Ⅰ 什么是 AGP
AGP(Accelerated Graphics Port)即加速图形端口。它用于连接显示设备的接口,是为了提高视频带宽而设计的一种接口规范。
早期的显示接口卡通过ISA总线或者PCI总线与主板连接,但是ISA、PCI显卡均不能满足3D图形/视频技术的发展要求。PCI显卡处理3D图形有两个主要缺点,一是PCI总线最高数据传输速度仅为133MB/s,不能满足处理3D图形对数据传输率的要求。二是需要足够多的显存来进行图像运算,这将导致显示卡的成本很高。AGP接口把显示部分从PCI总线上拿掉,使其它设备可以得到更多的带宽,并为显示卡提供高达1064MB/s(AGP 4x)的数据传输速率。AGP以系统内存为帧缓冲(Frame Buffer),可将纹理数据存储在其中,从而减少了显存的消耗,实现了高速存取,有效地解决了3D图形处理的瓶颈问题。
AGP 1.0规格中,有1x、2x两种工作模式,数据传输率分别为266MB/s、533MB/s。
AGP 2.0规格中,有4x的工作模式,数据传输率为1064MB/s
AGP 8x是Intel公司新发布的图形端口规格,AGP 8x被定义为一条32位宽的并行总线,运行于533-MHz,总带宽大约在2.1GB/s。
Ⅱ AGP是什么吖
AGPiAccelerated Graphics Port的缩写,即"加速图形端口",是英特尔开发的新一代局部图形总线技术。AGP技术的两个核心内容是:一、使用PC的主内存作为显存的扩展延伸,这样就大大增加了显存的潜在容量;二、使用更高的总线频率66MHz、133HZ甚至266MHz,极大地提高数据传输率。AGP总线是一种专用的显示总线,并且将显示卡从POI:上独立出去,使得PCI声卡、SCSI设备、网络设备、I/S设备等的工作效率随之得到提高。从AGP中受益最大的是以3D游戏为主的一些3D程序。
Ⅲ agp是什么 AGP插槽介绍
1、AGP(Accelerated Graphics Port)是在PCI总线基础上发展起来的,主要针对图形显示方面进行优化,专门用于图形显示卡。AGP标准也经过了几年的发展,从最初的AGP 1.0、AGP2.0 ,发展到现在的AGP 3.0,如果按倍速来区分的话,主要经历了AGP 1X、AGP 2X、AGP 4X、AGP PRO,最高版本就是AGP 3.0,即AGP 8X。AGP 8X的传输速率可达到2.1GB/s,是AGP 4X传输速度的两倍。
2、AGP插槽通常都是棕色,还有一点需要注意的是它不与PCI、ISA插槽处于同一水平位置,而是内进一些,这使得PCI、ISA卡不可能插得进去,当然AGP插槽结构也与PCI、ISA完全不同,根本不可能插错的。随着显卡速度的提高,AGP插槽已经不能满足显卡传输数据的速度,目前AGP显卡已经逐渐淘汰,取代它的是PCI Express插槽。
3、一般电脑主板,以815芯片主板为例,最长的插槽为ISA插槽(黑色〕,中间白色的为PCI插槽,右边棕色的插槽为AGP插槽。
Ⅳ 什么是AGP
你好,AGP(Accelerated Graphics Port) 是由 Intel 公司所制定的显示界面规格,速度由最初的 AGP1x(264Mbytes/sec)
到现在的 AGP4x(1Gbytes/sec)。因为 AGP 拥有高速频宽,受到众多显示芯片厂家的支持,他们推出支持 AGP4x
的不同产品,以满足用户对图像运算、高画质的要求。Intel 公司已经宣布了其最新的 AGP8x 规格,它依旧使用 32-bit 的构架,而速度则提升至
533MHz,支持 2GBytes/s,是 AGP4x 的两倍。AGP 显卡现在使用已经相当普遍,AGP 插槽在主板上为灰褐色。
Ⅳ AGP是什么意思
AGP是显卡接口的名称,常见的有AGP4 AGP8
Ⅵ 什么是 AGP
AGP
加速图形接口.AGP是一种接口规范,可以使3D图形在普通个人电脑上以更快的速度显示。AGP是一种设计用来更快,更平稳地传送3D图形的接口。它使用普通个人电脑的主内存来刷新显示器显示的图像,支持纹理贴图,零缓冲和阿尔法混合等3D图形技术。
Ⅶ AGP是什么
AGP,全称Accelerated Graphic Ports,PC的图形系统接口的一种,目前被已经淘汰的图形系统接口。
Ⅷ 什么是 AGP
AGP(Accelerate Graphical Port),加速图形接口。随着显示芯片的发展,PCI总线日益无法满足其需求。英特尔于1996年7月正式推出了AGP接口,它是一种显示卡专用的局部总线。严格的说,AGP不能称为总线,它与PCI总线不同,因为它是点对点连接,即连接控制芯片和AGP显示卡,但在习惯上我们依然称其为AGP总线。AGP接口是基于PCI 2.1 版规范并进行扩充修改而成,工作频率为66MHz。
AGP总线直接与主板的北桥芯片相连,且通过该接口让显示芯片与系统主内存直接相连,避免了窄带宽的PCI总线形成的系统瓶颈,增加3D图形数据传输速度,同时在显存不足的情况下还可以调用系统主内存。所以它拥有很高的传输速率,这是PCI等总线无法与其相比拟的。
由于采用了数据读写的流水线操作减少了内存等待时间,数据传输速度有了很大提高;具有133MHz及更高的数据传输频率;地址信号与数据信号分离可提高随机内存访问的速度;采用并行操作允许在CPU访问系统RAM的同时AGP显示卡访问AGP内存;显示带宽也不与其它设备共享,从而进一步提高了系统性能。
AGP标准在使用32位总线时,有66MHz和133MHz两种工作频率,最高数据传输率为266Mbps和533Mbps,而PCI总线理论上的最大传输率仅为133Mbps。目前最高规格的AGP 8X模式下,数据传输速度达到了2.1GB/s。
AGP接口的发展经历了AGP1.0(AGP1X、AGP2X)、AGP2.0(AGP Pro、AGP4X)、AGP3.0(AGP8X)等阶段,其传输速度也从最早的AGP1X的266MB/S的带宽发展到了AGP8X的2.1GB/S。
AGP 1.0(AGP1X、AGP2X)
1996年7月AGP 1.0 图形标准问世,分为1X和2X两种模式,数据传输带宽分别达到了266MB/s和533MB/s。这种图形接口规范是在66MHz PCI2.1规范基础上经过扩充和加强而形成的,其工作频率为66MHz,工作电压为3.3v,在一段时间内基本满足了显示设备与系统交换数据的需要。这种规范中的AGP带宽很小,现在已经被淘汰了,只有在前几年的老主板上还见得到。
AGP2.0(AGP4X)
显示芯片的飞速发展,图形卡单位时间内所能处理的数据呈几何级数成倍增长,AGP 1.0 图形标准越来越难以满足技术的进步了,由此AGP 2.0便应运而生了。1998年5月份,AGP 2.0 规范正式发布,工作频率依然是66MHz,但工作电压降低到了1.5v,并且增加了4x模式,这样它的数据传输带宽达到了1066MB/sec,数据传输能力大大地增强了。
AGP Pro
AGP Pro接口与AGP 2.0同时推出,这是一种为了满足显示设备功耗日益加大的现实而研发的图形接口标准,应用该技术的图形接口主要的特点是比AGP 4x略长一些,其加长部分可容纳更多的电源引脚,使得这种接口可以驱动功耗更大(25-110w)或者处理能力更强大的AGP显卡。这种标准其实是专为高端图形工作站而设计的,完全兼容AGP 4x规范,使得AGP 4x的显卡也可以插在这种插槽中正常使用。AGP Pro在原有AGP插槽的两侧进行延伸,提供额外的电能。它是用来增强,而不是取代现有AGP插槽的功能。根据所能提供能量的不同,可以把AGP Pro细分为AGP Pro110和AGP Pro50。在某些高档台式机主板上也能见到AGP Pro插槽,例如华硕的许多主板。
AGP 3.0(AGP8X)
2000年8月,Intel推出AGP3.0规范,工作电压降到0.8V,并增加了8x模式,这样它的数据传输带宽达到了2133MB/sec,数据传输能力相对于AGP 4X成倍增长,能较好的满足当前显示设备的带宽需求。
AGP接口的模式传输方式
不同AGP接口的模式传输方式不同。1X模式的AGP,工作频率达到了PCI总线的两倍—66MHz,传输带宽理论上可达到266MB/s。AGP 2X工作频率同样为66MHz,但是它使用了正负沿(一个时钟周期的上升沿和下降沿)触发的工作方式,在这种触发方式中在一个时钟周期的上升沿和下降沿各传送一次数据,从而使得一个工作周期先后被触发两次,使传输带宽达到了加倍的目的,而这种触发信号的工作频率为133MHz,这样AGP 2X的传输带宽就达到了266MB/s×2(触发次数)=533MB/s的高度。AGP 4X仍使用了这种信号触发方式,只是利用两个触发信号在每个时钟周期的下降沿分别引起两次触发,从而达到了在一个时钟周期中触发4次的目的,这样在理论上它就可以达到266MB/s×2(单信号触发次数)×2(信号个数)=1066MB/s的带宽了。在AGP 8X规范中,这种触发模式仍然使用,只是触发信号的工作频率变成266MHz,两个信号触发点也变成了每个时钟周期的上升沿,单信号触发次数为4次,这样它在一个时钟周期所能传输的数据就从AGP4X的4倍变成了8倍,理论传输带宽将可达到266MB/s×4(单信号触发次数)×2(信号个数)=2133MB/s的高度了。
目前常用的AGP接口为AGP4X、AGP PRO、AGP通用及AGP8X接口。需要说明的是由于AGP3.0显卡的额定电压为0.8—1.5V,因此不能把AGP8X的显卡插接到AGP1.0规格的插槽中。这就是说AGP8X规格与旧有的AGP1X/2X模式不兼容。而对于AGP4X系统,AGP8X显卡仍旧在其上工作,但仅会以AGP4X模式工作,无法发挥AGP8X的优势。
Ⅸ AGP是什么
AGP的意义
简介
关于AGP,当前最先进的图形系统接口,我想没必要再作过多的解释了。这项技术始于三年以前,那时3D图形加速技术开始流行并且迅速普及,新兴的3D加速卡需要从CPU和系统内存获得的数据比它们仅仅具有“2D加速”功能的前辈们所需要的多得多。为了使系统和图形加速卡之间的数据传输获得比PCI总线更高的带宽,AGP便应运而生。
AGP vs PCI——理论上的较量
AGP和PCI根本上的区别在于AGP是一个“端口”,这意味着它只能接驳一个终端而这个终端又必须是图形加速卡。PCI则是一条总线,它可以连接许多不同种类的终端,可以是显卡,也可以是网卡或者SCSI卡,还有声卡,等等等等。所有这些不同的终端都必须共享这条PCI总线和它的带宽,而AGP则为图形加速卡提供了直接通向芯片组的专线,从那里它又可以通向CPU、系统内存或者PCI总线。
普通的PCI总线数据宽度为32位(bit),以33MHz的速度运行,这样它能提供的最大带宽就是4byte/sX33MHz=133MB/s。尽管新的PCI64/66规范提供了64位的数据宽度和66MHz的工作频率,带宽相应达到了533MB/s,但它面向的是需要极高数据带宽的I/O控制器,比如IEEE1394或者千兆位的网卡,目前几乎没有得到任何支持。AGP同样是32位的数据宽度,但它的工作频率从66MHz开始,这样,按常规方法利用每个时钟周期的下降沿传输数据的AGP1X规范就能提供266MB/s的带宽,而AGP2X,通过同时利用时钟周期的上升和下降沿传输数据,可以达到533MB/s的带宽,最新的AGP4X更是把带宽提高到了1066MB/s。
为什么需要AGP?
刚开始的时候,AGP的高带宽被用来将3D物体的纹理数据传送给3D加速卡。一些3D加速卡仅仅是把AGP当作更快的PCI总线来使用,另外一些3D加速芯片则用到了“AGP纹理”,也就是说把大纹理储存在系统主存中,需要时直接从那里而不是本地显存里调用。当然,这在今天仍然是AGP的用途之一,但是对AGP4X的需求则是来自3D渲染过程的另一个环节——复杂3D物体的三角形数据。在一个3D场景进行转换和光照处理之前,场景中所包含的物体应当被确定,物体的细节越清晰,需要传输的三维像素就越多。比如NVidia的GeForce,作为第一个集成了转换与光照引擎的3D加速芯片,能够处理的三角形数量是惊人的,但是在这一切开始之前,所需要的数据必须被传送给它,毫无疑问,这就只有通过AGP来进行。
评测AGP
这个事实在对AGP进行测试时同样需要考虑到。几年以前的AGP测试仅仅是通过显示需要大量纹理的3D场景,试图用大量的纹理数据流来使AGP接口达到饱和,这样的测试几乎没有显示出AGP1X和2X之间到底有什么区别,它们当然同样也不能体现出AGP4X带来的性能提升。这就是为什么我们需要用另外的方法来使AGP接口饱和。目前测试AGP性能的最好方法无疑是通过显示包含大量极其复杂的3D物体的场景,来让AGP传送极其大量的三角形数据。在后面你们将看到测试结果。无论如何,现在的3D游戏所用到的多边形还远没有达到AGP4X的极限,所以我们不得不再次等待“将来的话题”。眼下真正用到极其复杂的3D物体的软件主要是专业的OpenGL软件,所以用它们来做测试应该是再合适不过的了。
有关AGP的其他方面
在以前的文章里面,我曾经提到100MHz的内存总线是AGP和其他一些内存相关的系统所必需的。在今天,这样的需求有增无减,只有当系统有了足够的内存带宽AGP的超高带宽才会得到充分利用。内存永远是要被许多系统设备同时共享的:CPU、PCI总线、DMA设备,还有AGP。在大多数情况下,内存是AGP设备的数据来源,所以如果AGP用到了它的全部带宽,内存就至少应当能够提供同样高的带宽。这样的话,相应于AGP4X的1066MB/s带宽,内存就至少要是PC133的才行:64位的数据宽度和133MHz的工作频率提供的带宽恰恰是1066MB/s。但是AGP不可能独占内存带宽,它必须和其他设备共享,于是只有当系统使用了RDRAM或DDR-SDRAM时AGP4X才能完全发挥。Intel的820芯片组支持的单条PC800 RDRAM通道提供了1.6GB/s的带宽,相当于PC200 DDR-SDRAM,PC266 DDR-SDRAM则提供了2.1GB/s的带宽,而Intel 840芯片组上的双PC800 RDRAM通道最终将提供3.2GB/s的带宽。当软件开始利用AGP4X时,上述平台的表现将会优于目前的PC100或PC133平台。
快写——GeForce独一无二的特性
NVidia的GeForce256 3D图形加速芯片的特性之一就是它对“快写”模式的独一无二的支持。这个概念意味着直接从CPU到图形芯片之间的数据传输,显然与“AGP纹理”之类的概念无关。运用极其复杂的3D物体的3D软件需要CPU把极其大量的三角形数据传送给图形芯片,这里“快写”模式的运用就避免了数据从CPU到内存再从内存到图形芯片这样一个缓慢曲折的过程。“快写”的概念就是把CPU和图形芯片直接联系起来。关于“快写”的更多细节请看NVidia的白皮书。目前这项技术只有在Intel的820和840芯片组上才能实现,其他的支持AGP4X的芯片组比如VIA的Apollo Pro 133和Apollo KX133没有得到GeForce驱动的支持。在下面的章节里,你们将会发现这其实是一件好事,因为支持“快写”的驱动似乎还存在一些问题,而这些问题导致了820和840系统性能的明显下降。
AGP和Windows NT
在描述了AGP硬件方面的一些特性之后,我们还应当明白AGP同样需要软件的支持。正如前面已经提到过的,AGP为图形芯片提供了快速访问主内存的通道以满足各种需要,AGP纹理即是其中之一。对此操作系统必须加以支持并且应当能够在适当的时候把内存资源分配给显示驱动调用。图形地址重映射表(GART—— graphics address remapping table)就是这些内存资源的清单而GART驱动就是负责这一切的软件。今天,所有的AGP显卡都已经在针对Windows9x的驱动中包含了Intel平台上的名为“vgart.vxd”GART驱动,而其他的芯片组厂商就不得不为相应的主板提供他们自己的GART驱动软件。比如Athlon系统,在没有安装驱动时就根本认不出AGP显卡,只有安装了相应的驱动,对于AMD750芯片组是“amdmp.sys”,VIA Apollo KX-133则是“viagart.vxd”,才能正常地工作。
至于微软的Windows NT操作系统则根本没有打算提供AGP支持。在迄今为止所有的NT补丁包里面都没有包含GART驱动,以至于图形芯片厂商不得不独立提供NT下的AGP支持,这种支持也许会包含在显卡的NT驱动里面,也许不会,你只有通过一些特殊的侦测软件或者在NT下进行测试才能判断出来。目前我只对NVidia的芯片进行了NT下的测试,发现TNT、TNT2和GeForce都具有AGP支持,但仅仅是在Intel平台上。基于其他芯片组的平台只能通过所谓的“PCI66”模式获得一些补偿,这种模式提供了略低于AGP1X的带宽。目前最新的但不是正式的例外只有VIA的Athlon芯片组KX-133,即使在NT下它也能使GeForce256芯片运行AGP4X。这一点希望能够在即将发布的Windows2000中得到纠正。