‘壹’ 圆的面积怎么算
圆的面积可根据半径或者直径的值进行计算:
1、已经知道圆的半径,那么圆的面积S=π×r²;
2、已经知道圆的直径,那么圆的面积S=π×(d/2)²;
(1)圆的面积怎么算扩展阅读:
1、弧长角度公式
扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)
扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)
圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)
2、扇形面积公式
R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长。
也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n,如下:
(L为弧长,R为扇形半径)
推导过程:S=πr²×L/2πr=LR/2
(L=│α│·R)
‘贰’ 圆的面积公式是什么
圆面积计算公式是:S=πr²或S=π*(d/2)²。
把圆平均分成若干份,可以拼成一个近似的长方形。长方形的宽就等于圆的半径(r),长方形的长就是圆周长(C)的一半。长方形的面积是ab,那圆的面积就是:圆的半径(r)乘以二分之一周长C,S=r*C/2=r*πr,有关的公式还有:
1、圆面积=圆周率×半径×半径
2、半圆的面积:S半圆=(πr2)÷2
3、半圆的面积=圆周率×半径×半径÷2
4、圆环面积: S大圆-S小圆=π(R2-r2)(R为大圆半径,r为小圆半径)
5、圆环面积=外大圆面积-内小圆面积
6、圆的周长=直径×圆周率
7、半圆周长=圆周率×半径+直径
(2)圆的面积怎么算扩展阅读:
公式推导:圆周长公式
圆周长(C):圆的直径(d),那圆的周长(C)除以圆的直径(d)等于π,那利用乘法的意义,就等于 π乘以圆的直径(d)等于圆的周长(C),C=πd。而同圆的直径(d)是圆的半径(r)的两倍,所以就圆的周长(C)等于2乘以π乘以圆的半径(r),C=2πr。
‘叁’ 圆的面积怎么算
圆的面积公式:
。
圆周长(c):圆的直径(D),那圆的周长(c)除以圆的直径(D)等于π,那利用乘法的意义,就等于
π乘圆的直径(D)等于圆的周长(C),C=πd。
而同圆的直径(D)是圆的半径(r)的两倍,所以就圆的周长(c)等于2乘以π乘以圆的半径(r),C=2πr。把圆平均分成若干份,可以拼成一个近似的长方形。
长方形的宽就等于圆的半径(r),长方形的长就是圆周长(C)的一半。长方形的面积是ab,那圆的面积就是:圆的半径(r)的平方乘以π,
。
(3)圆的面积怎么算扩展阅读:
圆周率的几何算法
古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德(公元前287–212
年)
开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。
接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。
最后,他求出圆周率的下界和上界分别为223/71
和22/7,
并取它们的平均值3.141851
为圆周率的近似值。阿基米德用到了迭代算法和两侧数值逼近的概念,称得上是“计算数学”的鼻祖。
参考资料来源:搜狗网络-圆面积
参考资料来源:搜狗网络-圆周率
‘肆’ 圆的面积怎么算
S=πr?或S=π*(d/2)?。
r:圆的半径。d:圆的直径。π:圆周率,是无限不循环小数,一般取值3.14。
约翰尼斯·开普勒运用无穷分割法,求出了许多图形的面积。1615年,他将自己创造的这种求圆面积的新方法,发表在《葡萄酒桶的立体几何》一书中。
他把圆分割成无穷多个小扇形,并果敢地断言:无穷小的扇形面积,和它对应的无穷小的三角形面积相等。他在前人求圆面积的基础上,向前迈出了重要的一步。
‘伍’ 圆的面积怎么算
圆的面积:S=πr²=πd²/4
扇形弧长:L=圆心角(弧度制) * r = n°πr/180°(n为圆心角)
扇形面积:S=nπ r²/360=Lr/2(L为扇形的弧长)
圆的直径: d=2r
圆锥侧面积: S=πrl(l为母线长)
圆锥底面半径: r=n°/360°L(L为母线长)(r为底面半径)
1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。
特别地,以原点为圆心,半径为r(r>0)的圆的标准方程为x^2+y^2=r^2。
2、圆的一般方程:方程x^2+y^2+Dx+Ey+F=0可变形为(x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4.故有:
(1)、当D^2+E^2-4F>0时,方程表示以(-D/2,-E/2)为圆心,以(√D^2+E^2-4F)/2为半径的圆;
(2)、当D^2+E^2-4F=0时,方程表示一个点(-D/2,-E/2);
(3)、当D^2+E^2-4F<0时,方程不表示任何图形。
3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是 x=a+r*cosθ, y=b+r*sinθ, (其中θ为参数)
圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为 (x-a1)(x-a2)+(y-b1)(y-b2)=0
圆的离心率e=0,在圆上任意一点的半径都是r。
经过圆 x^2+y^2=r^2上一点M(a0,b0)的切线方程为 a0*x+b0*y=r^2
在圆(x^2+y^2=r^2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0*x+b0*y=r^2
(5)圆的面积怎么算扩展阅读
垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线。
切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
切线的性质:(1)经过切点垂直于过切点的半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。
切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。
切割线定理: 圆的一条切线与一条割线相交于p点,切线交圆于C点,割线交圆于A B两点 , 则有pC^2=pA·pB
割线定理:与切割线定理相似——同圆上两条割线m、n交于p点,割线m交圆于A1 B1两点,割线n交圆于A2 B2两点
则pA1·pB1=pA2·pB2(可以把切割线定理看做是割线定理的极限情形)。
参考资料:圆面积的网络
‘陆’ 圆的面积是怎么算的
圆面积公式的是由古代数学家不断推导出来的。圆的面积计算公式为:S=πr²,S=π(d/2)²,(d为直径,r为半径,π是圆周率,通常取3.14)。因此,圆的面积只需用圆的半径的平方乘以3.14即可。圆是一种规则的平面几何图形,圆面积是指圆形所占的平面空间大小,常用S表示。
‘柒’ 圆的面积怎么算为什么
圆的面积公式为:S=πr²,S=π(d/2)²,(d为直径,r为半径,π是圆周率,通常取3.14),圆面积公式的是由古代数学家不断推导出来的。
我国古代的数学家祖冲之,从圆内接正六边形入手,让边数成倍增加,用圆内接正多边形的面积去逼近圆面积。
古希腊的数学家,从圆内接正多边形和外切正多边形同时入手,不断增加它们的边数,从里外两个方面去逼近圆面积。
古印度的数学家,采用类似切西瓜的办法,把圆切成许多小瓣,再把这些小瓣对接成一个长方形,用长方形的面积去代替圆面积。
16世纪的德国天文学家开普勒,把圆分割成许多小扇形;不同的是,他一开始就把圆分成无穷多个小扇形。圆面积等于无穷多个小扇形面积的和,所以在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有S=πr²。
与圆相关的公式:
1、半圆的面积:S半圆=(πr^2)/2。(r为半径)。
2、圆环面积:S大圆-S小圆=π(R^2-r^2)(R为大圆半径,r为小圆半径)。
3、圆的周长:C=2πr或c=πd。(d为直径,r为半径)。
4、半圆的周长:d+(πd)/2或者d+πr。(d为直径,r为半径)。
5、扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)
6、扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)
7、圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)
于无穷多个小扇形面积的和,所以在最后一个式子中,各段小弧相加就是圆的周长2πR,所以有S=πr²。