‘壹’ 怎么求最小公倍数
根据公式求,例如(a,b)×[a,b]=a×b。由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积。所以,求两个数的最小公倍数,就可以先求出它们的最大公约数,然后用上述公式求出它们的最小公倍数。
最大公因数和最小公倍数之间的性质:两个自然数的乘积等于这两个自然数的最大公约数和最小公倍数的乘积。最小公倍数的计算要把三个数的公有质因数和独有质因数都要找全,最后除到两两互质为止。
(1)最小公倍数怎么求扩展阅读:
求最小公倍数办法:
1、分解质因数法
分解质因数法就是先把要求最小公倍数的那几个数分别分解质因数,然后将原来几个数里所含该质因数的最多个数的每一个质因数相乘,所得的积就是要求的最小公倍数。
如:求60、42的最小公倍数。
解:60=2×2×3×542=2×3×7
60和42的最小公倍数=2×3×2×5×7=420。
2、列举倍数法
列举倍数法(定义求法)就是分别列举出要求最小公倍数的那几个数的一些倍数,从中找出除“0”以外最小的那个公倍数,就是最小公倍数。
如:求6和9的最小公倍数。
解:6的倍数有:6,12,18,24,30,36,42??
9的倍数有:9,18,27,36,45??
从上面可以看出6和8的最小公倍数是18。
‘贰’ 最小公倍数怎么求
方法:
1、先把两个数的质因数写出来。
2、最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同,则比较两数中哪个数有该质因数的个数较多,乘较多的次数)。
3、如果出现重复的质因数,取最多的那组,不重复的质因数都要乘上去。
定义:
两个或多个整数公有的倍数叫做它们的公倍数。公倍数里最小的那一个叫做它们的最小公倍数。
其他方法:
1、两个数是互质数(两个数只有公因数1)关系。两个数的最小公倍数就是它们的乘积。例如,8和9是互质数,8和9的最小公倍数就是8×9=72.
2、两个数是倍数关系。那么,较大的那个数就是两个数的最小公倍数。例如,25是5的倍数,25和5的最小公倍数25.
3、两个数是一般的关系。
①翻倍法:把较大的数依次扩大2倍、3倍……直到扩大的数成为较小的倍数,这个数就是这两数的最小公倍数。例如,求18和24的最小公倍数,把较大的数24扩大2倍得48,48不是18的倍数;再把24扩大3倍得72,72是18的倍数,那么,72是18和24的最小公倍数。
②最大公因数除乘积法:把两个数的乘积除以这两个数的最大公因数,得到的商就是这两个数的最小公倍数。因为两个数的乘积等于这两个数的最大公因数与最小公倍数相乘的积。(例如,12和16的最大公因数是4,最小公倍数48,则12×16=4×48)。也可以把两个数中的任意一个数除以它们的最大公因数,然后再和另一个数相乘。例如,18和24的最大公因数是6,可以用18除以6得3,再用3和24相乘便可得到最小公倍数72.。
③分解质因数法:分别把这两个数分解质因数,从质因数中,先找到两个数公有的质因数,再找到两个数独有的质因数,把它们相乘的积,就是这两个数的最小公倍数。例如:求18和30的最小公倍数,18= 2 × 3 × 3;30= 2 × 3 × 5;公有的质因数:2、3,18独有的质因数是3;30独有的质因数:5,所以18和30的最小公倍数:2 × 3× 3 × 5=90;
④短除法:用短除法求两个数的最小公倍数,先用这两个数公有的质因数连续去除(一般从最小的开始),一直除到所得的商是互质数为止,然后把所有的除数和最后的两个商连乘起来。例如:求18和30的最小公倍数,先用用公有的质因数2除,再用用公有的质因数3除,除到两个商是互质数为止。
‘叁’ 最小公倍数怎么求
你好,有两种方法:
1.公式法:由于两个数的乘积,等于这两个数的最大公约数与最小公倍数的积,所以求最小公倍数需先求出最大公约数,用公式求出最小公倍数。
2.分解质因素法:先分别分解准这几个数的质因数,则最小公倍数等于它们所有的质因数的乘积。
基本概念
几个数共有的倍数叫做这几个数的公倍数,其中除0以外最小的一个公倍数,叫做这几个数的最小公倍数。
最小公倍数概念
【举例】:18,30两个数
① 因数和公因数概念
18的因数有:1,2,3,6,9,18;
30的因数有:1,2,3,5,6,10,15,30。
18与30公共的因数有1,2,3,6 公因数
其中6最大,称为两个数的最大公因数
② 倍数和公倍数概念
18的倍数有:18,36,54,72,90,108……;
30的倍数有:30,60,90,120……。
18与30公共的倍数有:90,180……。
公倍数有无数个,但一定有一个最小值。
其中90最小,称为两个数的最小公倍数
显然枚举太慢了,如何快速求出呢?
方法一:短除法
短除符号呢!就是把大除号倒过来。短除法是从分解质因数法演变过来的。
方法是在原来写除数的位置写两个数共有的质因数(从小往大),然后符号下面落下两个数被质因数整除的商,之后再除,以此类推,直到结果互质为止(两数互质)。
方法二:辗转相除法
当两个数的共有质因数不好找时,短除法就不太好用了。
比如:1971,2263两数。
求最大公因数方法 (大数,小数)
① 大数÷小数 余数A;
② 小数÷余数A 余数B;
③ A÷余数B 余数C;
不停循环,直到余数为0为止。此时的除数就是最大公因数。
再利用短除法即可求出两数最小公倍数。
‘肆’ 最小公倍数怎么求最简单的方法
求最小公倍数最快方法:
1、如果两个数是互质数,那么它们的最小公倍数就是这两个数的乘积。
2、如果两个数有倍数关系,那么较大的数就是这两个数的最小公倍数。
3、如果两数不是互质,也没有倍数关系时,可以把较大数依次扩大2倍、3倍,看扩大到哪个数时最先成为较小数的倍数时,这个数就是这两个数的最小公倍数。
含义
两个或多个整数公有的倍数叫做它们的公倍数,其中除0以外最小的一个公倍数就叫做这几个整数的最小公倍数。整数a,b的最小公倍数记为[a,b],同样的,a,b,c的最小公倍数记为[a,b,c],多个整数的最小公倍数也有同样的记号。
与最小公倍数相对应的概念是最大公约数,a,b的最大公约数记为(a,b)。关于最小公倍数与最大公约数,我们有这样的定理:(a,b)x[a,b]=ab(a,b均为整数)。
以上内容参考:网络-最小公倍数
‘伍’ 最小公倍数怎么算
都可以,灵活应用即可,方法如下:
1、分解质因数法
先把这几个数的质因数写出来,最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同,则比较两数中哪个数有该质因数的个数较多,乘较多的次数)。
比如求45和30的最小公倍数。
45=3*3*5
30=2*3*5
不同的质因数是2。5,3是他们两者都有的质因数,由于45有两个3,30只有一个3,所以计算最小公倍数的时候乘两个3.
2、公式法
由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积。即(a,b)×[a,b]=a×b。所以,求两个数的最小公倍数,就可以先求出它们的最大公约数,然后用上述公式求出它们的最小公倍数。
例如,求[18,20],即得[18,20]=18×20÷(18,20)=18×20÷2=180。求几个自然数的最小公倍数,可以先求出其中两个数的最小公倍数,再求这个最小公倍数与第三个数的最小公倍数,依次求下去,直到最后一个为止。最后所得的那个最小公倍数,就是所求的几个数的最小公倍数。
‘陆’ 最小公倍数怎么求
1、最小公倍数=两数的乘积/最大公约(因)数。2、分解质因数法:先列出相关数的质因数,最小公倍数等于所有的质因数的乘积。3、公式法:由于两个数的乘积,等于这两个数的最大公约数与最小公倍数的积,所以求最小公倍数需先求出最大公约数,用公式求出最小公倍数。
最小公倍数怎么求
最小公倍数的定义是几个数共有的倍数叫做这几个数的公倍数,其中除0以外最小的一个公倍数,叫做这几个数的最小公倍数。如果两个数是倍数关系,则它们的最小公倍数就是较大的数,相邻的两个自然数的最小公倍数是它们的乘积。最小公倍数=两数的乘积/最大公约(因)数, 解题时要避免和最大公约(因)数问题混淆。
最大公因数和最小公倍数之间的性质:两个自然数的乘积等于这两个自然数的最大公约数和最小公倍数的乘积。最小公倍数的计算要把三个数的公有质因数和独有质因数都要找全,最后除到两两互质为止。最小公倍数特点是倍数的只有最小的没有最大,因为两个数的倍数可以无穷大。
‘柒’ 最小公倍数怎么求
01