A. 什么是约数
约数即是因数。整数a除以非零整数b,除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数。
约数有正负之分。通常我们所说的约数是正约数。
a与b的公因数表示为既是数a的因数,又是数b的因数的数c。两个数的最大公因数是两个数的公因数中最大的一个。
(1)什么叫约数扩展阅读:
比较普遍的求约数方法是短除法。短除符号就像一个倒过来的除号,短除法就是先写出要求最大公因数的两个数A、B,再画一个短除号,接着在原本写除数的位置写两个数公有的质因数Z(通常从最小的质数开始),然后在短除号的下方写出这两个数被Z整除的商a,b。
对a,b重复以上步骤,以此类推,直到最后的商互质为止,再把所有的除数相乘,其积即为A,B的最大公因数。
B. 约数是什么
约数,又称因数。整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数。
约数和倍数都是二元关系的概念,不能孤立地说某个整数是约数或倍数。一个整数的约数是有限的。同时,它可以在特定情况下成为公约数。
(2)什么叫约数扩展阅读:
约数的特殊情况公约数:
公约数,又称公因数。在数论的叙述中,如果n和d都是整数,而且存在某个整数c,使得n=cd,就说d是n的一个因数,或说n是d的一个倍数,记作d|n(读作d整除n)。如果d|a且d|b,就称d是a和b的一个公因数。
根据裴蜀定理,对每一对整数a,b,都有一个公因数d,使得d=ax+by,其中x和y是某些整数,并且a和b的每一个公因数都能整除这个d。于是d的绝对值叫做最大公因数。
参考资料来源:网络——约数
C. 约数是什么
如果一个整数能被另一个整数整除,那么第二个整数就是第一个整数的约数。约数是有限的,一般用最大公约数。
6的约数有:1、2、3、6
10的约数有:1、2、5、10
15的约数有:1、3、5、15
………………
注意:一个数的约数包括
1
及其本身。
整数a除以整数b(b≠0)除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a叫b的倍数,b叫a的约数或因数。约数和倍数相互依存,不能单独说某个数是约数或倍数.
约数:如果一个整数能被两个整数整除,那么这两个数就是这个数的约数。约数是有限的,一般用最大公约数。直白地说:约数就是能被其整除的除数.
例如:能整除24的有1、2、3、4、6、8、12、24
所以24的约数有:1、2、3、4、6、8、12、24
约数是可以整除这个数的数,一般都小于或等于它(包括它自身).
最大公约数:如果一个数既是数A的约数,又是数B的约数,称为A,B的公约数,A,B的公约数
中最大的一个(可以包括AB自身)称为AB的最大公约数。
同理,AB共同的倍数中最小的一个称为AB的最小公倍数。
明白了么?
若整数a能被整数b(b不为0)整除,则称a为b的倍数,b为a的约数
[解题过程]
例如
6÷3=2,那么3就是6的约数
D. 约数是什么意思
约数又叫因数(在正整数范围内)。
整数a能被整数b整除,a叫做b的倍数,b就叫做a的约数。(在自然数的范围内)
6的约数有:1、2、3、6
10的约数有:1、2、5、10
15的约数有:1、3、5、15
注意:一个数的约数包括1 及其本身。
E. 什么是约数
约数和质数都是在正整数范围里面定义的。
质数又叫素数。质数是指约数只有1和它本身的数。质数的个数是无限的。
质因数即约数:一个合数的因数,而且这些因数都是质数。
约数是指能够整除原来数的所有整数,叫做这个数的约数。
合数:一个数的约数除了1和它本身,还有其它的约数,这个数就叫做合数。
2不是合数,1既不是质数又不是合数。
如果您满意我的回答,请及时点击【采纳为满意回答】按钮!!!
手机提问的朋友在客户端右上角评价点【满意】即可!!!
你的采纳是我前进的动力!!!
谢谢!!!
F. 什么叫约数
约数,又称因数。整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数。在大学之前,"约数"一词所指的一般只限于正约数。约数和倍数都是二元关系的概念,不能孤立地说某个整数是约数或倍数。一个整数的约数是有限的。同时,它可以在特定情况下成为公约数。
G. 什么叫约数
约数:如果一个整数能被两个整数整除,那么这个数就是着两个数的约数。约数是有限的,一般用最大公约数。
例:15能被3整除,我们就说15是3的倍数,3是15的约数。
H. 约数是什么
约数,又称因数。整数a除以整数b(b≠0) 除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数。
约数和倍数都是二元关系的概念,不能孤立地说某个整数是约数或倍数。一个整数的约数是有限的。同时,它可以在特定情况下成为公约数。
举例:
例:求12和18的最大公约数。
解:用短除法,易得12和18的最大公约数为2×3=6。
例:求144的所有约数。
解:所有约数(72,2)(36,4)(18,8)(9,16)(3,48)
I. 什么是约数
约数
定义
如果一个整数能被另一个整数整除,那么第二个整数就是第一个整数的约数。约数是有限的,一般用最大公约数。
(在自然数的范围内)
6的约数有:1、2、3、6
10的约数有:1、2、5、10
15的约数有:1、3、5、15
………………
注意:一个数的约数包括
1
及其本身。
整数a除以整数b(b≠0)除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a叫b的倍数,b叫a的约数或因数。约数和倍数相互依存,不能单独说某个数是约数或倍数.
约数:如果一个整数能被两个整数整除,那么这两个数就是这个数的约数。约数是有限的,一般用最大公约数。直白地说:约数就是能将其整除的除数.
例如:能整除24的有1、2、3、4、6、8、12、24
所以24的约数有:1、2、3、4、6、8、12、24
约数是可以整除这个数的数,一般都小于或等于它(包括它自身).
最大公约数:如果一个数既是数A的约数,又是数B的约数,称为A,B的公约数,A,B的公约数
中最大的一个(可以包括AB自身)称为AB的最大公约数。
同理,AB共同的倍数中最小的一个称为AB的最小公倍数。
明白了么?
若整数a能被整数b(b不为0)整除,则称a为b的倍数,b为a的约数
[解题过程]
例如
6÷3=2,那么3就是6的约数
[编辑本段]举例
6的约数有:1、2、3、6
10的约数有:1、2、5、10
15的约数有:1、3、5、15
………………
注意:一个数的约数包括
1
及其本身。
整数a除以整数b(b≠0)除得的商正好是整数而没有余数,我们就说a能被b整除,或b能整除a。a叫b的倍数,b叫a的约数或因数。约数和倍数相互依存,不能单独说某个数是约数或倍数.
约数:如果一个整数能被两个整数整除,那么这两个数就是这个数的约数。约数是有限的,一般用最大公约数。直白地说:约数就是能将其整除的除数.
例如:能整除24的有1、2、3、4、6、8、12、24
所以24的约数有:1、2、3、4、6、8、12、24
约数是可以整除这个数的数,一般都小于或等于它(包括它自身).
最大公约数:如果一个数既是数A的约数,又是数B的约数,称为A,B的公约数,A,B的公约数
中最大的一个(可以包括AB自身)称为AB的最大公约数。
同理,AB共同的倍数中最小的一个称为AB的最小公倍数。
明白了么?
若整数a能被整数b(b不为0)整除,则称a为b的倍数,b为a的约数
[解题过程]
例如
6÷3=2,那么3就是6的约数参考资料:http://ke..com/view/461750.html?tp=0_11
J. 约数是什么意思 约数的含义是什么
1、意思 1.大约的数目。 2.一个数能够整除另一数,这个数就是另一数的约数。如2,3,4,6都能整除12,因此2,3,4,6都是12的约数。也叫因数。
2、反义词 确数