A. sin30度是多少多少啊!数学
sin30°=1/2;sin30=-0.988
cos30=0.154;cos30°=√3/2
tan30=-6.405;tan30°=√3/3
sin45=0.851;sin45°=√2/2
cos45=0.525;cos45°=sin45°=√2/2
tan45=1.620;tan45°=1
sin60=-0.305;sin60°=√3/2
cos60=-0.952;cos60°=1/2
tan60=0.320;tan60°=√3
sin90=0.894;sin90°=cos0°=1
cos90=-0.448;cos90°=sin0°=0
tan90=-1.995;tan90°不存在
(1)sin30度等于多少扩展阅读:
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。
在RT△ABC中,如果锐角A确定,那么角A的对边与邻边的比便随之确定,这个比叫做角A 的正切,记作tanA
即tanA=角A 的对边/角A的邻边
同样,在RT△ABC中,如果锐角A确定,那么角A的对边与斜边的比便随之确定,这个比叫做角A的正弦,记作sinA
即sinA=角A的对边/角A的斜边
同样,在RT△ABC中,如果锐角A确定,那么角A的邻边与斜边的比便随之确定,这个比叫做角A的余弦,记作cosA
即cosA=角A的邻边/角A的斜边
B. sin30度等于多少的那套公式
sin30^o等于多少,根本就没有什么鬼那套公式!是直接写岀结果是
1/2,应该是sin15^o的那套公式就是sin15^o=sin(60^o一45^o)用两角差的正弦公式展开就可以计算出来的。
C. sin30度 是多少
二分之一
D. sin30度等于多少
sin30度等于二分之一。
在直角三角形中,∠α(不是直角)的对边与斜边的比叫做∠α的正弦,记作sinα,即sinα=∠α的对边/∠α的斜边 。sinα在拉丁文中记做sinus。
在古代的说法当中,正弦是勾与弦的比例。 古代说的“勾三股四弦五”中的“弦”,就是直角三角形中的斜边。 股就是人的大腿,古人称直角三角形中长的那个直角边为“股”。
正弦是∠α(非直角)的对边与斜边的比,余弦是∠α(非直角)的邻边与斜边的比。
勾股弦放到圆里。弦是圆周上两点连线。最大的弦是直径。 把直角三角形的弦放在直径上,股就是长的弦,即正弦,而勾就是短的弦,即余弦。
按现代说法,正弦是直角三角形某个角(非直角)的对边与斜边之比,即:对边/斜边。
E. sin30度是多少
sin30°=1/2;sin30=-0.988
cos30=0.154;cos30°=√3/2
tan30=-6.405;tan30°=√3/3
sin45=0.851;sin45°=√2/2
cos45=0.525;cos45°=sin45°=√2/2
在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是tanB=b/a,即tanB=AC/BC。
在平面三角形中,正切定理说明任意两条边的和除以第一条边减第二条边的差所得的商等于这两条边的对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。
tan60°=对边/邻边=√3/1=√3。
F. sin30度是多少表格
sin30度是0.5,三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。
sin30°=1/2,cos30°=0.866,tan30°=0.577。
G. sin30°,sin45°,sin60°分别等于多少
sin30°=1/2
sin45°=√2/2
sin60°=√3/2
正弦(sine)在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来)。
正弦公式是:sin=直角三角形的对边比斜边。
斜边为r,对边为y,邻边为a,斜边r与邻边a夹角Ar的正弦sinA=y/r,无论a,y,r为何值,正弦值恒大于等于0小于等于1,即0≤sin≤1。
(7)sin30度等于多少扩展阅读
定理意义
正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。由正弦函数在区间上的单调性可知,正弦定理非常好地描述了任意三角形中边与角的一种数量关系。
一般地,把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫做解三角形。正弦定理是解三角形的重要工具。
在解三角形中,有以下的应用领域:
(1)已知三角形的两角与一边,解三角形。
(2)已知三角形的两边和其中一边所对的角,解三角形。
(3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系。
物理学中,有的物理量可以构成矢量三角形 。因此, 在求解矢量三角形边角关系的物理问题时, 应用正弦定理,常可使一些本来复杂的运算,获得简捷的解答。
H. sin30度是多少
sin30°=1/2;sin30=-0.988
cos30=0.154;cos30°=√3/2
tan30=-6.405;tan30°=√3/3
sin45=0.851;sin45°=√2/2
cos45=0.525;cos45°=sin45°=√2/2
tan45=1.620;tan45°=1
sin60=-0.305;sin60°=√3/2
cos60=-0.952;cos60°=1/2
tan60=0.320;tan60°=√3
sin90=0.894;sin90°=cos0°=1
cos90=-0.448;cos90°=sin0°=0
正弦函数的意义:
一般的,在直角坐标系中,给定单位圆,对任意角α,使角α的顶点与原点重合,始边与x轴非负半轴重合,终边与单位圆交于点P(u,v),那么点P的纵坐标v叫做角α的正弦函数,记作v=sinα。
通常,我们用x表示自变量,即x表示角的大小,用y表示函数值,这样我们就定义了任意角的三角函数y=sin x,它的定义域为全体实数,值域为[-1,1]。
I. sin30度等于多少的那套公式
sin30°=1/2;sin30=-0.988
cos30=0.154;cos30°=√3/2
tan30=-6.405;tan30°=√3/3
sin45=0.851;sin45°=√2/2
cos45=0.525;cos45°=sin45°=√2/2
tan45=1.620;tan45°=1
sin60=-0.305;sin60°=√3/2
cos60=-0.952;cos60°=1/2
tan60=0.320;tan60°=√3
sin90=0.894;sin90°=cos0°=1
cos90=-0.448;cos90°=sin0°=0
tan90=-1.995;tan90°不存在
(9)sin30度等于多少扩展阅读
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。