1. 建立直角坐标系应注意什么
探究:建立坐标系的规律:(1)当题目中有两条互相垂直的直线 以这两条直线为坐标轴;(2)当题目中有对称图形,以对称图形的对称轴为坐标轴;(3)当题目中有已知长度的线段 以线段所在直线为横轴,以端点或中点为原点 使图形上的特殊点尽可能地在坐标轴上. 直角坐标系建立完后,需仔细分析曲线的特征,注意揭示隐含条件. 如:已知动点P与两定点A、B的距离的平方和为122,|AB|=10 求动点P的轨迹方程.要使AB在x轴上,以AB的中点为原点建立坐标系. 再如:已知线段AB的长为3,平面上一动点M到定点A的距离是到定点B距离的两倍,求动点的轨迹方程.注意到动点M运动到线段AB上时,有|AM|=2|MB|,点M恰为线段AB的一个三等分点,故考虑以这个三等分点为坐标原点建立直角坐标系. 再如:在相距1 400米的A、B两个哨所,听到炮弹爆炸的时间相差3秒,已知声速是340米/秒,问炮弹爆炸点在怎样的曲线上?它是怎样建立直角坐标系的呢?以A、B两个哨所所在的直线为x轴,AB的中点为坐标原点,建立直角坐标系.
2. 建立坐标系需要规定什么
平面直角坐标系:原点、正方向、单位长度空间直角坐标系:x、y、z轴,两两垂直
3. 建立地理坐标的基本要素是什么
地理坐标是用纬度、经度表示地面点位置的球面坐标。地理坐标系以地轴为极轴,所有通过地球南北极的平面均称为子午面。地理坐标,就是用经纬度表示地面点位的球面坐标。在大地测量学中,对于地理坐标系统中的经纬度有三种提法:天文经纬度、大地经纬度和地心经纬度。
定义编辑
子午面与地球椭球面的交线,称为经线或子午线。国际上统一规定以通过英国伦敦格林威治天文台的经线为起始经线(0°),也叫本初子午线。从起始经线开始,向东、西各以180°计算,向东称东经,向西称西经。所有通过地轴的平面,都和地球表面相交而成为(椭)圆,这就是经线圈,每个经线圈都包括两条相差180度的经线。所有经线都在两极交会,呈南北方向,长度也彼此相等。经差1°在赤道上的纬线长约111km[2]。
所有垂直于地轴的平面与地球椭球面的交线,称为纬线。赤道纬度为零,赤道以北为北纬,以南为南纬,向北向南各分90°。纬度不同的纬线长度不相等。经差1°的纬线弧长为111cosB(km),式中B为纬度[2]。
经纬线相互交织构成经纬网,以经度、纬度表示地面上点的位置的球面坐标称为地理坐标。例如:我国首都北京位于北纬40度和东经116度的交点附近,昆明位于北纬25度和东经103度的交点附近。
由地球椭球体上任一点引一垂直于该点地平线的直线,其与赤道面相交所构成的夹角称为地理纬度。任一点所在经线圈与起始经线圈间的夹角称为该点的地理经度。地球上或地图上的点位表示为M(L,B)。在地图上以内图廓和经纬网(或分度带)形式表示。在大于1∶10万地形图上,地理坐标网以图廓形式表现,图廓四角注记经纬度数值,内外图廓间绘有分度带。在小比例尺地图上和小于1∶20万地形图上,一般都直接绘有地理坐标网,并注有相应的经纬度数值,以此确定地区或地面点的地理位置。
4. 画平面直角坐标系时需要注意哪些问题
线要画直,刻度要均匀合理,XY轴要标,原点要标
5. 基础地理数据库建设
1.基础地理数据库建库原则
(1)满足专题研究的特殊需求。河南省1:500000~1∶100000数字地理底图的制作,是根据《河南省国土资源遥感综合调查与信息化工程总体设计书》的要求,应用地理信息系统技术,为其提供数字式基础地理控制信息。基础地理控制信息用于专题信息的定位,正确表现其与周围地理环境的关系的分布规律,综合地反映自然地理形态和社会经济概况。同时,通过非空间数据(属性数据)录入,实现空间数据与非空间数据的对应联结。
(2)以国家基础地理信息中心“数字地图数据库”为基础,根据项目的需要,根据现时资料进行了部分内容的补充、修编。
2.地理要素选取标准
(1)水系
图上所有双线河及河心岛,单线河5级以上基本全部选取。河网密度大的在保证体现其河系基本形态的原则下,进行了删减,选取图上面积大于10 mm2的湖泊和水库。
(2)行政区划
选取县级以上行政界线。
(3)居民地
县级以上政府所在地全部选取。地级以上政府所在地按真型居民地范围选取。镇级居民地按经差30′、纬差20′范围内3~5个居民地的标准选取。在部分人口稀疏区选取了部分村级居民地。
(4)交通
铁路及高等级公路全部选取,并按高速公路、国道、省道进行分类;其他公路按照与居民地相连通的原则选取。根据现势资料对近年来新建高速公路进行补充。由于数据及比例尺的不同,故补充信息的精度低于1∶250000比例尺的精度。
(5)地貌
地形等高线高差平原地区为50 m、100 m;低山区为300 m、500 m;中山区为1000 m、1500 m、2000 m。主要山峰及高程,按经差30′、纬差20′范围内选取3个山峰或高程点的标准。
3.地理要素分类代码
1∶500000数字地理底图要素分类代码采用中华人民共和国国家标准《国土基础信息数据分类与代码》(GB/T13923-92)。国土基础信息数据分为九个大类,并依次细分为小类,一级和二级。分类代码由六位数字码组成,其结构如下:
遥感·河南省国土资源综合调查与评价
大类码、小类码、一级代码和二级代码分别用数字顺序排列。识别位由用户自行定义,以便于扩充。在1∶500000数字地理底图数据库中没有用到识别位,故用前五位数字表示要素分类代码。
(1)1:500000数字地理底图数据所用到的大类码意义
2=水系;3=居民地;4=交通;6=境界;7=地形。
(2)行政区划代码
1∶500000数字地理底图数据库中县级以上行政区划代码采用中华人民共和国国家标准《中华人民共和国行政区划代码》(GB/T2260-1995)。属性表中数据项为“行政区划代码”。县级以上行政区划代码结构如下:
a.采用六位数字代码。按层次分别表示我国各省(自治区、直辖市)、地区(市、州、盟)、县(区、市、旗)的名称。
b.行政区划代码从左至右的含义。第一、二位表示省(自治区、直辖市);第三、四位表示省辖市(市、州、盟及国家直辖市所属市辖区和县的总码)其中01~20、51~70表示省辖市;21~50表示地区(州、盟);第五、六位表示县(市辖区、地辖市、省直辖县级市、镇),其中01~18表示市辖区或地辖市,21~80表示县(镇),81~99表示省直辖县级市。
4.投影、坐标系、高程系
数字地理底图数据库采用高斯-克吕格(等角横切圆柱)投影,中央经线为113°30 ′00″,坐标系采用1954年北京坐标系,高程系采用1956年黄海高程系。
5.地理要素分层
河南省基础地理数字地图图层文件分类详见表5.3.1。
表5.3.1河南省基础地理数字地图图层文件分类表
6.河南省基础地理数据层描述
(1)基本信息图层名(L2HN01J)
数据描述 表5.3.2描述30′×20 ′的经纬网线及其经纬度值。
表5.3.2基本信息属性表
数据项代码及其描述95202=经线;95203=纬线。
(2)水系信息图层名
a.水系信息图层名(L2HN02S)
数据描述以多边形表示的水系要素,如河流、湖泊、水库、水塘等。
数据项代码及其描述22012=常年双线河;22010=运河;23000=湖泊;24010=水库;24150=水塘;25050=水中岛。
河流、湖泊、水库属性见表5.3.3。
表5.3.3河流、湖泊、水库属性表
b.水系信息图层名(★2HN022H、L2HN02CH)
数据描述 以线表示的水系要素,包括河流、湖泊、水库、运河等。
数据项代码及其描述21011=常年单线河;21012=常年双线河岸线;21021=常年时令河;22010=运河岸线;23000=湖泊岸线;24010=水库岸线;24150=池塘岸线。
河流、海岸线属性见表5.3.4。
表5.3.4河流、海岸线属性表
(3)交通信息图层名
a.交通信息图层名(L2HN03T)
数据描述表5.3.5描述主要铁路和铁路线起止点城市名。
数据项代码及其描述41000=铁路;41010=电气化铁路;41011=复线铁路;41012=单线铁路;41013=建筑中铁路;41030=窄轨铁路。
铁路图层属性见表5.3.5。
表5.3.5铁路图层属性表
b.交通信息图层名(L2HN03G、L2HN03GD、L2HN03SD)
数据描述表5.3.6描述高速公路、国道、省道及起止点城市名称等。
数据项代码及其描述42010=高速公路;42011=建筑中高速公路;0=一级公路(国道);42070=主要公路(省道);42080=一般公路;42110=大路;42130=小路。
公路图层属性见表5.3.6。
表5.3.6公路图层属性表
(4)居民地图层名
a.居民地图层名(L2HN04X)
数据描述 表5.3.7描述乡镇级以上居民地及其行政区划代码名称等。
数据项代码及其描述31020=省政府驻地;31030=地级市政府驻地;31060=县政府驻地;31080=镇政府驻地;31090=乡政府驻地。
镇级以上居民地属性见表5.3.7。
表5.3.7镇级以上居民地属性表
b.居民地图层名(L2HN04D)
数据描述表5.3.8描述地级以上真型居民地及其类别和名称。
地区级居民属性见表5.3.8。
表5.3.8地区级居民地属性表
(5)政区图层名
a.政区图层名(L2HN05X、L2HN05D、L2HN05X)
数据描述 表5.3.9描述省级行政界、地级行政界、县级行政界、地区界等。
表5.3.9境界属性表
b.政区图层名(L2HN05DQ、L2HN05XD)
数据描述表5.3.10描述地级行政区、县级行政区。
表5.3.10行政区属性表
(6)地貌图层名
a.地貌图层名(L2HN06D)
数据描述表5.3.11描述等高线及其高程值。
数据项代码及其描述71000=等高线。
表5.3.11地形等高线属性表
b.地貌图层名(L2HN06G)
数据描述表5.3.12描述主要山峰的名称及高程值,主要高程点的高程值。
数据项代码及其描述72000=山峰。
表5.3.12山峰高程点属性表
7.工作流程
工作流程包括预处理、图形数字化、图形编辑、拓扑关系建立、属性输入、投影变换、输出图形等步骤,各步骤间均经过检查修改等过程。其工艺流程见图5.3.1。
图5.3.1河南省基础地理数字地图制作工艺流程图
6. 地理坐标系与直角坐标系,在gis中应如何选择使用
要明白这个问题,首先需要明白,地理坐标系和投影坐标系(直角坐标系)的区别。地理坐标系,是以经纬度为地图的存储单位的,很明显是球面坐标系统。而投影坐标系(直角坐标系)则是球面(地理坐标系)转投到平面上的直角坐标系。对应的应用选择也就很明了了。
球面和平面。呵呵,谢谢采纳~~有什么不懂的,欢迎追问~(*^__^*) 嘻嘻……
7. 采集地理数据的过程中需要注意哪些问题
在产品的逆向设计中,产品三维数据的获取方法基本上可分为两大类,即接触式与非接触式,由于这两种方式各有优缺点,而且它们的结合可以实现伏势互补,克服测量中的种种困难,因而世界各国的逆向设备生产商纷纷研制具有接触式与非接触式两种扫描功能的逆向设备。
三坐标测量机是一种接触式测量设备,它具有精度高、重复性好等优点,其缺点是速度慢、效率低。非接触式方法利用某种与物体表面发生相互作用的物理现象来获取其三维信息,如光、电磁等。非接触式方法具有测量过程非接触、测量迅速等优点,其缺点是对所测量物体材料要求严格,如采用激光测量时,所测量物体材料要求不能透光,表面不能太光亮,而且对直壁和徒坡数据的采集往住存在一定误差。
逆向工程中数据采集与处理
逆向工程中的测量数据量大,扫描的数据点可达数十万,而且扫描的数据点具有离散性。为了有效地利用这些测量数据进行CAD建模,必须对数据云进行必要的处理。
1.数据采集
数据采集的过程为:机床初始化—根据要扫描的物体设置扫描基准(包括Z平面、坐标轴、基准点等)—设置并进行2D轮廓扫描(此步可根据实际情况进行选择)—根据2D轮廓或坐标区域进行3D曲面扫描设置(包括扫描方向及步距、3D空间极值、允许的最小误差及弦向误差、探头半径、扫描速度等)—进行数据采集。
2.数据处理
数据处理的目的是为了获得正确的数据信息,生成相应格式的数据文件(如igs, dxf, vda, UG格式、Cimatron格式、Pro-E格式等)并与UGII, Surface, Pro-E, Catia等着名工程软件进行数据交换,以便用它们进行3D模型重构。在Renishaw公司的Tracecut23软件中提供了多种数据处理方法,这些方法包括数据调整、复制、数据光顺、噪声去除、数据镜像、阴阳转换、生成真实表面、CAD数据输出等。数据处理中要避免造成形状变形、精度降低、数据点不足等问题,一般要进行以下几方面的工作:
(1)补偿点的产生对于接触式扫描,由于从扫描仪获得的测量数据并不真正代表接触点的坐标,而反映的是探头的中心或顶部的值,因此,要对这些数据进行补偿,转换为被测物体表面的坐标值。对于产生补偿点,首先需要计算出标准点,而由于没有表面的数学表达公式,不能使用通常的方法计算出标准点。目前已开发出特殊的算法,能够在所规定的公差范围之内,获得近似的标准值。
(2)噪声点删除逆向工程测量过程中,受扫描测量方式、测量物体材料的种类、设备的精度等因素的影响,极易造成测量数据误差点的产生,对这类误差点,习惯上称为噪声点。在数据处理的第一步先要利用系统所提供的噪声点去除功能,选择合适的去噪精度去除多余的误差点,保证测量数据的准确性。
(3)数据点精化在CAD系统中,需要对逆向工程中获得的扫描数据点进行曲线构造、曲线光顺处理、曲面重构、曲面光滑处理、曲面拼接、三维建模等工作。在进行这些操作之前,要根据所测量物体的各部分的形伏特点设置适当的截面终距离和相邻两数据点的距离,利用系统中的CAD数据输出功能输出适当格式的数据文件,再利用CAD软件对数据点进行删除和拼接,这样可保证所测物体曲率较大处有较少的数据点,曲率较小处和复杂处具有较多的数据点。
数据采集方法及技巧
在实物测量中,会遇到各种复杂的形状,为保证所测量数据的准确性和所测量形状的完整性,采用的测量方法和测量工装是数据采集的关键。
1.翻模测量法
汽缸是汽油机的核心部件,它的形状及尺寸的准确性直接影响着汽油机的功率及对环境的污染程度。根据汽油机汽缸的特点,将其划分为两部分进行扫描,即分成气道、燃烧室。对燃烧室来说,在用线切割机床对汽缸进行适当切割剖分后可直接用接触探头扫描;气道的形状极为复杂而且细节极多,有许多细节部分接触探头无法达到,致使接触探头无法扫描。基于此种原因,对气道部分采用翻模测量法,将汽缸的气道用硅胶、石膏、树脂等材料进行翻模,然后用接触探头对翻制的模型进行扫描。由于硅欣、石膏、树脂的充型能力极佳、而且充型后变形小可较好地复制原来气道的形状。因而对翻制的模型进行扫描,可保证扫描的精度。
经反复实验,发现石膏在所有材料中的翻模精度最高,而且模型的表面质量与原件接近。在用接触探头扫描时,接触探头有一定的接触力,接触探头(特别是小直径探头)能划伤石膏模型,从而影响扫描的精度。为了保证扫描精度,采用特种胶粘剂(如:502胶)对石膏模型进行硬化。选用的胶粘剂要具有两种特性:一是,胶粘剂能在石膏模型表面形成一定厚度的渗透层,对石膏表面进行固化;二是,胶粘剂固化后,石膏模型表面要保持光滑,以保证扫描精度。
用翻模测量法测量的气缸点云数据及根据测量数据设计的汽缸如图1所示。
2.旋转测量法
对于某些零件可能需要完整地测量全部数据,这对于不带回转探头的Cyclone Series II测量机来说是一件困难的事情,但是该设备的随机软件具有回转测量功能,只要将Tracecut中的“辅助功能—参数调整—采集设备参数调整”中的“8216”项参数改为“on",便可激活三维数据采集的绕X、Y、Z回转对话框。这样利用普通的铣床同转头和一些简便的工具便可完成需要数万美元的数控回转头才能完成的工作,而且可较好地保证采集数据的精度。
在用普通回转头替代数控回转头时,要注意以下问题:①要正确地设置扫描基谁,将固定被测物体的回转轴设置为X或Y轴,并将基准点设置在回转轴上;②固定被测物体的回转轴要求有较高的同轴度;③在回转测量中,不能通过二维轮廓限制测量区域,在每回转一定角度并划分测量区域时,只能通过坐标区域限制;④在每次旋转时,所测量的数据均应包含回转轴的数据,便于以回转轴为基准进行数据拼接。
用旋转测量法测量的柴油机螺旋进气道的点云数据如图2所示。
在用石膏翻制模型时,要尽量避免石膏浆中含有空气,以免影响模型的表面质量,无法保证测量的精度。若发现石膏浆中含有较多气体,可将石膏浆放在真空设备中脱去气体。
在用旋转测量法测量时,为便于设置测量设备的基准点及基准轴,固定被测物体的回转轴一端截面为圆形,便于用普通铣床回转头夹持,另一端截面为正方形,便于固定被测物体,并有利于寻找回转轴的轴心。另外,为保证测量精度,回转轴两端要有较高的同轴度。