⑴ 求助用matlab怎么做地理加权回归
地理加权回归(Geographically Weighted Regression,简称GWR),由英国Newcastle大学地理统计学家A.S Fortheringham及其同事基于空间变系数回归模型并利用局部多项式光滑的思想提出的模型。模型公式如下:
其中(yi;xi1,xi2,…,xip)为在地理位置(ui,vi)处的因变量y和自变量x1,x2,…,xp的观测值(i=1,2,…,n).βj(ui,vi)(j=0,1,…,p)为观测点(ui,vi)处的未知参数,它是(ui,vi)的未知函,εi(i=1,2,…,n)为独立同分布的随机误差,通常假定其服从N(0,σ2).
⑵ 地理加权回归分析需要多大的数据量才能做
本帖最后由 区域经济爱好者 于 2013-11-23 13:00 编辑
第一,GWR缺少统一的统计推断框架。不同区位回归系数之间的依赖性也没有在模型中说明。因此,GWR中标准误是近似的。这是由于不同区位参数估计中,重复使用了数据;还因为应用这些数据线估计了带宽,然后估计回归系数。
我对这段话只是明白一部分,请大家进一步解释一下。谢谢。
第二,GWR计算每个样本点的回归系数。如果样本数很大,那将导致非常复杂的结果。如何利用并解析这些结果,归纳出一定的规律呢?另一方面,如果样本很小,又怎么进行GWR估计呢?所以样本大了,不容易找规律;样本小了,又没法进行回归分析。这是一个矛盾体。
怎么办?
⑶ 统计学的知识,有没有人知道地理加权回归模型
愤怒的小小刚
LV.7 2019-01-14
s://blog.csdn.net/allenlu2008/article/details/72870882
⑷ 关于地理加权回归模型的问题,有没有懂统计学的大神解释一下。
s://blog.csdn.net/allenlu2008/article/details/72870882
地理加权回归分析完成之后,与OLS不同的是会默认生成
⑸ 如何运用Matlab进行地理加权回归分析
地理加权回归,由英国Newcastle大学地理统计学家A.S Fortheringham及其同事基于空间变系数回归模型并利用局部多项式光滑的思想提出的模型。模型公式如下:
其中(yi;xi1,xi2,…,xip)为在地理位置(ui,vi)处的因变量y和自变量x1,x2,…,xp的观测值(i=1,2,…,n).βj(ui,vi)(j=0,1,…,p)为观测点(ui,vi)处的未知参数,它是(ui,vi)的未知函,εi(i=1,2,…,n)为独立同分布的随机误差,通常假定其服从N(0,σ2).
⑹ 回归分析的公式中,Xi、Yi指的是什么怎么计算
Xi指的是第i个数据中的X值,Yi指的是第i个数据中的Y值。
Xi中的i=1,2,3,4……i只是一个代号,它可以等于1,2,3等等的值,即X1,X2,X3,i只是X下标的一个总称。
例如:有四组数据(X,Y):(1,2)、(3,4)、(5,6)、(7,8)
当i=1时,即Xi=X1,X1=1,X1就是第一组数据中的X值为1。
同理,X2=3,X3=5,X4=7。
(6)地理加权的回归系数如何得到扩展阅读
回归分析估计了两个或多个变量之间的关系。
比如,在当前的经济条件下,要估计一家公司的销售额增长情况。现在,有公司最新的数据,这些数据显示出销售额增长大约是经济增长的2.5倍。那么使用回归分析,就可以根据当前和过去的信息来预测未来公司的销售情况。
使用回归分析的好处良多。具体如下:
1、它表明自变量和因变量之间的显着关系;
2、它表明多个自变量对一个因变量的影响强度。
回归分析也允许去比较那些衡量不同尺度的变量之间的相互影响,如价格变动与促销活动数量之间联系。这些有利于帮助市场研究人员,数据分析人员以及数据科学家排除并估计出一组最佳的变量,用来构建预测模型。
在所有的回归方法中,OLS最为着名,也是所有空间回归分析的正确起点。它可为尝试了解或预测(早逝/降雨)的变量或过程提供一个全局模型,而且,它可创建一个回归方程来表示该过程。
地理加权回归 (GWR) 是若干空间回归方法中的一种,被越来越多地用于地理及其他学科。通过对数据集中的各要素拟合回归方程,GWR为要尝试了解/预测的变量或过程提供了一个局部模型。若使用得当,这些方法可提供强大且可靠的统计数据,以对线性关系进行检查和估计。
⑺ 地理加权回归
这些都是统计分布的特征参数。min就是最小值,max是最大值,mean是平均值,median是中位数,1st quantile是第一分位数,就是排名前25%对应的样本值,3nd quantile是第三分位数,也就是前75%对应的样本值。
⑻ 求教:地理加权回归做出来结果(GWR)怎么检验
SAM软件可以做GWR模型也可以检验。
输入多个变量不能计算,估计是因为你的数据有问题。但是把那个有问题的数据删除了就可以计算。
GWR缺少统一的统计推断框架。不同区位回归系数之间的依赖性也没有在模型中说明。因此,GWR中标准误是近似的。这是由于不同区位参数估计中,重复使用了数据;还因为应用这些数据线估计了带宽,然后估计回归系数。
⑼ 地理加权回归是怎么一回事(GWR)
1 http://ke..com/view/1189359.html?tp=0_00
2 http://www.cqvip.com/qk/91153A/200803/27235808.html
3 http://www.pinggu.org/bbs/dispbbs.asp?boardid=64&ID=213568
他是空间经济计量学的一个模型
D.P.McMillen和J.F.McDonald(1997),C.Brunsdon,A.S.Fotheringham;MartinCharlton(1996),提出地理加权回归模型(简称GWR模型)。
软件:matlab,gauss均可,只是需要相关检验的时候,需要自己编程
⑽ arcgis地理加权回归没有系数
直接查看分析后得到的属性表。
如果回归没有系数的话,你可以直接查看分析后得到的属性表,属性表中有各个变量的系数以及其他系数所构成的表。
地理加权回归是若干空间回归技术中的一种,越来越多地用于地理及其他学科。通过使回归方程适合数据集中的每个要素,GWR可为您要尝试了解/预测的变量或过程提供局部模型。