ni添补量按比例同时添加。
镍层的厚度与镀镍时间呈线性关系。一般情况下﹐200μ镍层厚度需镀镍时间28min﹐150μ镍层网络需镀镍时间21min左右。由于不同的制板所需的活性不同﹐为减轻镍缸控制的压力(即增大镍缸各参数的控制范围)﹐可以考虑采用不同的活化时间﹐例如正常生产Pd缸有一个时间﹐容易渗镀的制板另设定活化时间。这样一来﹐则可以组合成六个程序来进行生产。需要留意的是﹐对于多程序生产﹐应当遵循一个基本原则﹐就是所有程序飞巴的起始位置必须保持一致﹐否则连续生产中切换程序容易造成过多的麻烦。
镍缸的循环量一般设计在5~10turn over(每小时)﹐布袋式过滤应优先选择考虑。摇摆通常都是前后摆动设计﹐但对于laser盲孔板﹐镍缸和金缸设计为上下振动为佳。
6 沉金缸
置换反应形式的浸金薄层﹐通常30分钟可达到极限厚度。由于镀液Au的含量很低﹐一般为1~2g/L﹐溶液的扩散速度影响到大面积Pad位与小面积Pad位沉积厚度的差异。一般来说﹐独立位小Pad位要比大面积Pad位的金厚度高100%也属正常现象。
对于PCB的沉金﹐其金面厚度也会因内层分布而相互影响﹐其个别Pad位也会出较大的差异。
通常情况下﹐沉金缸的浸镀时间设定在7~11分钟﹐操作温度一般在80~90℃﹐可以根据客户的金厚要求﹐通过调节温度来控制金厚。需要留意的是﹐金缸容积越大越好﹐不但其Au浓度变化小而有利于金厚控制﹐而且可以延长换缸周期。
为了节省成本﹐金缸之后需加装回收水洗﹐同时也可减轻对环境的污染。回收缸之后﹐一般都是逆流水洗。
❷ 化学镀镍为啥规定磷含量
因为镀层中磷的含量影响化学镀镍层的组织结构和性能。所以镀层分为高磷镀层、中磷镀层、低磷镀层。当然磷含量的高低影响硬度和加工性能
❸ 镀镍含量分析不出来怎么回事我是做化学镍的,分析结果和事实相差太远
你看看 这资料有用没
这是我为你找到的资料,为了保证化学镀镍的质量,必须始终保持镀浴的化学成分、工艺技术参数在最佳范围(状态),这就要求操作者经常进行镀液化学成分的分析与调整.
1.Ni2+浓度
镀液中镍离子浓度常规测定方法是用EDTA络合滴定,紫脲酸胺为指示剂.
试剂
(1)浓氨水(密度:0.91g/ml).
(2)紫脲酸胺指示剂(紫脲酸胺∶氯化钠=1∶100).
(3)EDTA溶液 0.05mol,按常规标定.
分析方法:
用移液管取出10ml冷却后的化学镀镍液于250ml的锥形瓶中,并加入100ml蒸馏水、15ml浓氨水、加入约0.2g紫脲酸胺指示剂后摇匀,用标定后的0.05mol EDTA溶液滴定,当溶液颜色由浅棕色变至紫色即为终点.
镍含量的计算:
Ni2+ = 5.87 M×V (g/L)
式中 M——标准EDTA溶液的摩尔浓度;
V——耗用标准EDTA溶液的毫升数.
2.还原剂浓度
次磷酸钠NaH2PO2·H2O浓度的测定
其原理是在酸性条件下,用过量的碘氧化次磷酸钠,然后用硫代硫酸钠溶液反滴定自剩余的碘,淀粉为指示剂.
试剂
(1)盐酸 1:1.
(2)碘标准溶液0.1mol按常规标定.
(3)淀粉指示剂1%.
(4)硫代硫酸钠0.1mol按常规标定.
分析方法:
用移液管量取冷却后的镀液5ml于带盖的250mL锥形瓶中;加入盐酸25mL,再用移液管量取25mL碘标准溶液于此锥形瓶中,加盖,置于暗处0.5h(温度不得低于25℃);打开瓶盖,加入1mL淀粉指示剂,并用硫代硫酸钠标准溶液滴定至蓝色消失为终点.
计算:
CNaH2PO2·H2O= 10.6(2M1V1-M2V2) (g/L)
式中 M1——标准碘溶液的摩尔浓度;
V1——标准碘溶液毫升数;
M2——标准硫代硫酸钠溶液的摩尔浓度;
V2——耗用标准硫代硫酸钠溶液毫升数.
3.NaHPO3·5H2O的浓度
化学镀镍浴还原剂反应产物中影响最大的是次磷酸钠的反应产物亚磷酸钠.其他种类的还原剂的反应产物的影响较小甚至几乎无影响,如DMAB.其测定原理是在碱性条件下,用过量的碘氧化亚磷酸,但次磷酸不参加反应;然而,用硫代硫酸钠反滴定剩余的碘;淀粉为指示剂.
试剂
(1)碳酸氢钠溶液 5%.
(2)醋酸 98%.
(3)其余试剂同前.
分析方法:
用移液管量取冷却后的镀液5ml于250mL的锥形瓶中(可视NaHPO3·5H2O含量多少决定吸取镀液体积),加入蒸镏水40mL.加入碳酸氢钠溶液50mL,使用移液管量取40mL标准碘溶液于锥形瓶中,加盖,放置暗处1h.开启瓶盖,滴加醋酸至PH
❹ 请问镀液的PH值的高低对化学镀镍磷嗯影响,请详细叙,谢啦!!!!
化学镀镍的PH值工艺范围是4.6到5.2,高磷镍是4.7到5.2.ph值过高会导致镀速加快,从而导致零件耐蚀性降低。ph过低则会导致镀速减慢。一般ph值是靠化学镍液周期来定的,前期应控制在4.7,根据溶液Ni浓度的消耗与添加,逐渐提高ph值和温度,可以稳定镀速和质量
❺ 化学镀膜(镍磷合金)的一些问题!
呵呵,只知道一点点皮毛,希望能起到抛砖引玉的作用。
化学镀膜,要说关键,对镀件的前处理算是比较重要,打磨、酸洗、除油等等,如果表层杂质多,镀膜的质量就不好。镀液浓度的配制也是关键,pH值,镀液的浓度都能对镀层的沉积速度及镀层的含量造成影响,沉积速度过快则镀层表层光洁度会差,另外化学镀过程中溶液的浓度和pH值是不断变化的,如果是工业化学镀,在化学镀过程中要注意保持镀液的浓度。
第二个没遇到过镀液还要过滤的问题,可能是因为你们是工业大规模生产配制镀液的水是直接用自来水,如果有沉淀可以考虑提前配制,长时间静置后取上层清液,呵呵,随便说说,我也没经历过,希望能有高手给你解答。
第三个问题非晶结构与磷元素含量有一定关系,一般认为当镀层中磷的质量分数超过9% (wt%)时, 镍磷镀层为高磷镀层,一般为非晶态合金, 具有高耐蚀、耐磨、可焊性、磁性屏蔽、高硬度、高强度、高导电性等优异的性能。但P含量太大会造成类金属一类金属原子间(即P与P之间)成键数目的增多,从而实际上导致金属一类金属间形成的键数n 减小,镀层耐蚀性和晶化温度又从极大值开始下降。镀液中磷元素的含量以及溶液的pH值均能影响镀层中磷元素含量,一般pH值越高镀层中磷元素含量越低。
第四个问题,制三元合金的镀液配制,跟二元合金一样,只是在镀液中多添加一种物质而已,是在镀前添加的。配比可参考相关文献,当然这些文献都是实验室成果,能否跟实际生产中所制产品一样就不清楚了。你可以先用CNKI中国期刊网用关键字搜索相关文献,记下你所需文献的题目,作者,所在期刊的年份期号及页码,然后到小木虫论坛或者是其他学术论坛请人帮你下文献。
❻ 电镀化学镍中的磷含量对上锡有什么影响
磷含量太高,不利于上锡。一般使用中磷化学镍。
❼ 请问化学镀镍怎么区分高磷、中磷、低磷镀镍
化学镀镍怎么区分高磷、中磷、低磷是根据测定P含量来区分的。
❽ 如何得到高质量的化学镀镍镀层,简述化学镀的影响因素
化学镀 electroless plating 化学镀是指没有外电流通过,利用还原剂将溶液中金属离子化学还原在呈催化活性的机件表面,使之形成金属镀层的工艺过程。机械维修中以镀化学镍最为实用。化学镀最大特点是镀液的分散力强,凡接触镀液部位均有厚度基本相等的金属镀层镀上,而且镀层外观好、致密、耐腐蚀。 一、化学镀技术简介 1、原理 化学浸镀(简称化学镀)技术的原理是:化学镀是一种不需要通电,依据氧化还原反应原理,利用强还原剂在含有金属离子的溶液中,将金属离子还原成金属而沉积在各种材料表面形成致密镀层的方法。化学镀常用溶液:化学镀银、镀镍、镀铜、镀钴、镀镍磷液、镀镍磷硼液等。 2、化学镀特点 化学镀是无电沉积镀层,选择合适的化学镀溶液,将被镀工件表面去除油污后直接放入镀液中。根据设定的厚度确定浸镀的时间即可。一般只要有塑料或聚四氟容器,加热方式灵活,备有(如蒸汽、油炉、煤气)烧水装置均可!这三种方法获得的镀层中,对于大多数金属镀层结合强度及硬度等来说无明显差异!化学镀优点是: (1)工艺简单,适应范围广,不需要电源,不需要制作阳极,只要一般操作人员均可操作。(2)镀层与基体的结合强度好。(3)成品...
❾ 化学镀镍怎么区分高磷,中磷,低磷镀镍
低磷较暗硬度低,高磷比低磷亮硬度较中磷强,但比中磷暗。中磷较亮且带白
❿ 化学镀镍生产时,镀液的管理和维护需要注意什么
化学镀在表面处理技术中占有重要的地位。化学镀是利用合适的还原剂使溶液中的金属离子有选择地在经催化剂活化的表面上还原析出成金属镀层的一种化学处理方法。可用下式表示:
M2++2e(由还原剂提供)--->M
在化学镀中,溶液内的金属离子是依靠得到所需的电子而还原成相应的金属。例如,在酸性化学镀镍溶液中采用次磷酸盐作还原剂,它的氧化还原反应过程如下:
Ni2++2e--->Ni(还原)
(H2PO2)-+H2O--->(H2PO3)-+2e+2H+(氧化)
两式相加,得到全部还原氧化反应:
Ni2++(H2PO2)-+H2O--->(H2PO3)-+Ni+2H+
还原剂的有效程度可以用它的标准氧化电位来推断。由上述可知,次磷酸盐是一种强还原剂,能产生一个正值的标准氧化一还原电位。但不应过分地信赖E°值,因为在实际应用上,由于溶液中不同离子的活度、超电位和类似因素的影响,会使E°值有很大的差异。但氧化和还原电位的计算仍有助于预先估算不同还原剂的有效程度。若全部标准氧化还原电位太小或为负值,则金属还原将难以发生。
化学镀溶液的组成及其相应的工作条件必须是反应只限制在具有催化作用的制件表面上进行,而溶液本身不应自发地发生还原氧化作用,以免溶液自然分解,造成溶液很快失效。如果被镀的金属(如镍、钯)本身是反应的催化剂,则化学镀的过程就具有自动催化作用,使上述反应不断地进行,这时,镀层厚度也逐渐增加,获得一定的厚度。除镍外,钴、铑、钯等都具有自动催化作用。
对于不具有自动催化表面的制件,如塑料、玻璃、陶瓷等非金属,通常需经过特殊的预处理,使其表面活化而具有催化作用,才能进行化学镀。
化学镀与电镀比较,具有如下优点:
①不需要外加直流电源设备。
②镀层致密,孔隙少。
③不存在电力线分布不均匀的影响,对几何形状复杂的镀件,也能获得厚度均匀的镀层;
④可在金属、非金属、半导体等各种不同基材上镀覆。
化学镀与电镀相比,所用的溶液稳定性较差,且溶液的维护、调整和再生都比较麻烦,材料成本费较高。
化学镀工艺在电子工业中有重要的地位。由于采用的还原剂种类不同,使化学镀所得的镀层性能有显着的差异,因此,在选定镀液配方时,要慎重考虑镀液的经济性及所得镀层的特性。
目前,化学镀镍、铜、银、金、钴、钯、铂、锡以及化学镀合金和化学复合镀层,在工业生产中已被采用。
如何进行化学镀镍
化学镀镍是化学镀应用最为广泛的一种方法,所用还原剂有次磷酸盐、肼、硼氢化钠和二甲基胺硼烷等。
目前国内生产上大多采用次磷酸钠作还原剂,硼氢化钠和二甲基胺硼烷因价格较贵,只有少量使用。
1.镀层的用途
化学镀镍层的结晶细致,孔隙率低,硬度高,镀层均匀,可焊性好,镀液深镀能力好,化学稳定性高,目前已广泛用于电子、航空、航天、机械、精密仪器、日用五金、电器和化学工业中。
非金属材料上应用化学镀镍越来越多,尤其是塑料制品经化学镀镍后即可按常规的电镀方法镀上所需的金属镀层,获得与金属一样的外观。塑料电镀产品已广泛用于电子元件、家用电器、日用工业品等。
化学镀镍在原子能工业,如生产核燃料系统中的零件和容器以及火箭、导弹、喷气式发动机的零部件上已采用。
化工设备中压缩机等的零部件为防腐蚀、抗磨,而用化学镀镍层是很有利的。
化学镀镍层还能改善铝、铜、不锈钢材料的焊接性能,减少转动部分的磨耗,减少不锈钢与钛合金的应力腐蚀。
对镀层尺寸要求精确的精密零件和几何形状复杂的零件的深孔、盲孔、腔体的内表面,用化学镀镍能得到与外表面同样厚度的镀层。
对要求高硬度、耐磨的零件,可用化学镀镍代替镀硬铬。
2.镀层的组成和特性
<1>镀层的组成
用次磷酸盐作还原剂的化学镀镍溶液中镀得的镀层含有4%~15%的磷,是一种镍磷合金。以硼氢化物或胺基硼烷作还原剂得到的镀层才是纯镍层,含镍量可达99.5%以上。刚沉积出来的化学镀镍层是无定型的,呈非晶型薄片状结构。
镀层中磷含量主要决定于溶液的pH值,随着pH值降低,磷含量增大。常规的酸性化学镀镍溶液中沉积出的镀层含磷量为7%~12%,而碱性溶液中沉积的镍层含磷量为4%~7%。此外,溶液的组成及各组分的含量和它们的相对比率,以及溶液的工作温度等都对含磷量有一定的影响。
<2>镀层的特性
①硬度
化学镀镍层比电镀镍层的硬度高得多,而且更耐磨。电镀镍层的硬度仅为HV160~180,而化学镀镍层的硬度一般为HV300~500。
用热处理方法可大大提高化学镀镍层的硬度,在400℃加热1小时后,硬度的最高值约可达HV1000。若继续提高热处理温度,如提高到600℃时,则硬度反而降低为HV700。
热处理前的化学镀镍层是非晶型的无定型结构,热处理后则转变成晶型组织,镀层中有Ni3P相形成。Ni3P相的析出量随着热处理温度的升高而增加,其最大析出量则决定于镀层的含磷量。
为了提高镀层硬度,合适的热处理规定是:温度380~400℃,时间为1小时。为防止镀层变色,最好有保护气氛或用真空热处理。在不具备保护气氛条件时,适当降低热处理温度(如280℃)和延长处理时间,同样可以提高硬度值。
当镀层具有最大硬度时,脆性亦增大,因而不适宜在高载荷或冲击的条件下使用。选择恰当的热处理条件,可使镀层既有一定的硬度又有延展性。
一般钢制工件的化学镀镍层在200℃温度下处理2小时,可提高镀层结合力和消除应力。而铝制工件以在150~180℃下保持1小时较为合适。
②磁性能
化学镀镍层的磁性能决定于含磷量和热处理温度。含磷量超过8%的镀层是弱磁性的;含磷量在11.4%以上,完全没有磁性;含磷量低于8%的镀层才具有磁性,但它的磁性比电镀镍层小,经热处理后磁性能有显着提高。
例如,在碱性化学镀镍液中所得的镀层,未经热处理时其磁性能为矫顽磁力H0=160A/m,经350℃热处理1小时后为H0=8800A/m。
③电阻率
化学镀镍层的电阻率与含磷量有关,一般含磷量越高,则电阻率越大。在碱性溶液中所获得的化学镀镍层,其电阻率约为28~34μΩ·cm.在酸性溶液中所获得的化学镀镍层,其电阻率约为51~58μΩ·cm,比电镀镍层高数倍(纯镍的电阻率为9.5μΩ·cm)。化学镀镍层的电阻率经热处理后会明显下降。例如,含磷量为7%的化学镀镍层,经600℃热处理后,电阻率从72μΩ·cm降至20μΩ·cm。含硼量1.3%~4.7%的镍硼化学镀层,其电阻率为13~15μΩ·cm.用二甲胺基硼烷还原的镍镀层,含硼量为0.6%时,电阻率为5.3μΩ·cm,比纯镍的电阻率低。
④热膨胀系数和密度
化学镀镍层的热膨胀系数一般为13×10-6℃-1。
化学镀镍层的密度一般为7.9g/cm3左右,化学镀镍层的密度随含磷量提高而降低。
化学镀镍层的综合性能见表4-24:
表4-24化学镀镍层的综合性能化学镀镍层的综合性能镍磷合金层(含磷量8%-10%)
硬度(HV)热处理前500
400℃热处理后1000
密度(g/cm3)7.9
熔点(℃)890
电阻率(μΩ·cm)60~75
热膨胀系数(℃-1)13×10-6
热导率[W/(m·k)]5.02
延伸率(%)3~6
反射系数(%)50(近似值)
3.工艺条件及镀液配制以次磷酸钠为还原剂的化学镀镍是目前国内外应用最为广泛的工艺,分为酸性镀液和碱性镀液两大类。酸性化学镀镍溶液的组成和工艺条件,见表4-25:
表4-25酸性化学镀镍溶液的组成和工艺条件
镀液成分(g/l)及工艺条件12345
硫酸镍25-3030202525
次磷酸钠20-2515-25242024
醋酸钠515
柠檬酸钠515
丁二酸516
乳酸80%(ml/l)2525
氨基乙酸5-15
苹果酸24
硼酸10
氟化钠1
(Pb2+)(以醋酸铅形式加入)0.0010.003
pH值4-53.5-5.44.4-4.84.4-4.85.8-6
温度(℃)80-9085-9590-9490-9290-93
沉积速度(μm/h)1012-1510-1315-2248
装载量(dm2/L)11111
镀层中含磷量(%)8-107-118-98-98-11
1号配方溶液的配制方法如下:
在容器中用60~70℃热蒸馏水溶解柠檬酸钠和醋酸,在另一个容器中用热蒸馏水溶解硫酸镍,溶解后在不断搅拌下注入前述溶液中,所得的混合液过滤入槽。进行化学镀时,先把预先溶解好并经过滤的次磷酸钠溶液加入槽内,搅拌均匀后加入蒸馏水至所需体积,最后用10%的稀硫酸或氢氧化钠溶液调整pH值至规定范围上限值。
2、3、4、5号配方的溶液可参照上述方法配制。
但配方3、4中的乳酸溶液要预先用碳酸氢钠溶液中和至pH值为4.6左右,然后才可与其他组分混合。
碱性化学镀镍溶液的组成和工艺条件见下表4-26。
表4-26碱性化学镀镍溶液的组成和工艺条件
镀液成分(g/l)及工艺条件12345
硫酸镍10-2033302530
次磷酸钠5-1515252530
柠檬酸钠30-6050
焦磷酸钠60-705060
乳酸80%(ml/l)1-5
三乙醇胺100
pH值7.5-8.5810-10.510-1110
温度(℃)40-459070-7565-7530-35
沉积速度(μm/h)20-301510
镀层中含磷量(%)7-8约5约4
配方1、5适用于塑料制品金属化底层,一般镀10分钟左右即可。
配方5加入三乙醇胺,除有络合作用外,还能调整pH值,使镀液能在低温下仍有较高的沉积速度。在补加镍盐时,必须先用三乙醇胺与之络合后再加入镀槽,否则会产生沉淀。配制时,硫酸镍与次磷酸钠或焦磷酸钠的比例应大致控制在1:2,这样可以保证镍呈络合态。
配方2适用于铝及铝合金上化学镀镍。
配方4可在较宽的浓度范围内工作,其pH值最好大于10,否则焦磷酸镍络合物将发生分解。补加硫酸镍时,也应先溶解于氨水中后再加入镀槽。
4.化学镀镍溶液的组成和工艺条件的影响
<1>镍盐浓度对沉积速度的影响
①在酸性化学镀镍液中镍离子浓度增加,可以提高镍的沉积速度。特别是当镍盐浓度在10g/L以下时,增加镍盐浓度,镍的沉积速度加快。例如,当镀液中含次磷酸钠20g/L、醋酸钠20g/L、温度为82~84℃、pH=5.5时,镍盐浓度从5g/L至60g/L变化时,对沉积速度的影响见表4-27:
表4-27镍盐对沉积速度的影响
硫酸镍(g/l)5102030405060
层积速度(μm/h)12192421202020
当镍盐浓度达到30g/L时,继续提高浓度,则镀层的沉积速度不再增加,甚至下降。镍盐浓度过高时,会导致镀液的稳定性下降,并易出现粗糙镀层。
②在碱性化学镀镍液中,镍盐的浓度在20g/L以下时,提高镍盐浓度使化学沉积速度有明显的提高;但当镍盐的浓度高于25g/L以上时,虽继续提高镍盐含量,其沉积速度趋于稳定。
提高次磷酸钠浓度,可提高沉积速度。但次磷酸钠浓度增加,并不能无限地提高镍的沉积速度,不同镀液中次磷酸钠浓度。