A. 地理信息系统(GIS)
地理信息系统(GIS)是计算机科学、地理学、测量学、地图学等多门学科综合的技术。目前国际上普遍承认。虽然GIS是一门多学科综合的边缘学科,但其核心是计算机科学,基本技术是数据库、地图可视化及空间分析,是处理地理数据的输入、输出、管理、查询、分析和辅助决策的计算机系统。地质环境评价主要是综合考虑影响环境地质诸多方面的要素,借助恰当的数学模型和专家经验,对研究区的环境地质进行分区。
利用GIS可以实现地质环境信息的管理、可视化、查询、输出等功能,操作简单、移植性强。把GIS技术应用在地质环境评价与灾害预测中,其优点固然很多,但总的说来也存在如下的一些问题:
(1)在生态环境评价中,一般的GIS软件虽然都能够提供诸如数据检索、叠加分析、属性统计分析、数字地面模型(DTM)等各种空间分析功能,但是要想满足为解决实际问题进行的专业分析的数据要求,仅仅依靠这些空间分析方法往往还很不够,这就要求我们在GIS基础软件平台的基础上进行二次开发,拓展其空间分析功能,提取我们感兴趣的信息,但是具体如何操作,目前仍是一个亟需与相关学科的专家学者们相互协作、共同探讨的问题。
(2)地质环境评价具有多因素、多层次、不确定性强等特点,目前在利用GIS众多的评价预测模型中,不管是多灾种还是单灾种评价,人们都在努力寻求一种普遍适合的模型来解决地质环境的评价。虽然普遍的评价模型在宏观决策中有重要的意义,适合建立面向大众和政府的决策支持系统,但对中小尺度范围的评价时往往不尽如人意,因此寻求特定地区特定的地质环境评价模型很有必要。
(3)地质环境评价工作是一项复杂的系统工程,数据采集和处理的工作量非常大,会涉及到地层、水文、地震及人类活动等各个方面,对于这些资料的搜集和整理,必然会涉及输入到GIS中资料的准确性问题,因为GIS所能完成的工作只是依据所得到的资料,对其作出相应的处理,也就是说“如果输入GIS的数据是‘垃圾’,输出的结果也只会是‘垃圾’,这不会因昂贵的设备和高级技术人才而改变”。因此,我们必须对所有的资料做出必要的、合理的取舍,以保证输入GIS的数据合理。
(4)从GIS在地质灾害研究中的应用来看,就两者的结合方式而言,大部分应用都集中在将GIS用于数据的前后期处理和结果的显示输出方面,两者的结合还处于低阶水平。作为紧紧追随工业标准化要求发展的GIS技术,标准化适当数据的缺乏也构成其广泛应用的桎梏;此外,GIS软件处理分析能力以及对于数据误差分析能力的不足、GIS处理包括时间在内的四维能力的不足、灾害模型建立的高难度性以及机构间协调不够而造成的成果用户面太窄等因素都暂时限制了GIS在地质灾害研究中的应用。
B. 什么是地理信息系统
地理信息系统有时又称为“地学信息系统”或“资源与环境信息系统”。它是一种特定的十分重要的空间信息系统。它是在计算机硬、软件系统支持下,对整个或部分地球表层(包括大气层)空间中的有关地理分布数据进行采集、储存、管理、运算、分析、显示和描述的技术系统。地理信息有多种来源和不同特点,地理信息系统要具有对各种信息处理的功能。从野外调查、地图、遥感、环境监测和社会经济统计多种途径获取地理信息,由信息的采集机构或器件采集并转换成计算机系统组织的数据。这些数据根据数据库组织原理和技术,组织成地理数据库。地理数据库是系统的核心部分。库中各种地理数据通常以多边形(矢量)方式和网格(光栅)方式进行组织。多边形作为区域的基本单元可以是某一级行政、经济区划单位,或某一地理要素的类型轮廓,它是由地理要素的专题信息(如类型代码)和几何信息(多边形边界的x、у坐标值及其拓扑信息)构成(见多边形数据系统)。
网格方式对某一区域按地理坐标或平面坐标建立规则的网格,并对每个网格单元按行、列顺序赋于不同地理要素代码,构成矩阵数据格式(见网格数据系统)。为了实现数据资源的共享和互换,地理数据库必须做到数据规范化和标准化,并有效地对各种地理数据文件进行管理,实现对数据的监控、维护、更新、修改和检索。地理数据通过软件的处理,进行分析计算,并加以显示。显示的方式有地理图、统计表和其他形式。
C. 地理信息系统知识点
什么是地理信息系统篇一:地理信息系统的基本概念
(一)数据与信息
数据是一种未经加工的原始资料,是通过数字化或记录下来可以被鉴别的符号。数字、文字、符号、图像都是数据。
信息(Information)是用文字、数字、符号、语言、图像等介质来表示事件、事物、现象等的内容、数量或特征,从而向人们(或系统)提供关于现实世界新的事实和知识,作为生产、建设、经营、管理、分析和决策的依据。信息具有客观性、适用性、可传输性和共享性等特征。信息来源于数据(Data)。
数据是客观对象的表示,而信息则是数据内涵的意义,是数据的内容和解释。例如,从实地或社会调查数据中可获取到各种专门信息;从测量数据中可以抽取出地面目标或物体的形状、大小和位置等信息;从遥感图像数据中可以提取出各种地物的图形大小和专题信息。
(二)地理信息
地理信息是指表征地理圈或地理环境固有要素或物质的数量、质量、分布特征、联系和规律的数字、文字、图象和图形的总和。地理信息是有关地理实体的性质、特征和运动状态的表征和一切有用的知识,它是对表达地理特征与地理现象之间关系的地理数据的解释。而地理数据则是各种地理特征和现象间关系的符号化表示,包括空间位置、属性特征(简称属性)及时域特征三部分。空间位置数据描述地物所在位置。这种位置既可以根据大地参照系定义,如大地经纬度坐标,也可以定义为地物间的相对位置关系,如空间上的相邻、包含等;属性数据有时又称非空间数据,是属于一定地物、描述其特征的定性或定量指标。时域特征是指地理数据采集或地理现象发生的时刻/时段。时间数据对环境模拟分析非常重要,正受到地理信息系统学界越来越多的重视。空间位置、属性及时间是地理空间分析的三大基本要素。
地理信息除了具有信息的一般特性,还具有以下独特特性:
(1)空间分布性。地理信息具有空间定位的特点,先定位后定性,并在区域上表现出分布式特点,其属性表现为多层次,因此地理数据库的分布或更新也应是分布式。
(2)数据量大。地理信息既有空间特征,又有属性特征,另外地理信息还随着时间的变化而变化,具有时间特征,因此其数据量很大。尤其是随着全球对地观测计划不断发展,我们每天都可以获得上万亿兆的关于地球资源、环境特征的数据。这必然对数据处理与分析带来很大压力。
(3)信息载体的多样性。地理信息的第一载体是地理实体的物质和能量本身,除此之外,还有描述地理实体的文字、数字、地图和影像等符号信息载体以及纸质、磁带、光盘等物理介质载体。对于地图来说,它不仅是信息的载体,也是信息的传播媒介。
(三)地理信息系统
地理信息系统(GeographicInformationSystem或Geo-Informationsystem,GIS)有时又称为“地学信息系统”或“资源与环境信息系统”。它是一种特定的十分重要的空间信息系统。它是在计算机硬、软件系统支持下,对整个或部分地球表层(包括大气层)空间中的有关地理分布数据进行采集、储存、管理、运算、分析、显示和描述的技术系统。地理信息系统处理、管理的对象是多种地理空间实体数据及其关系,包括空间定位数据、图形数据、遥感图像数据、属性数据等,用于分析和处理在一定地理区域内分布的各种现象和过程,解决复杂的规划、决策和管理问题。
通过上述的分析和定义可提出GIS的如下基本概念:
1、GIS的物理外壳是计算机化的技术系统,它又由若干个相互关联的子系统构成,如数据采集子系统、数据管理子系统、数据处理和分析子系统、图像处理子系统、数据产品输出子系统等,这些子系统的优劣、结构直接影响着GIS的硬件平台、功能、效率、数据处
理的方式和产品输出的类型。
2、GIS的操作对象是空间数据,即点、线、面、体这类有三维要素的地理实体。空间数据的最根本特点是每一个数据都按统一的地理坐标进行编码,实现对其定位、定性和定量的描述、这是GIS区别于其它类型信息系统的根本标志,也是其技术难点之所在。
3、GIS的技术优势在于它的数据综合、模拟与分析评价能力,可以得到常规方法或普通信息系统难以得到的重要信息,实现地理空间过程演化的模拟和预测。
4、GIS与测绘学和地理学有着密切的关系。大地测量、工程测量、矿山测量、地籍测量、航空摄影测量和遥感技术为GIS中的空间实体提供各种不同比例尺和精度的定位数;电子速测仪、GPS全球定位技术、解析或数字摄影测量工作站、遥感图像处理系统等现代测绘技术的使用,可直接、快速和自动地获取空间目标的数字信息产品,为GIS提供丰富和更为实时的信息源,并促使GIS向更高层次发展。地理学是GIS的理论依托。有的学者断言,“地理信息系统和信息地理学是地理科学第二次革命的主要工具和手段。如果说GIS的兴起和发展是地理科学信息革命的一把钥匙,那么,信息地理学的兴起和发展将是打开地理科学信息革命的一扇大门,必将为地理科学的发展和提高开辟一个崭新的天地”。GIS被誉为地学的第三代语言——用数字形式来描述空间实体。
GIS按研究的范围大小可分为全球性的、区域性的和局部性的;按研究内容的不同可分为综合性的与专题性的。同级的各种专业应用系统集中起来,可以构成相应地域同级的区域综合系统。在规划、建立应用系统时应统一规划这两种系统的发展,以减小重复很费,提高数据共享程度和实用性。
什么是地理信息系统篇二:地理信息系统名词解释大全(整理版本)
地理信息系统作为信息技术的一种,是在计算机硬、软件的支持下,以地理空间数据库(GeospatialDatabase)为基础,以具有空间内涵的地理数据为处理对象,运用系统工程和信息科学的理论,采集、存储、显示、处理、分析、输出地理信息的计算机系统,为规划、管理和决策提供信息来源和技术支持。简单地说,GIS就是研究如何利用计算机技术来管理和应用地球表面的空间信息,它是由计算机硬件、软件、地理数据和人员组成的有机体,采用地理模型分析方法,适时提供多种空间的和动态的地理信息,为地理研究和地理决策服务的计算机技术系统。地理信息系统属于空间型信息系统。
地理信息是指表征地理圈或地理环境固有要素或物质的数量、质量、分布特征、联系和规律等的数字、文字、图像和图形等的总称;它属于空间信息,具有空间定位特征、多维结构特征和动态变化特征。
地理信息科学与地理信息系统相比,它更加侧重于将地理信息视作为一门科学,而不仅仅是一个技术实现,主要研究在应用计算机技术对地理信息进行处理、存储、提取以及管理和分析过程中提出的一系列基本问题。地理信息科学在对于地理信息技术研究的同时,还指出了支撑地理信息技术发展的基础理论研究的重要性。
地理数据是以地球表面空间位置为参照,描述自然、社会和人文景观的数据,主要包括数字、文字、图形、图像和表格等。
地理信息流即地理信息从现实世界到概念世界,再到数字世界(GIS),最后到应用领域。
数据是通过数字化或记录下来可以被鉴别的符号,是客观对象的表示,是信息的表达,只有当数据对实体行为产生影响时才成为信息。
信息系统是具有数据采集、管理、分析和表达数据能力的系统,它能够为单一的或有组织的决策过程提供有用的信息。包括计算机硬件、软件、数据和用户四大要素。
四叉树数据结构是将空间区域按照四个象限进行递归分割(2n×2n,且n≥1),直到子象限的数值单调为止。凡数值(特征码或类型值)呈单调的单元,不论单元大小,均作为最后的存储单元。这样,对同一种空间要素,其区域网格的大小,随该要素分布特征而不同。
不规则三角网模型简称TIN,它根据区域有限个点集将区域划分为相连的三角面网络,区域中任意点落在三角面的顶点、边上或三角形内。如果点不在顶点上,该点的高程值通常通过线性插值的方法得到(在边上用边的两个顶点的高程,在三角形内则用三个顶点的高程)。
拓扑关系拓扑关系是指网结构元素结点、弧段、面域之间的空间关系,主要表现为拓扑邻接、拓扑关联、拓扑包含。根据拓扑关系,不需要利用坐标或距离,可以确定一种地理实体相对于另一种地理实体的位置关系,拓扑数据也有利于空间要素的查询。
拓扑结构为在点、线和多边形之间建立关联,以及彻底解决邻域和岛状信息处理问题而必须建立的数据结构。这种结构应包括以下内容:唯一标识,多边形标识,外包多边形指针,邻接多边形指针,边界链接,范围(最大和最小x、y坐标值)。
游程编码是逐行将相邻同值的网格合并,并记录合并后网格的值及合并网格的长度,其目的是压缩栅格数据量,消除数据间的冗余。
空间数据结构是指适合于计算机系统存储、管理和处理的地学图形的逻辑结构,是地理实体的空间排列方式和相互关系的抽象描述。
矢量数据结构是利用欧几里得几何学中的点、线、面及其组合体来表示地理实体空间分布的一种数据组织方式。这种数据组织方式能最好地逼近地理实体的空间分布特征,数据精度高,数据存储的冗余度低,便于进行地理实体的网络分析,但对于多层空间数据的叠合分析比较困难。
栅格数据结构基于栅格模型的数据结构简称为栅格数据结构,指将空间分割成有规则的网格,在各个网格上给出相应的属性值来表示地理实体的一种数据组织形式。
空间索引是指依据空间对象的位置和形状或空间对象之间的某种空间关系按一定的顺序排列的一种数据结构,其中包含空间对象的概要信息。作为一种辅助性的空间数据结构,空间索引介于空间操作算法和空间对象之间,它通过筛选作用,大量与特定空间操作无关的空间对象被排除,从而提高空间操作的速度和效率。
空间数据编码是指将数据分类的结果,用一种易于被计算机和人识别的符号系统表示出来的过程。编码的目的是用来提供空间数据的地理分类和特征描述,同时为了便于地理要素的输入、存储、管理,以及系统之间数据交换和共享的需要。
Delaunay三角网即由狄洛尼三角形组成的三角网,它是在地形拟合方面表现最出色的三角网,因此常被用于TIN的生成。狄洛尼三角形有三个最邻近的点连接而成,这三个相邻点对应的Voronoi多边形有一个公共的顶点,此顶点同时也是狄洛尼三角形外接圆的圆心。
Voronoi多边形即泰森多边形,它采用了一种极端的边界内插方法,只用最近的单个点进行区域插值。泰森多边形按数据点位置将区域分割成子区域,每个子区域包含一个数据点,各子区域到其内数据点的距离小于任何到其它数据点的距离,并用其内数据点进行赋值。
栅格数据压缩编码有键码、游程长度编码、块码和四叉树编码等。其目的,就是用尽可能少的数据量记录尽可能多的信息,其类型又有信息无损编码和信息有损编码之分。
边界代数算法边界代数多边形填充算法是一种基于积分思想的矢量格式向栅格格式转换算法,它适合于记录拓扑关系的多边形矢量数据转换为栅格结构。它不是逐点判断与边界的关系完成转换,而是根据边界的拓扑信息,通过简单的加减代数运算将边界位置信息动态地赋给各栅格点,实现了矢量格式到栅格格式的高速转换,而不需要考虑边界与搜索轨迹之间的关系,因此算法简单、可靠性好,各边界弧段只被搜索一次,避免了重复计算。
DIME文件美国人口普查局在1980年的人口普查中提出了双重独立地图编码文件。它含有调查获得的地理统计数据代码及大城市地区的界线的坐标值,提供了关于城市街道,住址范围以及与人口普查局的列表统计数据相关的地理统计代码的纲要图。在1990年的人口普查中,TIGER取代了DIME文件。
空间数据内插即通过已知点或分区的数据,推求任意点或分区数据的方法。空间数据压缩即从所取得的数据集合S中抽出一个子集A,这个自己作为一个新的信息源,在规定的精度范围内最好地逼近原集合,而又取得尽可能大的压缩比。
坐标变换实质是建立两个平面点之间的一一对应关系,包括几何纠正和投影转换,他们是空间数据处理的基本内容之一。
仿射变换是GIS数据处理中使用最多的一种几何纠正方法。它的主要特性为:同时考虑到因地突变形而引起的实际比例尺在x和y方向上的变形,因此纠正后的坐标数据在不同方向上的长度比将发生变化。
数据精度是考察数据质量的一个方面,即对现象描述的详细程度。精度低的数据并不一定准确度也低。
空间数据引擎是一种空间数据库管理系统的实现方法,即在常规数据库管理系统之上添加一层空间数据库引擎,以获得常规数据库管理系统功能之外的空间数据存储和管理的能力。代表性的是ESRI的SDE。
空间数据引擎在用户和异种空间数据库的数据之间提供了一个开放的接口,它是一种处于应用程序和数据库管理系统之间的中间件技术。使用不同厂商GIS的客户可以通过空间数据引擎将自身的数据提交给大型关系型DBMS,由DBMS统一管理;同样,客户也可以通过空间数据引擎从关系型DBMS中获取其他类型GIS的数据,并转化成客户可以使用的方式。
数据库管理系统是操作和管理数据库的软件系统,提供可被多个应用程序和用户调用的软件系统,支持可被多个应用程序和用户调用的数据库的建立、更新、查询和维护功能。
空间数据库是地理信息系统在计算机物理存储介质上存储的`与应用相关的地理空间数据的总和,一般是以一系列特定结构的文件的形式组织在存储介质之上的。
空间数据模型是关于现实世界中空间实体及其相互间联系的概念,为描述空间数据组织和设计空间数据库模式提供了基本的方法。一般而言,GIS空间数据模型由概念数据模型、逻辑数据模型和物理数据模型三个有机联系的层次所组成。
分布式数据库是一组数据的集合,这些数据在物理上分布于计算机网络的不同结点上,而逻辑上属于同一个系统。它具有分布性,同时在逻辑上互相关联。
对象-关系管理模式/型是指在关系型数据库中扩展,通过定义一系列操作空间对象(如点、线、面)的API函数,来直接存储和管理非结构化的空间数据的空间数据库管理模式。
缓冲区分析是根据分析对象的点、线、面实体,自动建立他们周围一定距离的带状区,用以识别这些实体或主体对邻近对象的辐射范围或影响度,以便为某项分析或决策提供依据。
叠合分析是指在统一空间参照系统条件下,每次将同一地区两个地理对象的图层进行叠合,以产生空间区域的多重属性特征,或建立地理对象之间的空间对应关系。
空间分析是基于空间数据的分析技术,它以地学原理为依托,通过分析算法,从空间数据中获取有关地理对象的空间位置、空间分布、空间形态、空间形成、空间演变等信息。
网络分析是运筹学模型中的一个基本模型,即对地理网络和城市基础设施网络进行地理分析和模型化。它的根本目的是研究、筹划一项网络工程如何安排,并使其运行效果最好。
透视图从数字高程模型绘制透视立体图是DEM的一个极其重要的应用。透视立体图能更好地反映地形的立体形态,非常直观。与采用等高线表示地形形态
相比有其自身独特的优点,更接近人们的直观视觉。调整视点、视角等各个参数值,就可从不同方位、不同距离绘制形态各不相同的透视图制作动画。
网络是一个由点、线的二元关系构成的系统,通常用来描述某种资源或物质在空间上的运动。
变量筛选分析是通过寻找一组相互独立的变量,使相互关联的复杂的多变量数据得到简化的空间统计分析方法。常用的有主成分分析法、主因子分析法、关键变量分析法等。
变量聚类分析是将一组数据点或变量,按照其在性质上亲疏远近的程度进行分类的空间统计分析方法。两个数据点在m为空间的相似性可以用这些点在变量空间的距离来度量。
数字地面模型简称DTM,是定义于二维区域上的一个有限项的向量序列,它以离散分布的平面点来模拟连续分布的地形。
数字高程模型当数字地面模型的地面属性为海拔高程时,则该模型即为数字高程模型。简称DEM。
GIS应用模型是根据具体的应用目标和问题,借助于GIS自身的技术优势,使观念世界中形成的概念模型,具体化为信息世界中可操作的机理和过程。
OGC即OpenGIS协会(OpenGISConsortium)其目的是使用户可以开放地操纵异质的地理数据,促进采用新的技术和商业方式来提高地理信息处理的互操作性(Interoperablity),OGC会员主要包括GIS相关的计算机硬件和软件制造商,数据生产商以及一些高等院校,政府部门等,其技术委员会负责具体标准的制定工作。
开放式地理信息系统(OpenGIS)OpenGIS(,OGIS-开放的地理数据互操作规范)由美国OGC(开放地理信息系统协会)提出。其目标是,制定一个规范,使得应用系统开发者可以在单一的环境和单一的工作流中,使用分布于网上的任何地理数据和地理处理。它致力于消除地理信息应用之间以及地理应用与其它信息技术应用之间的藩篱,建立一个无“边界”的、分布的、基于构件的地理数据互操作环境,与传统的地理信息处理技术相比,基于该规范的GIS软件将具有很好的可扩展性、可升级性、可移植性、开放性、互操作性和易用性。
数据结构是地理实体的数据组织形式及其相互关系的抽象描述。
空间数据质量是对空间数据在表达空间位置、空间关系、专题特征以及时间等要素时,所能达到的准确性、一致性、完整性以及它们之间统一性的度量,一般描述为空间数据的可靠性和精度,用误差来表示。
数字地球是把浩瀚复杂的地球数据加以数字化、网络化,变成一个地球信息模型计划。是一种可以嵌入海量地理数据、多种分辨率、三维的地球表达,是对真实地球及其相关现象的统一性的数字化重现和认识。其核心思想有两点:一是用数字化手段统一处理地球问题;二是最大限度地利用信息资源。
虚拟现实也称虚拟环境或人工现实,是一种由计算机生成的高级人机交互系统,即构成一个以视觉感受为主,也包括听觉、触觉、嗅觉的可感知环境,演练者通过专门的设备可在这个环境中实现观察、触摸、操作、检测等试验,有身临其境之感。
地图投影是建立平面上的点(用平面直角坐标或极坐标表示)和地球表面上的点(用纬度和精度表示)之间的函数关系。
投影转换是从一种地图投影变换为另一种地图投影。其实质是建立两平面场之间及邻域双向连续点的一一对应的关系。
虚拟地理环境简称VGE,是基于地学分析模型、地学工程等的虚拟现实,它是地学工作者根据观测实验、理论假设等建立起来的表达和描述地理系统的空间分布以及过程现象的虚拟信息地理世界,一个关于地理系统的虚拟实验室,它允许地学工作者按照个人的知识、假设和意愿去设计修改地学空间关系模型、地学分析模型、地学工程模型等,并直接观测交互后的结果,通过多次的循环反馈,最后获取地学规律。
高斯-克吕格投影Gauss-KruegerProjection①是一种横轴等角切椭圆柱投影。它是将一椭圆柱横切于地球椭球体上,该椭圆柱面与椭球体表面的切线为一经线,投影中将其称为中央经线,然后根据一定的约束条件即投影条件,将中央经线两侧规定范围内的点投影到椭圆柱面上从而得到点的高斯投影。
②一种等角横切椭圆柱投影。其投影带中央子午线投影成直线且长度不变,赤道投影也为直线,并与中央子午线正交。
UTM投影全球横轴墨卡托投影的简称。是美国编制世界各地军用地图和地球资源卫星象片所采用的横轴墨卡托投影的一种变型投影。它规定中央经线长度比为0.9996。
电子地图当纸地图经过计算机图形图像系统光——电转换量化为点阵数字图像,经图像处理和曲线矢量化,或者直接进行手扶跟踪数字化后,生成可以为地理信息系统显示、修改、标注、漫游、计算、管理和打印的矢量地图数据文件,这种与纸地图相对应的计算机数据文件称为矢量化电子地图。
元数据[空间]是指描述空间数据的数据,它描述空间数据集的内容、质量、表示方式、空间参考、管理方式以及数据集的其他特征,是空间数据交换的基础,也是空间数据标准化与规范化的保证,在一定程度上为空间数据的质量提供了保障。
Web地理信息系统(WebGIS)是Web技术和GIS技术相结合,即利用Web技术来扩展和完善地理信息系统的一项新技术。从WWW的任一个节点,Internet用户可以浏览WebGIS站点中的空间数据、制作专题图、进行各种空间检索和空间分析。
GIS互操作互操作是指在异构环境下的两个或多个实体,尽管它们实现的语言、执行的环境和基于的模型不同,但仍然可以相互通信和协作,以完成某一特定任务。这些实体包括应用程序、对象、系统运行环境等。空间数据的互操作针对异构的数据库和平台,实现数据处理的互操作,与数据转换相比,它是“动态”的数据共享,独立于平台,具有高度的抽象性,是空间数据共享的发展方向。
组件式GIS是采用了面向对象技术和组件式软件的GIS系统(包括基础平台和应用系统)。其基本思想是把GIS的各大功能模块划分为几个组件,每个组件完成不同的功能。各个GIS组件之间,以及GIS组件与其它非GIS组件之间,都可以方便地通过可视化的软件开发工具集成起来,形成最终的GIS基础平台以及应用系统。
客户机/服务器结构即C/S结构,是一种分布式系统结构,在该体系中,客户端通常是同最终用户交互的应用软件系统,而服务器由一组协作的过程构成,为客户端提供服务。客户机和服务器通常运行相同的微内核,一个客户机/服务器机制可以有多个客户端,或者多个服务器,或者兼而有之。客户机/服务器模式基于简单的请求/应答协议,即客户端向服务器提出信息处理的请求,服务器端接收到请求并将请求解译后,根据请求的内容执行相应操作,并将操作结果传
D. 简述地理信息标准化的内容包括哪些
E. 地球物理信息的标准化
地球物理信息的标准化是一项十十分重要的工作,它关系到地球物理信息资源的管理、利用和共享问题。地球物理信息的标准化工作包括图形分层、图元代码、坐标系、地球物理信息数据库数据项编码等的标准化问题。
9.2.1统一的空间定位框架
统一的空间定位框架是为各种数据信息的输入、输出和匹配处理提供共同的地理坐标系统基础。我国现常用的坐标系是大地坐标系和平面投影坐标系。考虑地质灾害勘查的研究区范围小,勘查采用的地形图常为大比例尺的国家坐标系下的标准地图或是用户坐标系下的地图,勘探点坐标可采用二套坐标系统,一套为大地坐标,记录该点的经、纬度及高程值、另一套坐标系统采用平面投影坐标系,一般为高斯克吕格平面直角坐标。
9.2.2空间数据的层次划分与图元编码
为将图形信息变成一个有序的数据集合体,便于管理和使用,就需要对这些数据信息进行分层,建立一个合理的层次关系结构。
9.2.2.1空间数据的层次关系
地质灾害勘查地球物理信息管理系统不仅管理与地质灾害勘查相关的物探数据,还可以管理灾害研究区的基本地理信息、社会经济信息及其他一些矿产资源、地质环境等一些辅助性信息。上述信息主要以图形数据的形式存储。为便于对图形数据进行管理,建立以下的图形数据分层关系,其中物探图形数据属于地质矿产资源中的技术方法类。
9.2.2.2图形数据的编码方案
图形数据的层次编码方案,要考虑到图形数据查询、合并、分离的需要,以科学性、系统性为前提。针对地质灾害空间数据库建设的需要,同时考虑数字制图内容,确定图形数据的编码方案如下(图9-1)。
图9-1图形数据层次划分体系框架结构
(1)地理要素属国土基础信息数据,层次划分与编码方案执行国家标准《国土基础信息数据分类与代码(GB/T13923-92)》的有关规定,使用5位数据编码,缺少部分按其原则进行补充,为便于和专业图形编码的区分,在原有数字码前增加两位专业码。
(2)基本图形数据和辅助图形数据作为信息系统的图形基础,进行层次划分和数据编码,并建立图层的概念。
(3)作为纯制图使用的图式层数据,无重新组合的必要,和建立信息系统无关,不参与层次划分和图元编码。
根据上述原则,在建立地质灾害空间数据信息层次关系的基础上,确立了图元类型码的编码方案。
9.2.3地质灾害勘查地球物理信息管理系统所涉及的地球物理方法分类
一方面,由于地质灾害勘查不同目的、不同勘查阶段所采用的勘查手段和技术方法不尽相同;另一方面,由于地球物理反演的多解性,综合物探方法已成为地质灾害勘查的主要手段。这些均决定了地质灾害勘查地球物理信息管理系统所涉及的物探方法种类多,涉及的信息具有一定的多重性和复杂性。
以当前地质灾害地球物理勘查工作经验和成果为基础,从数据管理和地质灾害勘查常用物探方法两个方面考虑,地质灾害勘查地球物理信息管理系统应对表9-1中列出的物探方法的勘查成果及相关数据进行管理。
表9-1物探方法分类与编码
9.2.4物探数据库标准化设计
物探成果或以图形文件的形式存储,或以数据文件形式存储通过空间分析转为图形文件。物探测量获得的第一手资料为原始数据文件,经处理、反演后的信息仍以数据文件的形式存储。将物探数据以表的形式存储于关系型数据库中,与其相关的测点、测线信息及说明性信息一起构成了物探数据库的核心内容。依据测点位置信息可生成系统的点图层,依据测线定位信息也生成系统的线图层。随着物探数据处理技术、反演技术的发展以及对研究区地质情况认知程度的提高,同一物探数据的处理成果和地质解释亦可能有所不同,因而物探数据应尽可能存储原始测量数量,可由系统提供丰富的处理功能,或通过接口由外部程序进行处理,处理结果返回系统中。物探数据库中各数据项的标准化设计是地质灾害勘查地球物理信息管理系统建设的重要内容之一。
9.2.4.1地球物理勘查测点、测线命名规则
某一地质灾害研究区所实施的物探测量的空间信息、测量数据、解释成果是地质灾害勘查地球物理信息管理系统所管理的主要内容。为便于信息的管理和数据查询,对地质灾害研究区内的物探测点、测线进行统一命名,并统一坐标定位方向。
测点:YYYYMDXXX
测线:YYYYMLXXX
其中:YYYY前两位为省代码,后两位为测区代码。省代码可参照相关规范、测区代码可由用户自行规定,基本原则为能反映测区位置名称汉语拼音的首字母。X为测量顺序号。
9.2.4.2物探数据库中与测量相关的属性数据的编码方案
物探数据库中与测量相关的基本信息数据项的编码由大类码、中类码、小类码和顺序项编码四部分组成。大类码取能反映物探方法含义的英文的前两个字母为代码,具一定可读性。如重力为GR。中类码和小类码各取A-Z一位字母顺序编排,最后两位为顺序码,数量较多,取AA-ZZ顺序编排。层次结构如图9-2所示。
图9-2物探方法数据项编码方案
9.2.4.3物探成果数据的记录格式
地质灾害勘查地球物理信息管理系统侧重的是物探信息的管理、维护及分析、解释。物探数据库中记录的为由测量的原始数据经过处理、反演后得到的成果数据及原始数据。为保证系统能接纳、处理、分析不同格式的物探成果数据及原始数据,针对物探工作点式、线式、面积测量方式下产生的一维、二维、三维数据体定义统一的数据记录格式。
F. 地理信息标准化
为直接或间接与地理空间定位有关的目标或现象信息,制定一整套结构化标准。
G. gis规范化和标准化在gis产业化和社会化过程中的作用是什么
促进、加速的作用。
规范化和标准化可使各种数据结构得以统一,海量数据可以相互共享,减少重复劳动,方便地理信息的管理和应用。可使gis的分析算法达到最优,形成统一标准,加速地表周围信息的全面、准确的数字化。可使不同的gis专项应用得到准确科学的功能划分,并且在突出专项应用的特点的同时,拥有规范标准的gis学科基础。
数据可以共享使用,分析算法最优且高效,不同专项有着科学的模块划分,就可以使得gis更好更快的实现产业化和社会化。
H. 简述地理信息标准化的内容包括哪些
地理信息 编辑
本词条缺少名片图,补充相关内容使词条更完整,还能快速升级,赶紧来编辑吧!
地理信息是地理数据所蕴含和表达的地理含义,是与地理环境要素有关的物质的数量、质量、性质、分布特征、联系和规律的数字、文字、图像和图形等的总称。
I. 地理空间数据集成
早期GIS系统几乎是完全独立的系统,拥有自己特定的软件组件、文件格式和自己专门采集的空间数据,不同GIS系统之间很少进行交互和集成。随着网络和数据库技术发展及GIS应用领域的扩大,发展了许多空间数据集成理论和方法。
根据侧重点的不同,地球空间数据集成的概念有如下几类:①GIS功能观点,认为数据集成是地理信息系统的基本功能;②简单组织转化观点,认为数据集成是数据层的简单再组织;③过程观点,认为地球空间数据集成是在一致的拓扑空间框架中地表描述的建立或使同一个地理信息系统中的不同数据集彼此之间兼容的过程;④关联观点,认为数据集成是属性数据和空间数据的关联。这些观点,从不同角度揭示出地球空间数据集成的多样性和综合性(李军,2000)。
按照数据集成的类型及实际应用中数据集成需求,地球空间数据集成分为4大类:①区域集成,指根据一定区域范围集成各种类型的数据(Eugene,1992);②专题集成,以要素作为数据集成主要指标的集成;③时间集成,以时间为集成主体,内容包括多时间尺度数据集成、时间序列数据集成等;④数据综合集成,即综合度差异数据之间的集成,从数据与其表达的地学过程空间尺度的关系分析即是多空间尺度数据集成。
这四类集成中每一类都包含具体的集成类型,其中数据的综合集成是最为复杂的一类,常规意义的制图综合和数据细化都包含在该类数据集成中。
按照数据集成模式可以把GIS数据集成分为3种模式:①数据转换模式,是经专门的数据转换程序进行不同数据格式的集成;②数据互操作模式,是根据OGC颁布的规范,所有数据源的软件(数据服务器)需要提供统一的数据访问接口以便数据客户进行访问,并处理数据客户的请求从而完成数据服务;③直接数据访问模式,指在GIS系统中实现对其他数据格式的直接访问、存取和分析,利用空间引擎的方法实现多源数据的无缝集成(宋关福等2000;闾国年等,2003)。
这三种集成模式各有利弊,其中,①模式是传统的一种模式,但由于不同数据格式描述空间对象时采用的数据模型不同,因而转换后不能完全准确表达源数据信息,此外由于这种数据格式转换的涉及输出和输入两个过程,相对比较复杂;②模式,由于实现各种数据格式宿主软件的数据访问接口,一定时期内还不现实,且对于数据客户来讲,同时需要拥有两种格式的GIS软件,并同时运行才能完成数据的互操作,给数据的集成带来了局限性,因此目前还有很大的局限性。而③模式虽然提供了更为经济实用的多源数据集成模式,是实现空间数据共享的理想方式,但由于构建成本比较大,且需要具备多源空间数据无缝集成技术和一种内置于GIS软件中的特殊数据访问体制,目前是相对比较困难且技术要求较高的集成模式。
综上所述可知,关于地理空间数据集成,目前主要集中于物理实现和逻辑模型层次上的集成方法,是从数据本身入手来研究数据集成,属一种微观的数据集成。因此,数据集成必须同时集成数据的语义,才能满足用户应用的需要。
2.2.1.1 接口规范与标准
自从20世纪70年代开始,许多国家加强了地理信息标准化工作,迄今,已取得了长足进步。国际上地理信息产业的标准和规范发展十分迅速,各国对地理信息产业的标准和规范空前重视,在地理信息标准化的研究和标准的制定方面合作十分密切,国际标准化组织地理信息技术委员会(ISO/TC211)和以开放地理空间信息联盟(OGC)为代表的国际论坛性地理信息标准化组织,以及CEN/TC287等区域性地理信息标准化组织,在其成员的积极参与下建立了完整的地理信息标准化体系,研究和制定出了一系列的国际通用或合作组织通用的标准或规范。国际地理信息标准化工作大体可分为两部分:一是以已经发布实施的信息技术(IT)标准为基础,直接引用或者经过修编采用;二是研制地理空间数据标准,包括数据定义、数据描述、数据处理等方面的标准。
我国于1997年成立了全国地理信息标准化技术委员会(CSBTS/TC230),负责我国地理信息国家标准的立项建议、组织协调、研究制定、审查上报等。
2.2.1.2 分布式空间查询处理技术
国际上的研究主要集中在分布式空间索引技术和分布式查询处理策略等方向上。英联邦科学与工业研究组织(CSIRO)的Abel和新加坡国立大学的Ooi等人(1995)基于分布式数据库理论中的半连接思想,首先研究了分布式空间数据库的空间连接查询处理问题,提出了空间半连接算子,并基于空间对象的一维索引结构,提出了一种空间半连接查询处理算法。新加坡国立大学的Tan等人(2000)将上述算法扩展到多维索引结构,并分析了算法在不同数据分布和网络带宽情况下的性能。实验结果表明,采用空间半连接操作可以极大地降低网络数据传输量,这对于网络带宽有限的分布式环境来说,如网络将很好地改善查询的整体响应时间。但是,空间半连接操作也带来了额外的CPU和I/O开销,在高速网络环境下,且传输数据量较小时,采用基于空间半连接操作的查询处理策略反而可能引起性能的下降。此外,还有学者研究了在并行计算体系结构下的分布式空间查询处理问题,Patel等(2000)提出在并行计算体系结构下的两种空间连接查询处理策略。
2.2.1.3 组织管理与集成体系结构
对于组织管理与集成体系结构即空间数据组织管理与集成技术研究,分为三个阶段:①传统的空间数据组织管理与集成阶段。②面向服务的空间数据的组织管理与集成阶段。③网格环境下空间数据的组织管理与集成阶段。海洋时空数据属于地理空间数据的范畴,但是由于海洋现象的复杂性、多样性以及海洋时空数据自身的特点,决定了海洋时空数据与其他空间数据的组织管理与集成有着很大的区别。
J. 地理信息系统的基本功能都有什么
空间分析能力是GIS(地理信息系统)的主要功能,也是GIS与计算机制图软件相区别的主要特征。空间分析是从空间物体的空间位置、联系等方面去研究空间事物,以及对空间事物做出定量的描述。
空间分析需要复杂的数学工具,其中最主要的是空间统计学、图论、拓扑学、计算几何等,其主要任务是对空间构成进行描述和分析,以达到获取、描述和认知空间数据;理解和解释地理图案的背景过程;空间过程的模拟和预测;调控地理空间上发生的事件等目的。
移动GIS是通过与流动装置结合,地理资讯系统可以为用户提供即时的地理信息。一般汽车上的导航装置都是结合了卫星定位设备(GPS)和地理资讯系统(GIS)的复合系统;在香港曾经很流行的地图王,则是一套可以安装在PDA或手提电话上的即时地图系统。
汽车导航系统是地理资讯系统的一个特例,它除了一般的地理资讯系统的内容以外,还包括了各条道路的行车及相关信息的数据库。这个数据库利用矢量表示行车的路线、方向、路段等信息,又利用网络拓扑的概念来决定最佳行走路线。
地理数据文件(GDF)是为导航系统描述地图数据的ISO标准。汽车导航系统组合了地图匹配、GPS定位和来计算车辆的位置。地图资源数据库也用于航迹规划、导航,并可能还有主动安全系统、辅助驾驶及位置定位服务等高级功能。汽车导航系统的数据库应用了地图资源数据库管理。
(10)什么是地理信息标准化扩展阅读
地理信息系统发展历史
古往今来,几乎人类所有活动都是发生在地球上,都与地球表面位置(即地理空间位置)息息相关,随着计算机技术的日益发展和普及,地理信息系统以及在此基础上发展起来的“数字地球”“数字城市”在人们的生产和生活中发挥着越来越重要的作用。
1.5万年前,在拉斯考克(Lascaux)附近的洞穴墙壁上,法国的猎人画下了他们所捕猎动物的图案。与这些动物图画相关的是一些描述迁移路线和轨迹的线条和符号。这些早期记录符合了现代地理资讯系统的二元素结构,即一个图形文件对应一个属性数据库。
18世纪地形图绘制的现代勘测技术得以实现,同时还出现了专题绘图的早期版本,例如:科学方面或人口普查资料。约翰•斯诺在1854年,用点来代表个例,描绘了伦敦的霍乱疫情,这可能是最早使用地理方法的位置。
他对霍乱分布的研究指向了疾病的来源——一个位于霍乱疫情爆发中心区域百老汇街的一个被污染的公共水泵。约翰•斯诺将泵断开,最终终止了疫情爆发。
20世纪60年代早期,在核武器研究的推动下,计算机硬件的发展导致通用计算机“绘图”的应用。1967年,世界上第一个真正投入应用的地理信息系统由联邦林业和农村发展部在加拿大安大略省的渥太华研发。
罗杰•汤姆林森博士开发的这个系统被称为加拿大地理信息系统(CGIS),用于存储,分析和利用加拿大土地统计局收集的数据,并增设了等级分类因素来进行分析。
20世纪80年代和90年代产业成长刺激了应用了GIS的UNIX工作站和个人计算机飞速增长。至20世纪末,GIS在各种系统中的迅速增长使得其在相关的少量平台已经得到了巩固和规范。并且用户开始提出了在互联网上查看GIS数据的概念,这要求数据的格式和传输标准化。