㈠ 青藏高原独特的地理与历史意义
亚洲中部有一片平均海拔4000米以上高海拔区域,这里群山林立,高耸入云。我国境内的高海拔区域,被称为青藏高原,喜马拉雅山脉南坡,从东到西,还包括喀喇昆仑山脉、兴都库什山脉,被称为喜马拉雅一喀喇昆仑一兴都库什区域(HKH),再加上帕米尔高原,一起构成了地球上海拔最高的地理单元,被称为全球“第三极”地区。
1青藏高原的地理环境意义不仅仅限于其自身,按照理想大陆的理论,亚洲中部不存在这片高海拔区域的话,西风和季风的环流模式都会发生改变,有科学家认为,青藏高原及其周边对北半球的直接影响西可以到达土耳其;往东可以影响到美国西海岸。
青藏高原的存在改变了北半球区域大气环流模式,直接接造就了我国长江中下游地区成为鱼米之乡,也造成了新疆地区的干旱少雨。青藏高原阻挡了西风环流,使得其沿着青藏高原西侧北上,新疆等中亚地区,主要受大陆气团控制,因而少雨;而这股西风的北上,使得本来在长江中下游地区的西方季风交错区域,变成以季风为主的,海洋来的夏季风,长期在常见中下游徘徊,造成此地温暖多雨,成为举世闻名的“鱼米之乡”。
2“亚洲水塔”
由于海拔比较高,青藏高原及其周边地区还是亚洲众多河流的发源地,主要河流包括:印度河、恒河/雅鲁藏布江、怒江、澜沧江、长江、黄河、塔里木河等等,直接影响到周边超过35亿人口的生存问题,约占全世界人口的一半。
1中华文明的西部“天堑”
前面已经说过了,高海拔区域加上青藏高原北部的干旱区,这对古人来说就是“天堑”,对于古人来说要穿越这片区域,进入中国内地是很困难的,中国 历史 5000年未间断,这个也是客观原因,毕竟古代马其顿的亚历山大大帝,曾征服世界四大文明古国中的三个:埃及、波斯、印度,如果不是青藏高原和亚洲中部干旱地理天堑的存在,恐怕中国也难以独善其身。
2高原自身独特人类文明
如果有机会去西藏,一定要亲身感受一下,这个独特的高原文明—藏文化。藏族人民创造了内容丰富、特色鲜明、形态多样的文化,其中包括语言文字、哲学宗教、藏医藏药、天文历算、音乐舞蹈、戏剧曲艺、建筑美学、雕塑绘画、工艺美术等等等。
“连绵的群山、神秘的宗教、勤劳的人民、独特的文化”构成西藏 旅游 独特之处。这里是相机的天堂,随手一拍都是那样的与众不同。自然和人文,传统和现代在这里有机融为一体。旖旎的风光,加上璀璨的藏文化,使无数人向往。
㈡ 青藏高原地理位置的介绍
青藏高原介于北纬26°~39°,东经73°~104°之间,西起帕米尔高原,东到横断山,北界为昆仑山、阿尔金山和祁连山,南抵喜马拉雅山,东西长约2800千米,南北宽约300~1500千米,总面积约250万平方千米,除西南边缘部分分属印度、巴基斯坦、尼泊尔,锡金、不丹及缅甸等国外,绝大部分位于中国境内。
青藏高原的周围有许多山脉,它们大多数呈从西北向东南的走向,相对于高原外的地面他们陡然而起,上升很多,其中南部的喜马拉雅山脉中的许多山峰名列世界上前十位,特别珠穆朗玛峰是世界上最高的山峰。
同时高原内部除平原外还有许多山峰,高度悬殊。高原上还有很多冰川、高山湖泊和高山沼泽。亚洲许多主要河流(黄河、金沙江、澜沧江、怒江、雅鲁藏布江等)的源头在这里。
气候:
辐射强烈,日照多,气温低,积温少,气温随高度和纬度的升高而降低,气温日较差大;干湿分明,多夜雨;冬季干冷漫长,大风多;夏季温凉多雨,冰雹多。
青藏高原年平均气温由东南的20℃,向西北递减至-6℃以下。由于南部海洋暖湿气流受多重高山阻留,年降水量也相应由2000毫米递减至50毫米以下。
喜马拉雅山脉北翼年降水量不足600毫米,而南翼为亚热带及热带北缘山地森林气候,最热月平均气温18~25℃,年降水量1000~4000毫米。
水文:
青藏高原湖区共有大小湖泊1500多个,其中,面积1平方公里以上的湖泊1091个,面积44993.3平方公里,大于10平方公里湖泊有346个。
总面积为42816.10平方公里,约占全国湖泊总面积的49.5%。该区湖泊以咸水湖和盐湖为主,较着名的湖泊有纳木错、青海湖、察尔汗盐湖、鄂陵湖等。
㈢ 青藏高原的地理位置地理环境
青藏高原(Qinghai-Tibet Plateau,或Tibetan Plateau),中国最大、世界海拔最高的高原.大部在中国西南部,包括西藏自治区和青海省的全部、四川省西部、新疆维吾尔自治区南部,以及甘肃、云南的一部分.整个青藏高原还包括不丹、尼泊尔、印度、巴基斯坦、阿富汗、塔吉克斯坦斯坦、吉尔吉斯斯坦的部分,总面积250万平方公里.境内面积240万平方公里,平均海拔4000~5000米,有“世界屋脊”和“第三极”之称.是亚洲许多大河的发源地.青藏高原(Qinghai-Tibet Plateau,或Tibetan Plateau),中国最大、世界海拔最高的高原.大部在中国西南部,包括西藏自治区和青海省的全部、四川省西部、新疆维吾尔自治区南部,以及甘肃、云南的一部分.整个青藏高原还包括不丹、尼泊尔、印度、巴基斯坦、阿富汗、塔吉克斯坦斯坦、吉尔吉斯斯坦的部分,总面积250万平方公里.境内面积240万平方公里,平均海拔4000~5000米,有“世界屋脊”和“第三极”之称.是亚洲许多大河的发源地. 气候特征:由于其高度,青藏高原的空气比较干燥,稀薄,太阳辐射比较强,气温比较低.由于其地形的复杂和多变,青藏高原上气候本身也随地区的不同而变化很大.总的来说高原上降雨比较少.青藏高原本身也是影响地球气候的一个重要因素.古生物学和地质学的考察表面,青藏高原的隆起使全球的气候发生了巨大的变化.作为一个高大的阻风屏,它有效地将北方大陆的寒冷空气阻挡住了,使它们不能进入南亚.同时喜马拉雅山脉阻挡了南方温暖潮湿的空气北进,是造成南亚雨季的一个重要因素.青藏高原,被喻为“世界屋脊”,一向以其独特的人文和自然景观闻名于世,是科学探险、考察和生态旅游的胜地.而位于青藏高原地区形形色色的自然保护区,又是世界屋脊上生态环境最奇特、生物资源最丰富的自然资源宝库,具有极高的科学价值.[3]青藏高原地域辽阔,面积240万平方公里,占中国国土总面积的1/4.青藏高原自然保护区的一大特色是面积大.位于西藏北部高寒地区羌塘自然保护区,面积达24.7万平方公里,不仅冠居中国和亚洲,在全世界也是数一数二的特大面积自然保护区.此外,西藏申扎、珠峰等保护区的面积也达到了3至4万平方公里.这对于内地的自然保护区来说,是无法与之相比的.在漫长的地质发育与自然演替过程中,青藏高原不仅形成了与世了迥异的高寒草原与草甸生态系统,还兼有沙漠、湿地及多种森林类型自然生态系统.在这特殊的地理环境中保有许多蔚为奇观的地质遗迹和绚丽多姿的自然景观,蕴育了极其丰富的野生动植物资源.因此,青藏高原的自然保护区的类型也极为丰富多彩.在青藏高原,人们既可以看到以保护高原特有的综合性自然生态系统为目的的保护区,如拥有高山寒漠、草原与森林等山地垂直带的珠穆朗玛峰保护区;也可以见到以保护某一特殊植被类型或珍稀物种为目 的的保护区,如以保护热带季雨林为主的墨脱保护区和专为保护林芝巴吉的古老巨柏林而设置的保护点. 青藏高原特殊的生态环境中生存着一些极具特色的珍稀野生动物,而专为保护这些“国宝”建立的保护区,更为全球野生动物保护组织和动物学家所瞩目.如为保护大熊猫为主的川西卧龙保护区就位于青藏高原东缘的横断山区,还有藏东类乌齐马鹿自然保护区和昌都芒康滇金丝猴保护区等. 青藏高原地区自然风光奇丽,具有许多特有的地质地貌类型,为保护这些自然遗迹而建立的保护区,对于一般旅游者来说,更显得魅力无穷.其中最为着名的是以保护自然风景为主的四川南坪九寨沟保护区.此外,距九寨沟不远的松潘黄龙石灰泉钙华地貌保护区、贡嘎山海螺沟冰川森林公园、青海卓尼莲花山保护区和云南中甸碧塔海保护区等,也各具特色,具有很高的观赏价值.青藏高原的自然保护区丰富多彩,涵盖着深邃的科学内容.在全球最高、自然环境最为独特多样的区域内所建立的各类保护区,几乎包括了我国境内所有的主要陆地生态系统,尤其高原特有的高寒草地、荒漠及湖泊湿地等生态系统与有关的珍稀野生动植物及奇异的自然景观相结合而放射出的异彩,为世界罕见.它们不仅为人类提供了高原自然界的原始“本底”,保存了许多珍稀濒危动植物,而且也为开展有关青藏高原的地学、生物学等学科的研究,提供了理想的基地和天然实验室.青藏高原的自然保护区,为在这一地区独特多样的生态环境中生存的野生动植物提供了较为安全的繁衍场所.在青藏高原上,生活着大约210种野生哺乳动物,占全国总种数的50%左右.在这些野生动物中国家一、二级保护种占有很大比例,大熊猫、金丝猴、藏羚、野牦牛、藏野驴、 盘羊、雪豹、羚牛、白唇鹿、梅花鹿等着名动物都在其中.青藏高原地区有维管植物12000种以上,占全国总种数的40%左右,桫椤、巨柏、喜马拉雅长叶松、喜马拉雅红豆杉、长叶云杉、千果榄仁等珍稀濒危植物都在这一地区有分布或特产于此.尤其值得一提的是,青藏高原是世界上杜鹃花种类最为丰富的地区,有“杜鹃花王国”之誉.而这些珍稀动植物均是青藏高原自然保护区的主要保护对象.由于青藏高原地广人稀,人为干扰破坏相对较轻,大部分保护区自然生态系统保存完好,又由于高原自然生态系统较脆弱,易受外界因素干扰破坏,所以大多数采取封闭式的保护方式,禁止在保护区内进行非法或不合理的经营活动.对于一些已经开放旅游的森林公园和保护区,应提倡生态旅游,严格禁止破坏自然生态环境和动植物资源的旅游活动,正确处理好旅游与保护的矛盾,实现可持续发展的战略目标. 地形特征:青藏高原的周围有许多山脉,它们大多数呈从西北向东南的走向,相对于高原外的地面他们陡然而起,上升很多,其中南部的喜马拉雅山脉中的许多山峰名列世界上前十位,特别珠穆朗玛峰是世界上最高的山峰.同时高原内部除平原外还有许多山峰,高度悬殊.高原上还有很多冰川、高山湖泊和高山沼泽.青藏高原是亚洲不少大江大河的源头,长江,黄河,澜沧江,怒江,雅鲁藏布江等都发源于这里.山脉昆仑山脉、 喀喇昆仑山脉、 唐古拉山脉、横断山脉、 冈底斯山 、念青唐古拉山 、喜马拉雅山脉冰川地球上中低纬度地区的冰川主要集中在高原上,青藏高原冰川覆盖面积约4.7万平方公里,占全国冰川总面积80%以上.喜马拉雅现代冰川、念青唐古拉山现代冰川、 昆仑山现代冰川、 喀拉昆仑山现代冰川 、横断山现代冰川、 唐古山现代冰川、 冈底斯山现代冰川 、羌唐高原现代冰川 、祁连山现代冰川.河流有黄河、 长江(金沙江)、 澜沧江(湄公河)、怒江(萨尔温江)、雅鲁藏布江(布拉马普特拉河)、恒河、印度河、塔里木河(车尔臣河)湖泊有班公错、郭扎错、 鲁玛江冬错、 拉昂错 、玛旁雍错、昂拉仁错、 扎布耶茶错、塔若错、 扎日南木错 、当惹雍错、昂孜错、 格仁错 、错鄂、 阿牙克库木湖、色林错 、乌兰乌拉湖、纳木错、普莫雍错、 羊卓雍错 阿其克库勤湖、鲸鱼湖.
㈣ 青藏高原隆起及其影响
自80年代以来青藏高原逐渐成为地球科学研究的热点和焦点,正在酝酿着新的理论突破。一方面是因为青藏高原作为地球上大陆碰撞最典型的地区,它是检验和发展板块学说的理想场所,有助于建立新的地球动力学理论;另一方面则是由于青藏高原在晚新生代的强烈隆起,极大地改变了亚洲乃至整个北半球的大气环流形式,并对大陆岩石的化学风化、海洋锶同位素的演化以及高原周边的环境、气候及陆地生态系统都产生了重大的影响。
本文综述了青藏高原隆升的时间、过程、环境气候效应及其对海洋锶同位素演化影响的主要内容和最新进展,以便了解青藏高原隆升在全球气候变化中的重要性,并对海洋锶同位素组成的演化特征及其影响因素能够有一个较为清楚的了解。
1 青藏高原的隆起及其气候和环境效应
青藏高原是全球大陆地势上最高的一级台阶,青藏高原的隆起使得地球表面的形状发生了巨大的变化,并对全球变化产生了重要影响。
1.1 高原隆起的阶段性
青藏高原的隆起是一个多阶段、不等速和非均变的复杂过程。对此,国内外学者有着不同的观点。我国学者认为青藏高原的地壳增厚到几乎双倍于正常地壳的厚度是在始新世中期到中新世早期亚洲板块和印度板块的碰撞后开始产生的,但此时只有冈底斯山和喜玛拉雅山呈现显着隆升,广大高原本部仅做被动的、相应的应力调整和变形,但经过长期剥蚀曾两度达到夷平状态,而青藏高原的强烈隆升是从上新世晚期和/或第四纪早期才开始的 〔1〕 。李吉均等 〔2〕 又进一步发展了这一观点,认为青藏高原的整体快速隆升始于3.6
的青藏运动,而始于1.1~0.6 和0.15 的昆仑—黄河运动及共和运动则使高原最终达到现今的高度。其中青藏运动又分为A、B、C三期(3.6、2.5和1.7
),而到了约2.5 的B期时青藏高原已隆升到现今高度的一半(约2
000 m),这一高度被认为是高原隆起—黄土堆积的临界高度。在共和运动时期,喜玛拉雅山由于普遍超过了6
000 m而成为阻塞印度洋季风的重大障碍。90年代以来国外许多学者对这一观点提出了挑战,并把青藏高原的强烈隆起的时间提前了很多。Coleman 〔3〕 认为早在14
以前青藏高原就已达到最大高度并呈东西向拉伸塌陷,其后高度又有所降低。其证据是在喜马拉雅山南北向的正断层上找到了年代为14
的新生矿物。Kroon等 〔4〕 认为喜马拉雅山和青藏高原在8
以前已达到现今的高度,其主要的根据是发现阿拉伯海的上涌流在8
时大大增强,指示了印度洋季风的出现。Quade等 〔5〕 通过对巴基斯坦北部土壤碳酸盐碳同位素的研究揭示出在约7.4~7.0
时C 3 植物向C 4 植物发生剧烈转变,这种剧烈的生态演变标志着当时亚洲季风的形成或显着加强。Harrison
等 〔6〕 通过地层年代学、沉积岩石学、海洋学和古气候学的研究表明南青藏高原的快速隆升和去顶事件开始于约20
以前,而现代青藏高原的高度则得益于约8 前高原的再次隆升。王彦斌等 〔7〕 根据喜玛拉雅山聂拉木地区花岗岩样品的磷灰石的裂变径迹分析结果提出整个南喜玛拉雅造山带在上新世—第四纪为快速抬升期。钟大赉等 〔8〕 通过较系统的矿物裂变径迹研究表明:45~38
印度板块与欧亚板块碰撞后,青藏高原经历过3次抬升事件(25~17
、13~8 、3 至今)。施雅风等 〔9〕 也支持这一观点,并且认为在40
左右,发生了青藏高原的第一期隆起,但当时所成的高山已被完全蚀去,其高度难以估计,范围也较小。青藏高原的二期隆起发生在25~17
。其证据是孟加拉湾浊流扇沉积 87 Sr/ 86 Sr变化指示喜马拉雅的变质岩在20~18
处于强烈上升时期(Harris,1995)。崔之久等 〔10〕 利用夷平面与古岩溶研究证明了青藏高原经过三次隆起和两次夷平的观点的正确性。王富葆等 〔11〕 根据沉积学、磁性地层学、古生物学和氧、碳同位素等研究资料,恢复了中新世晚期以来的构造和气候事件,指出喜马拉雅山上升始于7.0
前,但强烈的上升发生在2.0~1.7 间和0.8 以来,另外,在4.3~3.4
间亦有一次显着隆升,但以后两次上升最为强烈,并且山地与盆地之间的差异隆升运动明显。
时至今日,青藏高原隆起的时间、过程、幅度和速率等问题仍然未有定论,这还有待于国内外学者进一步研究证实。
1.2 高原隆起的环境和气候效应
青藏高原的隆升与全球及区域环境、气候变化的关系问题,引起了世界科学家的广泛关注。尤其是,近年来随着构造隆升驱动气候变化假说的提出,用以青藏高原为代表的构造隆升导致的各种物理化学过程及其气候效应来解释大冰期的来临和全球气候变化,已成为国内外学者研究的热点和焦点。青藏高原对大气环流的热力与动力作用自50年代开始即被科学家们所注意,并进行了一系列的观察与研究。早在20多年前,真锅等(1974年)的数值模拟计算结果表明:考虑青藏高原大地形存在时的1月份100
k Pa等压面上的大气环流图式与现今实际观测值近似一致,当不存在青藏高原时,现有的西伯利亚高压就不复存在 〔12〕 。明茨等 〔13〕 通过计算分析,也都一致认为:由于青藏高原的存在,欧亚大陆的冬季才有西伯利亚高压。Kutzbach等 〔14〕 的数值模拟结果表明,青藏高原的存在与否是亚洲季风,特别是东亚季风形成的一个决定因素。Birchfield等 〔15〕 认为青藏高原的隆起增加了冬季雪的覆盖厚度,改变了局部乃至全球的反照率,从而可能对全球气候产生不可忽视的影响。最近Ruddiman等 〔16〕 通过理论分析与数值模拟把晚新生代地球的变冷及区域分异性的增强归因于晚新生代青藏高原及北美西部高原的隆起。王建等 〔16〕 从孢粉植物分异及演变、干旱碎屑及膏盐沉积分布等方面,对柴达木盆地西部新生代气候与地形的演变进行了探讨。其结果表明,盆地西部新生代两个极端干燥的气候期(膏盐发育期)分别出现在始新世至渐新世及上新世至第四纪。前者与老第三纪行星环流控制下的副热带干燥带有关,而后者与青藏高原的隆升有关。
施雅风等 〔9〕 通过对柴达木盆地的研究结果表明:青藏高原于25~17
第二期强烈隆升即相当于喜马拉雅运动的二期,其所达高度与宽度,足以改变环流形势,它和同时期的热带太平洋的变暖、南极冰盖出现越赤道气流增强、亚洲东缘、东南缘边缘海盆的扩大、亚洲大陆的向西伸展、副特提斯洋的萎缩等因素相结合,共同加强了大陆与大洋的热力差别和动力作用,孕育了以夏季风为主的亚洲季风系统,替代了东亚地面老第三纪的行星风系,导致了东亚干旱草原带大收缩与湿润森林带大发展等重大环境变化。
滕吉文等 〔17〕 从青藏高原巨厚的地壳与薄岩石圈模式、位场与波场特征,从板块构造与深层过程和动力学机制的角度,研究和探讨了高原隆升与全球变化的关系。他们认为,地球内部(地壳、地幔、地核)物质运移与气候变化有着密切关系,并且指出,高原特异的壳—幔结构,一系列大型走滑断层的形成和其整体隆升,均影响太阳能量在大气层里的传输方式,使大气热机效率增大,导致行星西风增强,极—赤温差增大,并最终形成第四纪大冰期。
风尘沉积是典型的大气沉积物,对大气环流格局和强度变化的响应特别灵敏,因而可以间接地视为构造隆升驱动气候变化的重要地质证据 〔18〕 。因而与青藏高原有着天时、地利关系的黄土高原能够对青藏高原的隆升起到好的说明作用。黄土高原风尘沉积序列真实地记录了东亚季风形成演变的信息,
它既是北半球大冰期气候变化的反映,又是对青藏高原构造隆升的响应 〔19,20〕 。吴锡浩等 〔20〕 根据地层记录,对黄土高原黄土—古土壤序列所反映的构造气候旋回与青藏高原冰碛—古土壤序列所反映的隆升过程进行对比,表明它们在地球轨道偏心率的准0.4
Ma周期变化方面具有大致同步的相位关系。刘东生等 〔21〕 也论述了亚洲季风系统的起源和发展及其与两极冰盖和构造运动的时代耦合性。王富葆等 〔22〕 利用孢粉分析并结合沉积学及 14 C测年等资料,进一步说明青藏高原对全球气候变化具有“启动区”和放大器的作用。
此外,磁化率曲线和氧同位素曲线所反映的东亚冬、夏季风自3.4
开始大致同时增强,而此时全球冰量也开始显着增加,这与大致在3.4~2.6
青藏高原的加速隆升之间的关系绝不是一种巧合。而且青藏高原的阶段性隆升与东亚季风的多次气候突变有着某种内在联系 〔20,23〕 。
Raym等(1992)提出,青藏高原大面积的隆升在过去40 Ma以来引起了全球大陆硅酸盐风化速率的加快,导致大气CO 2 含量的下降和全球气温的下降,并称之为“冰室效应(icehouse
effect)”。但这种观点受到了很多学者的挑战 〔24~26 〕 。Christlan
等 〔27〕 指出,喜马拉雅的风化剥蚀对碳循环的主要影响是增加了沉积岩中有机碳的埋藏量,而不是增加了硅酸盐的风化速率。另外值得一提的是,覆盖着约10%的地球陆地表面的黄土—古土壤序列中含有平均约10%的碳酸盐 〔19〕 ,即有相当数量的碳被固定埋藏,没有参与全球的碳循环,这可能也是大气CO 2 浓度降低的一个因素。
青藏高原的隆升在全球气候变化研究中的重要性得到了众多学者的认同,但是,最近卢演俦等 〔28〕 指出,新生代初印度—欧亚板块汇聚以来,特提斯海的消退,以及太平洋板块在亚洲大陆东缘和东南缘消减引起的弧后海盆(如日本海、东海、南海)的扩张和陆缘海盆(如黄海、渤海)的出现,对于亚洲古季风形成的意义要比青藏高原隆升所起的作用更重要。这一点在Ramstein等 〔29〕 的AGCM数字模拟试验结果中得到了论证。
目前,对于全球变化尤其是第四纪气候变化机制的研究方面,以轨道尺度气候变化的研究比较深入,而对于青藏高原对全球气候变化的影响研究的还不够,尚没有达成明确的共识。 <font size="3"><strong></p>
<p align="left"><font color="#0000A0"><font size="4">2 海洋锶同位素组成的演化
现今,海水中锶的平均浓度大约为8 mg/L, 87 Sr/ 86 Sr值为0.7093±0.0005 〔30〕 ,是海水中最富集的微量元素之一。海水中锶的存留时间是3
Ma(Richter等,1993),比海水的混合速率(约10 3 a)要长得多 〔30〕 。海水中的锶主要以海相自生碳酸盐及部分磷酸盐、硫酸盐和其它盐类矿物的形式存在,其中,海相自生碳酸盐矿物的 87 Sr/ 86 Sr值反映了矿物沉积时海水的锶同位素组成特征,真实而连续地记录了海洋锶同位素组成的演化历程。诸多研究结果表明,40
Ma以来海洋Sr同位素比值明显地上升了 〔31~34〕 。
2.1 锶同位素的地球化学性质
锶有4个稳定的同位素: 88 Sr、 87 Sr、 86 Sr和 84 Sr。其中, 87 Sr是 87 Rb天然衰变的产物,其半衰期为48.8
Ga。Rb与K晶体化学性质相似,常以类质同像方式进入钾长石、黑云母等硅酸盐矿物中;Sr与Ca的晶体化学性质相似,常取代斜长石、磷灰石及碳酸盐等含钙矿物中的Ca 〔35〕 。地质体中 87 Sr/ 86 Sr值的大小取决于它们的Rb/Sr值和年龄。由于Rb、Sr性质的差异,导致不同的岩石、矿物及其不同的风化阶段具有不同的Rb/Sr值,而不同的Rb/Sr比或/和年龄的不同,则决定了其特定的 87 Sr/ 86 Sr值 〔49〕 。另外,与H、C、O、S等同位素不同的是,Sr同位素不会由于物理化学风化和生物过程而发生分馏 〔36〕 。
2.2 海洋锶同位素组成的演化特征
早在1948年,Wickman就提出由于地壳中 87 Rb的衰变,海水中锶同位素的组成应该随时间单调增加,而且仅是时间的函数。但是,1955年Gast对已知年龄的海相碳酸盐岩的锶同位素测定结果表明海水 87 Sr/ 86 Sr值的变化速率远小于Wickman的估计值,并指出Wickman过高估计了地壳Rb/Sr值。Palmer等 〔33〕 测量了整个显生宙海相石灰岩的 87 Sr/ 86 Sr值,发现所得结果并不是很系统地增加,而是呈现出不规则的曲线变化,并于前寒武和现在具有最大值,而在二叠纪末—三叠纪初具有明显的最小值。Martin等 〔37〕 对中二叠纪到三叠纪的海水进行了 87 Sr/ 86 Sr
值测定,并得出了在晚二叠纪比值增加的速率是0.000097/Ma,此速率大约比过去40
Ma的平均增长速率大了2.5倍,大致等于整个新生代的最大增长速率,而且这一增长仅是发生在较短的时间内。Edmond 〔34〕 指出,在过去的500
Ma中,海洋锶同位素组成随时间的演化呈现一个不对称的波谷形状。其最高值在寒武纪和现在(0.7091),最低点在侏罗纪(0.7067),其上叠加一些小的震荡,而且在过去的100
Ma中,其值呈现出明显的单调增长趋势。
Richter等 〔38〕 1992年对100 Ma以来海洋 87 Sr/ 86 Sr值演化的研究结果表明,100~40
Ma海洋 87 Sr/ 86 Sr值变化不大或略有下降。但自40 开始至今海洋 87 Sr/ 86 Sr
值一直持续上升,在约20~15 是海洋 87 Sr/ 86 Sr值上升最为迅速的时期,并将其归因于由印度—亚洲板块碰撞引起的大陆河流向海洋输入Sr的通量的增加。Palmer等 〔39〕 对DSDP第21和375钻孔75
以来有孔虫的 87 Sr/ 86 Sr值测定结果显示了其总体增加的趋势,并于约10~20
具有最大的变化速率(4×10 -5 /Ma)。1991年,Hodell等 〔40〕 又测量了从24
至今的261个样品的锶同位素比值。其变化曲线可以看成是由一系列斜率不同的线形部分组成的,其斜率最大值为6×10 -5 /Ma,最小值接近于零。他们认为,在晚第三纪期间海水锶同位素比值由0.7082上升到了0.7092,但其变化速率不是常数,而是一系列变化值。其中,在早中新世(24~16
)、中新世末期(5.5~4.5 )和晚上新世—更新世(2.5~0 )期间具有相对快速的增长;从中中新世到晚中新世初期(16~8
),同位素比值具有中等程度的增长;而8~5.5 和4.5~2.5 同位素比值变化很小或没有变化。Hodell等 〔41〕 对晚第三纪(9~2
)海洋锶同位素组成变化的研究结果如下:在9~2 之间海洋锶同位素组成呈现出增加趋势并伴随着几个不同的斜率。9~5.5
, 87 Sr/ 86 Sr值几乎保持在常数约0.708925。5.5~4.5 Ma
BP, 87 Sr/ 86 Sr值约以1×10 -4 /Ma的速率线性增长。在4.5~2.5
之间, 87 Sr/ 86 Sr值的变化速率逐渐减小直至为零,并最终将比值保持在0.709025。Capo等 〔42〕 对海洋碳酸盐样品的测量结果表明,在过去的2.5
Ma中海水 87 Sr/ 86 Sr值增加了14×10 -5 ,而且各个时段的增长速率不相同。这样高的平均变化速率表明大陆风化速率是相当高的。而增长速率的不一致性则反映了风化速率的波动(相对于当今值而言,其变化率高达±30%)。
Dia等 〔31〕 分析了近30 Ma以来海洋Sr同位素比值的记录发现在这一逐渐增长的Sr同位素变化之上叠加了一个周期为10
Ma的高频震荡,而这一周期性变化与地球轨道参数的周期性变化相一致。Clemens等 〔32〕 测定了45
Ma以来海水Sr同位素比值,并且指出其最大、最小值分别与大陆冰量的最小、最大值相一致。但这些高频变化与Sr
在海水中存留时间长的矛盾是难以得到解释的。如果这些冰期—间冰期的Sr
同位素变化是全球性的话,那么我们就必须重新考虑Sr
在海洋中循环的动力学机制。
另外,需要指出的是,由于测试样品的不同或海底测试位置的不同,所得Sr同位素比值也可能不同。Hodell等 〔43〕 对海底深钻的不同位置(289孔、558孔和747孔)的研究表明,由于海底不同位置的沉积速率不同,因而它们所反映的海水锶同位素组成的变化曲线也有所不同,例如,Hodell
等认为DSDP 289孔的Sr同位素变化曲线上在约20 处有一拐点,而对于DSDP
747孔,Oslick等认为曲线上从22.5~15.5 是一条直线。对于DSDP 558孔和DSDP
747孔,同样的不一致性也存在于从14~9 ,前者所反映的 87 Sr/ 86 Sr值都比后者要低,而且并非呈线性相关。 <strong></p>
<p align="left"> <font color="#0000A0" size="3">3 海洋锶同位素组成变化的影响因素 <font color="#0000A0">
海洋中的Sr主要有以下几个方面的来源 〔33,44〕 :①以河流输入为主的地表径流输入,其 87 Sr/ 86 Sr值平均为0.7119;②地下水输入,其Sr同位素平均组成与地表径流相似;③洋壳—海水相互作用通量,包括洋中脊高温热液区作用以及洋脊两侧和冷洋壳区低温水—岩反应,其Sr同位素平均组成约为0.7035±0.0005;④洋底沉积物重结晶而释放或以孔隙水释放到海水中的Sr,其Sr同位素平均组成为0.7084,与海水的 87 Sr/ 86 Sr值接近。这样,海水Sr同位素组成主要受大陆河流的Sr通量和来自海底热液的Sr通量的影响。
Palmer等 〔39〕 通过对定量的锶的地球化学循环模型研究得出如下结论:尽管海底热液和海相碳酸盐的循环对海水锶同位素比值的变化起着十分重要的作用,但是在整个新生代期间,大陆硅酸盐的风化已经成为控制其变化的主要因素。对 87 Sr/ 86 Sr值变化的控制因素的研究表明,河流是海洋锶的主要供给者,其中约75%的锶来自隆起的灰岩的风化,其余部分则来自硅酸盐的风化。海相碳酸盐通过孔隙水为底层海水提供一定量的循环锶,还有较小部分的海水锶来自沉积碳酸盐的溶解。另外,通过海底热液,海水与海底玄武岩也发生锶同位素的交换,但是,在此过程中没有锶含量的明显变化。
Hodell等 〔40〕 对从24 至今的261个样品的锶同位素比值测定结果表明,影响同位素比值变化的因素不能归结为简单的地质现象,而可能是由于构造和气候因素综合作用的结果。这两者的综合效应影响了由大陆输向海洋的锶丰度和锶比值,而且其所得海洋锶同位素记录与晚第三纪期间大陆化学风化速率的逐渐增强相一致,同时也可能与冰期旋回、海平面下降造成的大陆剥蚀面积的增加及由快速构造隆升导致的大陆地势起伏的加强有关。
Raymo等 〔45〕 提出,影响海洋Sr同位素比值明显上升的原因有2种:①大陆河流排放的放射成因Sr通量的上升;②海底热液活动的减少。现今海底热液的Sr通量为1.0×10 10
mol/a, 87 Sr/ 86 Sr值平均为0.7035;大陆河流每年排放入海的Sr通量是3.3×10 10
mol/a, 87 Sr/ 86 Sr值平均为0.7119。这样,由海底玄武岩的热液蚀变而每年进入海洋的Sr通量约为大陆河流排放入海的Sr通量的1/4 〔33〕 。
有一个为多数人接受的推测,即海底热液活动是海底扩张速率的函数。如果热液蚀变进入海洋的Sr总量的变化正比于新洋壳产生的速率,那么,由海底玄武岩的热液蚀变而每年进入海洋的Sr总量自白垩纪以来已减少了40%,但是这个变化在时间累计上不足以解释过去40
Ma以来海洋Sr同位素比值的明显上升(Richter 等,1992年) 〔38〕 。这样,40
Ma以来海洋Sr同位素比值上升的原因只能归结为大陆河流排放的放射成因的Sr通量的增加。为了进一步论证这个结论,Richter
等 〔38〕 证明了以下4点:①Brahmaputra、Ganges、Ins及青藏高原地区河流的Sr通量的总和与过去40
Ma以来海水Sr 浓度及 87 Sr/ 86 Sr值的上升在数量级上相一致;②在印度—亚洲大陆碰撞前,河流的Sr通量变化很小,而紧接着碰撞以后河流的Sr通量则保持了持续的增加;③自碰撞以来喜马拉雅及青藏高原的剥蚀提供了足够的Sr,这解释了自碰撞以来河流Sr通量的增加;④河流Sr通量变化的显着特征,即开始于20
的一个短期脉冲式增加与喜马拉雅地区高速剥蚀在时间上相一致。Copeland等 〔46〕 对孟加拉扇形地区碎屑钾长石的 40 Ar/ 39 Ar年代测定显示,在中新世中期,喜马拉雅碰撞区遭受强烈的脉冲式隆起和剥蚀,而且部分地区的快速剥蚀贯穿整个晚第三纪,它与Richter等 〔47〕 对西藏南部冈底斯带的Quxu
pluton的研究揭示出的一个迅速的侵蚀时期(约在20~15 )的时代相符。Zeitler 〔48〕 发现,喜马拉雅山西部去顶速率的增加开始于约20
。因此,可以认为海洋 87 Sr/ 86 Sr值在约20~15 上升最迅速是对青藏高原在一个短时期内迅速侵蚀的去顶事件的响应。
由以上分析和论证可有如下认识:在印度—亚洲大陆碰撞以前,进入海洋的放射成因Sr通量变化很小,而在印度—亚洲大陆碰撞之后,进入海洋的放射成因Sr通量有很大的上升,并表现为 87 Sr/ 86 Sr值的持续上升,而这一时期青藏高原的强烈隆升和快速侵蚀为海洋 87 Sr/ 86 Sr值的上升提供了足够的放射成因Sr。
结 语
40 以来,海洋锶同位素比值明显地上升了,对于其引发机制国内外学者进行了多方面的研究与探索,但至今仍未得出肯定结论。随着构造隆升驱动气候变化假说的提出,将青藏高原的隆起与全球气候变化、大陆化学风化速率及海洋锶同位素组成的演化紧密联系为进一步认识和明确青藏高原隆升的时代、幅度和形式提供了一个很好的思路和方法。随着这一思路和方法的进一步运用和深化,我们相信关于青藏高原隆升的机制和过程及海洋锶同位素的演化规律的科学难题定将逐渐清晰明了,并可为解决目前关于硅酸盐与碳酸盐风化的争论提供很好的方法和手段。
㈤ 青藏高原指的是哪些地方
青藏高原是指南起喜马拉雅山脉南缘,北至昆仑山、阿尔金山和祁连山北缘,西部为帕米尔高原和喀喇昆仑山脉,东及东北部与秦岭山脉西段和黄土高原相接的地理区域,介于北纬26°00′~39°47′,东经73°19′~104°47′之间,是中国最大、世界海拔最高的高原,被称为“世界屋脊”、“第三极”。
青藏高原东西长约2800千米,南北宽约300~1500千米,总面积约250万平方千米,地形上可分为藏北高原、藏南谷地、柴达木盆地、祁连山地、青海高原和川藏高山峡谷区等6个部分,包括中国西藏全部和青海、新疆、甘肃、四川、云南的部分以及不丹、尼泊尔、印度、巴基斯坦、阿富汗、塔吉克斯坦斯坦、吉尔吉斯斯坦的部分或全部。
(5)青藏高原具有哪些地理意义扩展阅读:
青藏高原的自然资源:
1、水资源
青藏高原的水资源以河流、湖泊、冰川、地下水等多种水体形式存在,并以河川径流为主体。外流水系流域面积占高原总面积的53.56%。
2、土地资源
青藏高原土地资源地域分布明显,数量构成极不平衡。宜牧土地占总土地面积的53.9%,宜林土地占10.7%,宜农土地占0.9%,暂不宜利用的土地面积占34.5%。
3、动物资源
低等动物方面,仅西藏有水生原生动物458种,轮虫208种,甲壳动物的鳃足类59种;昆虫20目、173科、1160属、2340种。脊椎动物方面,在整个青藏高原有鱼类3目、5科、45属、152种
4、植物资源
青藏高原有维管束植物1500属、12000种以上,约占中国维管束植物总属数的50%以上、总种数的34.3%。
参考资料来源:网络-青藏高原
㈥ 青藏高原的地理位置地理环境
青藏高原地理位置:青藏高原介于北纬26°~39°,东经73°~104°之间,西起帕米尔高原,东到横断山,北界为昆仑山、阿尔金山和祁连山,南抵喜马拉雅山,东西长约2800千米,南北宽约300~1500千米,总面积约250万平方千米。
青藏高原地理环境:青藏高原由北向南包括祁连-柴达木、昆仑、巴颜喀拉、冈底斯、喜马拉雅、羌塘-昌都等6个构造带,各构造带之间为蛇绿混杂岩所代表的缝合带隔开,大致以龙木错-金沙江缝合带为界。
(6)青藏高原具有哪些地理意义扩展阅读:
青藏高原的气候特点:
辐射强烈,日照多,气温低,积温少,气温随高度和纬度的升高而降低,气温日较差大;干湿分明,多夜雨;冬季干冷漫长,大风多;夏季温凉多雨,冰雹多。
青藏高原年平均气温由东南的20℃,向西北递减至-6℃以下。由于南部海洋暖湿气流受多重高山阻留,年降水量也相应由2000毫米递减至50毫米以下。
喜马拉雅山脉北翼年降水量不足600毫米,而南翼为亚热带及热带北缘山地森林气候,最热月平均气温18~25℃,年降水量1000~4000毫米。
昆仑山中西段南翼属高寒半荒漠和荒漠气候,最暖月平均气温4~6℃,年降水量20~100毫米。日照充足,年太阳辐射总量140~180千卡/平方厘米,年日照总时数2500~3200小时。冰雹日最多,如那曲年冰雹日20~30天以上。
参考资料来源:网络-青藏高原
㈦ 青藏高原对中华民族来说,其存在的价值是什么
西藏高原位于我国的西北地区,对于中华民族来说,地位是非常重要的。青藏高原占地的面积大概是250万平方公里,虽然人们经常会听说过青藏高原这个词,但是根本就不知道这座高原里面有什么,或者包含了什么意义。青藏高原对于中华人民来说能够帮助改善环境,对于人类的生存也非常重要,能够给大家提供水资源,还有矿产资源,并且有很大的军事意义。
青藏高原地区也被称为世界屋脊,平均的海拔都是4千米以上的,里面的军事意义也相当强大。如果从军事角度来看的话,青藏高原地区其实就相当于一个最高点,在这上面几乎能够俯瞰下面的动静,而且如果想要发射导弹的话,在青藏高原的顶端,导弹的射程以及精准度都会大大的提高。所以青藏高原地区存在的意义,也是在保护着中国人,在调节中国和其他国家之间的关系。
㈧ 为什么说青藏高原是天赐的恩泽,青藏高原对中国的重要性是什么
为什么说青藏高原是天赐的恩泽,青藏高原对中国的重要性是什么? 青藏高原是中华民族的发祥地、生命线。黄河、长江都发源于青藏高原青海省唐古拉山脉,流域面积覆盖九州绝大部分地区,自古以来养育了大汉民族,与长城一起组成了抵抗蒙古草原游牧民族入侵的三道防线,保护了大汉民族生生不息得以延续。
由此可见,青藏高原是华夏文明的发祥地生命线,是中原文明的天然屏障。以上是属于我个人的一些建议和想法 ,仅供参考, 希望可以帮助到大家。如果你们有其他的想法,可以评论在文章的下方 。
㈨ 青藏高原为什么那么重要
青藏高原,第一次听到还是因为歌手韩红的《青藏高原》这首歌,歌词里的青藏高原气势磅礴,屹立不倒,更加引人向往。但是我们真的了解青藏高原吗?了解它的重要性吗?
青藏高原被称为“世界屋脊”、“第三极”,是中国最大,世界海拔最高的高原,南起喜马拉雅山脉,北至昆仑山、阿尔金山脉和祁连山,东及东北部与秦岭山脉西段与黄土高原相接,介于北纬26 00′ 39 47′,东经73 19′ 104 47′之间。东西长约2800千米,南北宽约300~1500千米,总面积250万平方千米。
地球上有一条北纬30度沙漠带,从北非一直向东,分别是撒哈拉沙漠,阿拉伯沙漠,卢特沙漠,塔尔沙漠,到了美国则是死亡谷。这些地方有许多地区年降水量都在200毫米以下,是名副其实的荒漠地带。同理南纬30度似乎也是去吃,为什么会造成这种现象呢?因为在纬度20-30的范围内,是副热带高压控制的区域,副热带高压盛行下沉气流,这样的话水汽就难以凝结形成降水,降水量稀少,形成沙漠也就情有可原了。
让我们再来看看中国的北纬30度,却是大片的江南水乡,为什么呢?北纬30度常年受副热带高压影响,副热带高压盛行下沉气流,这样的话水汽难以凝结形成降水,降水量稀少,久而久之沙漠也就形成了。理论上咱们中国应该也会有更多的地方会是荒漠,但青藏高原却已一己之力改变了现实。
中国地势有三大阶梯,6500万年前亚欧板块与印度板块碰撞挤压形成了青藏高原,这股巨大的挤压力不断向东北方向传导,形成了内蒙古高原、黄土高原、云贵高原。第一第二阶梯形成,最东边的三大平原为第三阶梯。形成了中国西高东低的地势特征。
这样的地势特征有什么影响呢?夏季时陆地气温升温比海洋快,因此地面风是从海洋吹向陆地的,这就会带来大量的水分,水汽通过平原是畅通无阻,但是在遇到第二第三阶梯时会被高原高山拦截,气流受阻改变方向,形成局部小循环。天府之国、江南水乡、北大仓因此形成。冬季季风本该相反,但是来自西伯利亚的寒流在吹到中国内陆的时候受到 第一第二阶梯自己各大山脉的削弱,所以我们很少发生大寒潮。第一第二阶梯就像是守卫一样,守护着中原大地。
太平洋上来的水汽虽然大部分都留在了中国内地,但是他的分布是十分不均匀的,东南沿海地区降水量大,西北地区却非常干旱。西边印度洋上吹来的季风被喜马拉雅山脉分成两部分,暖湿气流吹向华南、华东地区,带来丰富的降水,但干热气流吹向新疆、甘肃、内蒙古地区,加剧了当地的干旱情况。塔克拉玛干沙漠就是这样形成的。
为了解决西北干旱缺水问题,中国开始了长达几十年的南水北调大工程。该工程最初的设想是源于1952年国家主席毛泽东同志在视察黄河时提出。自此,在历经分析比较50多种方案后,调水方案获得一大批富有价值的成果。南水北调工程规划区涉及人口4.38亿人,调水规模448亿立方米。工程规划的东、中、西线干线总长度达4350公里。 东、中线一期工程干线总长为2899公里,沿线六省市一级配套支渠约2700公里。
南水北调工程共有东线、中线和西线三条调水线路,通过三条调水线路与长江、黄河、淮河和海河四大江河的联系,构成以“四横三纵”为主体的总体布局,以利于实现中国水资源南北调配、东西互济的合理配置格局。
青藏高原还有亚洲水塔之称,其中冰川面积约10万平方公里,常年积雪面积约30万平方公里,多年冻土面积约130万平方公里,湖泊面积约5万平方公里。该地区孕育了黄河、长江、恒河、湄公河、印度河、萨尔温江和伊洛瓦底江等七条亚洲的重要河流。青藏高原湖泊中大于一平方公里的湖泊增量是344个。在五十年间,也就是从1970年开始,直到今天发现的湖泊数量高达1424个。其中冰川的冰储量约为8850立方公里,换算成水量大约是8万亿立方米;超过50平方公里的湖泊储水量约为8150亿立方米;对发源于青藏高原主要河流出口处的13条主要河流的径流量估算约为6560亿立方米,而且还不算小湖泊的水量。“亚洲水塔”之称名副其实。
青藏高原光照和地热资源充足。高原上冻土广布,植被多为天然草原。青藏高原也是中华民族的源头地之一和中华文明的发祥地之一,在华夏文明史上流传的伏羲、炎帝、烈山氏、共工氏、四岳氏、金田氏和夏禹等都是高原古羌人。青藏高原上的居民以藏族为主,形成了以藏族文化为主的高原文化体系。
青藏高原还蕴藏着无尽的战略资源。由于全球三大成矿带之一的地中海—特提斯成矿带横贯青藏高原,使青藏高原成为矿产资源最丰富的地区。有资料表明,这里已经发现120多种矿产资源,资源潜在价值巨大。其中铬、铜、锌、锂、镁、硼、钾盐、石棉等矿产资源在全国名列前茅,石油资源前景非常好,水能、太阳能、地热资源丰富。
青藏高原地处亚欧大陆深处,是连接亚洲大陆的枢纽地带,更是我国与南亚各国,尤其是印度的巨大缓冲地带,进可攻、退可守,得天独厚的地理位置使得青藏高原易守难攻、进退自如。而青藏高原对于印度和东南亚各国,则是真正意义上的生命之源和难以攀越的高峰。
从军事角度出发,位于青藏高原就相当于占据了制高点,基本保证了我国对印度(我国在亚洲最大的威胁)的战争中立于不败之地。中印边界线到新德里的距离,约400公里,而到北京的距离,是4000公里,约在10倍左右。如果中国与印度开战,印度的导弹武器打到中国的中心腹地,是中国的同类武器打到印度中心腹地距离的10倍。
天佑中国并不是说说而已,世界第三极,让中国虽没有全纬度地域,却有了全纬度气候。青藏高原是天赐的恩泽,在古代,青藏高原作为地理屏障,拱卫着中华民族安全,使得中华文明成为世界上唯一延续至今的文明。哺育着中华儿女,是中华文明之源。
不管在哪个时期,青藏高原都以一己之力保护着我泱泱华夏,中国疆域辽阔,没有一寸土地是是多余的,青藏高原更是重中之重。
㈩ 青藏高原对于中国来说到底有多重要
在回答这个问题之前我们应该了解青藏高原的基本情况。
具体来说,我们可以加举例西藏,由于中国拥有这个天然的屏障,而使得世界上不会出现关于西藏与中亚一些国家产生联系的谎言,这使得西藏天然就属于中国。还有就是在中世纪的亚历山大大帝,当时都已经打到了印度河了,如果不是青藏高原,亚历山大大帝也不会放弃继续向东攻打。所以综上可以看出,青藏高原的历史地位的重要性。