① 什么是矩形
矩形的性质如下:
1、矩形具有平行四边形的一切性质
2、矩形的对角线相等
3、矩形的四个角都是90度
4、矩形是轴对称图形
矩形的判定如下:
1、有一个角是直角的平行四边形是矩形
2、对角线相等的平行四边形是矩形
3、有三个角是直角的四边形是矩形
4、对角线相等且互相平分的四边形是矩形
(1)矩形是什么扩展阅读:
相关公式:
1、面积公式:长方形面积=长×宽
s=a×b
2、周长公式:长方形周长=(长+宽)×2
c=(a+b)×2
② 矩形的概念矩形的定义是什么
矩形(rectangle)是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。矩形的定义是什么?以下是我分享给大家的关于矩形的定义,欢迎大家前来阅读!
在几何中,矩形的定义为四个内角相等的四边形,即是说所有内角均为直角。
从这个定义可以得出矩形两条相对的边等长,也就是说矩形是平行四边形。正方形是矩形的一个特例,它的四个边都是等长的。同时,正方形既是长方形,也是菱形。非正方形的矩形通常称之为oblong。
矩形(rectangle)是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。
判定
1.一个角是直角的平行四边形是矩形。
2.对角线相等的平行四边形是矩形。
3.有三个内角是直角的四边形是矩形。
4.对角线相等且互相平分的四边形是矩形。
说明:长方形和正方形都是矩形。平行四边形的定义在矩形上仍然适用。
图形学
"矩形必须一组对边与x轴平行,另一组对边与y轴平行。不满足此条件的几何学矩形在计算机图形学上视作一般四边形。"在高等数学里只提矩形,所以也就没提长方形的长与宽。
计算公式
面积:S=ab(注:a为长,b为宽)
周长:C=2(a+b)=2a+2b(注:a为长,b为宽)
外接圆
矩形矩形外接圆半径 R=矩形对角线的一半
性质
1.矩形的4个内角都是直角;
2.矩形的对角线相等且互相平分;
3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;
4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。
5.矩形具有平行四边形的所有性质
6.顺次连接矩形各边中点得到的四边形是菱形
黄金矩形
宽与长的比是(√5-1)/2(约为0.618)的矩形叫做黄金矩形。
黄金矩形给我们一协调、匀称的美感。世界各国许多着名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计。如希腊的巴特农神庙等。
例1:已知ABCD的对角线AC和BD相交于点O,△AOB是等边三角形,AB= 4 cm.求这个平行四边形的面积。
分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积为
例2:已知:在ABCD中,M为BC中点,∠MAD=∠MDA.求证:四边形 ABCD是矩形.
分析:根据定义去证明一个角是直角,由△ABM≌DCM(SSS)即可实现。
例:3:已知:ABCD的四个内角平分线相交于点E,F,G,H.求证:EG=FH.
③ 矩形是什么 矩形的定义是什么
1、矩形是至少有三个内角都是直角的四边形。矩形是一种特殊的平行四边形,正方形是特殊的矩形。矩形也叫长方形。
2、由于矩形是特殊的平行四边形,故包含平行四边形的性质;矩形的性质大致总结如下:矩形具有平行四边形的所有性质:对边平行且相等,对角相等,邻角互补,对角线互相平分;矩形的四个角都是直角;矩形的对角线相等;具有不稳定性(易变形)。
④ 矩形是什么样
如图:
矩形(rectangle)是一种平面图形,矩形的四个角都是直角,同时矩形的两组对边分别相等,而且在平面内任一点到其两对角线端点的距离的平方和相等。
有一个角是直角的平行四边形叫做矩形。矩形包括长方形与正方形。
矩形是一类特殊的平行四边形。
判定:
1.一个角是直角的平行四边形是矩形。
2.对角线相等的平行四边形是矩形。
3.三个内角都是直角的四边形是矩形。
说明:矩形和正方形都是平行四边形。平行四边形的定义在矩形上仍然适用。
相关公式:
面积:S=ab(注:a为长,b为宽)
周长:C=2(a+b)=(注:a为长,b为宽)
外接圆:
矩形外接圆半径R=矩形对角线的一半
性质:
(1)矩形的定义:有一个角是直角的平行四边形是矩形.
(2)矩形的性质
①平行四边形的性质矩形都具有;
②角:矩形的四个角都是直角;
③边:邻边垂直;
④对角线:矩形的对角线相等;
⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.
(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.
⑤ 矩形是什么样的
矩形如下图:
矩形:至少有三个内角都是直角的四边形是矩形,有一个内角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形。矩形是一种特殊的平行四边形,正方形是特殊的矩形。矩形包括长方形和正方形。
由于矩形是特殊的平行四边形,故包含平行四边形的性质;矩形又可分为长方形和正方形,故包含长方形和正方形的一些共有的性质。矩形的性质大致总结如下:
(1)矩形具有平行四边形的所有性质:对边平行且相等,对角相等,邻角互补,对角线互相平分;
(2)矩形的四个角都是直角;
(3)矩形的对角线相等;
(4)长方形有2条对称轴,正方形有4条;
(5)具有不稳定性(易变形)。
矩形的常见判定方法如下:
(1)有一个角是直角的平行四边形是矩形。
(2)对角线相等的平行四边形是矩形。
(3)有三个角是直角的四边形是矩形。
(4)定理:经过证明,在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形。
(5)对角线相等且互相平分的四边形是矩形。
⑥ 矩形是什么形状 图片
矩形是一种特殊的平行四边形。图片如下:
性质1:矩形的四个内角都相等。
性质2:矩形的两条对角线相等。
性质3:矩形是轴对称图形,对称轴是一组对边中点的连线所在的直线。
另外,由矩形的性质可以得出:
(1)直角三角形斜边上的中线等于斜边的一半;
(2)矩形的对角线把矩形分成四个小的等腰三角形.
(6)矩形是什么扩展阅读
矩形的常见判定方法如下:
(1)有一个角是直角的平行四边形是矩形;
(2)对角线相等的平行四边形是矩形。
(3)有三个角是直角的四边形是矩形。
(4)定理:经过证明,在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形。
(5)对角线相等且互相平分的四边形是矩形。
⑦ 什么是矩形
至少有三个内角都是直角的四边形是矩形,矩形包括长方形和正方形。
在几何学科定义中,矩形的为四个内角相等的四边形,即是说所有内角均为直角。对角线相等的平行四边形是矩形。从这个定义可以得出矩形两条相对的边等长,也就是说矩形是一种特殊平行四边形。从一个内角是直角的平行四边形是矩形,可知正方形是特殊的一种矩形。
如图所示:
(7)矩形是什么扩展阅读:
黄金矩形
黄金矩形的长宽之比确切值为(√5+1)/2,在应用上一般取它的近似值1.618。
黄金矩形长宽之比为黄金分割率,换言之,矩形的长边为短边1.618倍。在人类的长期进化过程中,骨骼中以头骨和腿骨变化最大,外形躯身由于十分近似黄金矩形而变化较小,人体中有许多比例关系接近0.618。
在很多艺术品以及大自然中都能找到它,希腊雅典的巴特农神庙就是一个很好的例子。达芬奇的脸符合黄金矩形,同样也应用了该比例布局。黄金分割率和黄金矩形能够给画面带来美感,令人愉悦。从而使人体美在几十万年的历史积淀中固定下来。
于是黄金分割律作为一种重要形式美法则,成为世代相传的审美经典规律,至今不衰!
⑧ 矩形的定义是什么
定义
有一个角是直角的平行四边形叫做矩形。也就是长方形。
性质
1.矩形的四个角都是直角
2.矩形的对角线相等
3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等
4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线)。
5.对边平行且相等
6.对角线互相平分
7.平行四边形的性质都具有。
判定
1.有一个角是直角的平行四边形是矩形
2.对角线相等的平行四边形是矩形
3.有三个角是直角的四边形是矩形
4.四个内角都相等的四边形为矩形
5.关于任何一组对边中点的连线成轴对称图形的平行四边形是矩形
6.对于平行四边形,若存在一点到两双对顶点的距离的平方和相等,则此平行四边形为矩形
7.对角线互相平分且相等的四边形是矩形
8.对角线互相平分且有一个内角是直角的四边形是矩形
矩形面积
S=ah(注:a为边长,h为该边上的高)
S=ab(注:a为长,b为宽)
⑨ 矩形是什么形状
矩形就是长方形,是一种特殊的平行四边形。正方形是特殊的矩形。
至少有三个内角都是直角的四边形是矩形,矩形也叫长方形。
由于矩形是特殊的平行四边形,故包含平行四边形的性质;矩形的性质大致总结如下:
(1)矩形具有平行四边形的所有性质:对边平行且相等,对角相等,邻角互补,对角线互相平分;
(2)矩形的四个角都是直角;
(3)矩形的对角线相等;
(4)具有不稳定性(易变形)。
1:对角线相等的菱形是正方形。
2:有一个角为直角的菱形是正方形。
3:对角线互相垂直的矩形是正方形。
4:一组邻边相等的矩形是正方形。
5:一组邻边相等且有一个角是直角的平行四边形是正方形。
6:对角线互相垂直且相等的平行四边形是正方形。
7:对角线相等且互相垂直平分的四边形是正方形。
8:一组邻边相等,有三个角是直角的四边形是正方形。
9:既是菱形又是矩形的四边形是正方形。
平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。
在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。 平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
相比之下,只有一对平行边的四边形是梯形。平行四边形的三维对应是平行六面体。