⑴ 地理信息系统的发展现状与趋势
一、国外GIS的发展历史与现状
地理信息系统(Geographic Information System,GIS)是以地理空间数据库为基础,在计算机软硬件支持下,对空间相关数据进行采集、管理、操作、分析、模拟和显示,并采用地理模型分析方法,适时提供多种空间和动态的地理信息,为地理研究和地理决策服务而建立起来的计算机技术系统。从外部看表现为计算机的软硬件系统,而其内涵却是由计算机程序和地理数据组成的地理空间信息模型,是一个逻辑缩小的、高度信息化的地理系统,计算机系统的支持是GIS的主要特征,使GIS得以快速、精确、综合地对复杂的地理系统进行空间定位和过程分析。
世界上第一个GIS是在1963年由加拿大测量学家R.F.托姆林森提出并建立的,称为加拿大地理信息系统,主要用于自然资源的管理与规划。稍后,美国哈佛大学研究出SY-MAP系统软件。但当时的计算机技术水平不高、存储容量小、磁带存储速度慢,使得GIS带有更多的机助制图色彩,用于地学分析和空间数据模拟的功能极为简单。
进入70年代以后,计算机软硬件技术飞速发展,尤其是大容量的存储设备——硬盘的使用,为空间数据的输入、存储、检索和输出提供了强有力的手段;高性能的图形显示器的发展,增强了人机对话和高质量图形显示功能,促使GIS朝着实用方向迅速发展。在此阶段的标志是一些发达国家先后建立了许多专业性的土地信息系统和地理信息系统,据统计70年代大约有300个系统投入使用,例如美国地质调查局从1970年到1976年建立了50多个信息系统,用于获取和处理地质、地理、地形和水资源信息;日本国土地理院从1974年开始建立数字国土信息系统,存储、处理和检索测量数据、航空像片信息、行政区划、土地利用、地形、地质等信息,为国家和地区土地规划服务;瑞典在中央、区域和城市三级建立了许多信息系统。一些商业公司开始活跃起来,软件在市场上受到欢迎,许多大学和研究机构开始重视GIS软件设计和应用研究,成立了各种GIS研究实验室。
80年代是GIS普及和推广应用阶段。随着计算机的迅速发展和普及,地理信息系统也逐步走向成熟,并在全世界范围内全面地推向应用阶段,第三世界国家也开始引进、应用和发展自己的地理信息系统。高性能微型计算机的问世,使得微机地理信息系统得到了蓬勃发展,并使地理信息系统工具具有更高的效率、更强的通用性和独立性,更少地依赖于应用领域和计算机硬件环境,为地理信息系统的建立和应用开辟了新的途径。GIS的应用从解决比较简单的规划管理问题(如道路、输电线等)转为更复杂的区域开发和决策问题,例如土地利用、沙漠化、城市化、环境与资源评价等。随着GIS与卫星遥感技术的结合,GIS开始用于全球变化与全球监测。80年代是GIS发展具有突破性的年代,仅1989年市场上有报价的GIS软件就达70多家,并涌现出一批有代表性的GIS软件,如:ARC/IN-FO、MicrostationSICAD、Genamap、System9等。
进入90年代以后,微机地理信息系统得到了迅猛的发展,并且性能也得到了极大加强,向综合性、智能性发展。GIS已成为一种新兴的确定性产业,投入使用的GIS系统,每2~3年就翻一番,GIS市场的年增长率大于35%,从事GIS的厂家超过300家。GIS已渗透到各行各业,愈来愈多的国际性会议以GIS为主题,愈来愈多的学术刊物以GIS为标题,愈来愈多的学科,如地理学、工程学、森林学、城乡规划、计算机科学、测绘学、航天遥感、矿床地质、水资源等都把GIS作为发展方向。国家和地区性的GIS研究中心在美、英等主要西方国家中建立。
二、我国地理信息系统的发展
我国地理信息系统的研制与应用始于70年代末期,它的发展基础是计算机制图、计算机技术、计量地理和遥感技术。
1978~1980年为准备阶段,主要是进行舆论准备,正式提出倡议,开始组建队伍和实验研究。
1981~1985年为起步阶段,主要是对地理信息系统进行理论探索和区域性实验研究,并在此基础上制定国家地理信息系统规范。1981年在四川渡口二滩进行实验,以航空遥感资料为基础,进行数据采集和数据库模型设计;1984年开始,国家测绘局测绘科学研究所着手组建国土基础信息系统;1985年国家资源与环境信息系统实验室成立。
1986~1993年为初步发展阶段,地理信息系统被列入国家“七五”攻关课题,取得了重要进展和实际效益,形成了比较系统的研究计划:研究资源与环境信息系统国家规范和标准,解决信息共享和系统兼容问题;开展全国性和区域性的信息系统的建立和应用模式研究;研制和开发软件系统与专家系统,全国建成了一批数据库、开发了一系列的空间信息处理与制图软件;完成了一批综合性、区域性和专题性的信息系统。
1994年以来为软件商品化阶段,在国外成熟软件在我国得到广泛应用的同时,带动了具有自主版权的国产地理信息系统基础软件的的崛起,一批起点高、功能强、价格低廉的国产软件相继研制成功,并推向市场。为客观地了解我国GIS基础软件的开发水平、开发现状和产业化前景,推动具有我国自主版权的GIS基础软件的健康发展,国家遥感中心、中国地理信息系统协会、中国海外信息系统协会从1996年开始对国产GIS基础软件和专项应用软件进行测评,从四年的测评结果来看,国产GIS软件的发展情况喜人,软件的功能、性能、品种和商品化程度都有了较大幅度的提高,完全可以在相关领域内实际应用,与国外优秀GIS软件的差距正在逐步缩小,个别领域已经超过了国外GIS软件,在微机(PC)GIS软件和某些应用领域具备了与国外软件竞争的实力。
三、地理信息系统(GIS)的发展趋势
GIS技术的发展已经取得了巨大的成就,并对社会的发展作出了巨大的贡献,但对人们的期望和要求来讲还远远不够,GIS的进一步发展应主要表现在以下几个方面:
1.多媒体地理数据的管理与操作管理
在一个多种数据类型并存的混合系统中,如何实现各类数据的随意操作和有效管理,这是现今信息媒体多元化新时代的一个突出问题,它比单一地图数据库的操作要复杂得多。信息资源库包括的主要内容有:地理数据库、专业数据库、图像库、文件库和声音库等。
2.数字制图技术
纸基地图在任何时候都是不可能被取代的,利用数字地图库直接生产纸基地图,即数字地图环境下的自动编图的核心是数字地图的自动制图综合技术,它比屏幕显示为目的的电子地图的制作要复杂得多,要处理各要素之间的关系,目前仍视为一个国际性的难题。此外,还应包括建立基于地图数据库和GIS技术集成的地图生产系统。
3.“3S”集成技术
GPS(全球定位系统)、RS(遥感)、GIS(地理信息系统)产生的时间不一,理论基础和技术特点也不尽一致,但它们的学科性质是相通的,即共同研究、表达和分析地球科学信息,在逐步发展过程中构成了相辅相成的关系,三者的结合覆盖了信息采集、处理和分析的全过程,使GPS、RS、GIS构成的卫星对地观测系统成为地球系统科学研究的重要手段。
4.空间可视化技术与虚拟现实技术
可视化是指运用计算机图形图像处理技术,将复杂的科学现象或自然景观,甚至十分抽象的概念图形化,以便于理解现象、发现规律和传播知识。虚拟现实也称虚拟环境或人工现实,是一种由计算机生成的高级人机交互系统,构成一个以视觉为主的可感知环境。空间可视化技术与虚拟现实技术可用于制作动态地图、地形环境仿真、地图设计制作等方面。
5.三维GIS和时态GIS技术
在地质、矿山、地下水、大气、环境等方面,人们不仅需要研究现象的二维分布,更需要研究其三维空间分布甚至与时间有关的时空分布特征和规律,因此,对于真三维和四维GIS的需求更加迫切,而真四维是在真三维的基础上增加时间维。
6.网络GIS和WWW GIS技术
由于万维网具有开放性和友好的用户界面,它迅速成为网络信息处理和分布的主要工具。在服务器端,GIS软件系统通过CGi(连接器)与万维网的HTTP(超文本传输协议)服务器相连;在客户端,有万维网浏览器以HTML(超文本标注语言)建立用户界面。
⑵ 数据规整的目的是什么,如何实现地理空间数据的规整
什么是GIS
物质世界中的任何事物都被牢牢地打上了时空的烙印。人们的生产和生活中百分之八十以上的信息和地理空间位置有关。地理信息系统( Geographic Information System, 简称 GIS )作为获取、整理、分析和管理地理空间数据的重要工具、技术和学科,近年来得到了广泛关注和迅猛发展。由于信息技术的发展,数字时代的来临,理论上来说,GIS可以运用于现阶段任何行业。
从技术和应用的角度, GIS 是解决空间问题的工具、方法和技术;
从学科的角度, GIS 是在地理学、地图学、测量学和计算机科学等学科基础上发展起来的一门学科,具有独立的学科体系;
从功能上, GIS 具有空间数据的获取、存储、显示、编辑、处理、分析、输出和应用等功能;
从系统学的角度, GIS 具有一定结构和功能,是一个完整的系统。
简而言之, GIS 是一个基于数据库管理系统( DBMS )的分析和管理空间对象的信息系统,以地理空间数据为操作对象是地理信息系统与其它信息系统的根本区别。
GIS即地理信息系统(Geographic Information System),经过了40年的发展,到今天已经逐渐成为一门相当成熟的技术,并且得到了极广泛的应用。尤其是近些年,GIS更以其强大的地理信息空间分析功能,在GPS及路径优化中发挥着越来越重要的作用。GIS地理信息系统是以地理空间数据库为基础,在计算机软硬件的支持下,运用系统工程和信息科学的理论,科学管理和综合分析具有空间内涵的地理数据,以提供管理、决策等所需信息的技术系统。简单的说,地理信息系统就是综合处理和分析地理空间数据的一种技术系统。
[编辑本段]GIS 的组成部分
从应用的角度,地理信息系统由硬件、、数据、人员和方法五部分组成。硬件和为地理信息系统建设提供环境;数据是GIS的重要内容;方法为GIS建设提供解决方案;人员是系统建设中的关键和能动性因素,直接影响和协调其它几个组成部分。
硬件主要包括计算机和网络设备,存储设备,数据输入,显示和输出的外围设备等等。
主要包括以下几类:操作系统 、数据库管理 、系统开发 、GIS ,等等。 GIS的选型,直接影响其它的选择,影响系统解决方案,也影响着系统建设周期和效益。
数据是GIS的重要内容,也是GIS系统的灵魂和生命。数据组织和处理是GIS应用系统建设中的关键环节,涉及许多问题:
——应该选择何种(或哪些)比例尺的数据?
——已有数据现势性如何?
——数据精度是否能满足要求?
——数据格式是否能被已有的GIS集成?
——应采用何种方法进行处理和集成?
——采用何种方法进行数据的更新和维护,等等。
方法指系统需要采用何种技术路线,采用何种解决方案来实现系统目标。方法的采用会直接影响系统性能,影响系统的可用性和可维护性。
人是GIS系统的能动部分。人员的技术水平和组织管理能力是决定系统建设成败的重要因素。系统人员按不同分工有项目经理、项目开发人员、项目数据人员、系统文档撰写和系统测试人员等。各个部分齐心协力、分工协作是GIS系统成功建设的重要保证。
GIS应用系统建设需要从以上五个方面着手。
[编辑本段]GIS 的应用领域
地理信息系统在最近的30多年内取得了惊人的发展,广泛应用于资源调查、环境评估、灾害预测、国土管理、城市规划、邮电通讯、交通运输、军事公安、水利电力、公共设施管理、农林牧业、统计、商业金融等几乎所有领域。
以下地理信息系统的应用领域分别回答了在各自领域内的作用
◆ 资源管理 (Resource Management)
主要应用于农业和林业领域,解决农业和林业领域各种资源(如土地、森林、草场)分布、分级、统计、制图等问题。主要回答“定位”和“模式”两类问题。
◆ 资源配置 (Resource Configuration)
在城市中各种公用设施、救灾减灾中物资的分配、全国范围内能源保障、粮食供应等到的在各地的配置等都是资源配置问题。GIS在这类应用中的目标是保证资源的最合理配置和发挥最大效益。
◆ 城市规划和管理 (Urban Planning and Management)
空间规划是GIS的一个重要应用领域,城市规划和管理是其中的主要内容。例如,在大规模城市基础设施建设中如何保证绿地的比例和合理分布、如何保证学校、公共设施、运动场所、服务设施等能够有最大的服务面(城市资源配置问题)等。
◆ 土地信息系统和地籍管理 (Land Information System and Cadastral Applicaiton)
土地和地籍管理涉及土地使用性质变化、地块轮廓变化、地籍权属关系变化等许多内容,借助GIS技术可以高效、高质量地完成这些工作。
◆ 生态、环境管理与模拟 (Environmental Management and Modeling)
区域生态规划、环境现状评价、环境影响评价、污染物削减分配的决策支持、环境与区域可持续发展的决策支持、环保设施的管理、环境规划等。
◆ 应急响应 (Emergency Response)
解决在发生洪水、战争、核事故等重大自然或人为灾害时,如何安排最佳的人员撤离路线、并配备相应的运输和保障设施的问题。
◆ 地学研究与应用 (Application in GeoScience)
地形分析、流域分析、土地利用研究、经济地理研究、空间决策支持、空间统计分析、制图等都可以借助地理信息系统工具完成。
◆ 商业与市场 (Business and Marketing)
商业设施的建立充分考虑其市场潜力。例如大型商场的建立如果不考虑其他商场的分布、待建区周围居民区的分布和人数,建成之后就可能无法达到预期的市场和服务面。有时甚至商场销售的品种和市场定位都必须与待建区的人口结构(年 龄构成、性别构成、文化水平)、消费水平等结合起来考虑。地理信息系统的空间分析和数据库功能可以解决这些问题。房地产开发和销售过程中也可以利用GIS功能进行决策和分析。
◆ 基础设施管理 (Facilities Management)
城市的地上地下基础设施(电信、自来水、道路交通、天然气管线、排污设施、 电力设施等)广泛分布于城市的各个角落、且这些设施明显具有地理参照特征的。它们的管理、统计、汇总都可以借助GIS完成,而且可以大大提高工作效率。
◆ 选址分析 (Site Selecting Analysis)
根据区域地理环境的特点,综合考虑资源配置、市场潜力、交通条件、地形特征、环境影响等因素,在区域范围内选择最佳位置,是GIS的一个典型应用领域,充分体现了GIS的空间分析功能。
◆ 网络分析 (Newwork System Analysis)
建立交通网络、地下管线网络等的计算机模型,研究交通流量、进行交通规则、处理地下管线突发事件(爆管、断路)等应急处理。 警务和医疗救护的路径优选、车辆导航等也是GIS网络分析应用的实例。
◆ 可视化应用 (Visualization Application)
以数字地形模型为基础,建立城市、区域、或大型建筑工程、着名风景名胜区的三维可视化模型,实现多角度浏览,可广泛应用于宣传、城市和区域规划、大型工程管理和仿真、旅游等领域。
◆ 分布式地理信息应用 (Distributed Geographic Information Application)
随着网络和Internet技术的发展,运行于Intranet或Internet环境下的地理信息系统应用类型,其目标是实现地理信息的分布式存储和信息共享,以及远程空间导航等。
[编辑本段]GIS常用
国外的:
AutoCAD Map3d
ArcGIS(包括ArcGIS, MapObjects, ArcIMS、ArcSDE、ArcEngine、ArcServer等)
MapInfo
GeoMedia
MGE
SmallWorld
国内的:
Supermap
MapGIS
GeoStar
TopMap
GeoBean
VRMap
MapEngine
[编辑本段]电力工业中的GIS
在电力工业中,GIS是指六氟化硫封闭式组合电器,国际上称为“气体绝缘开关设备”(Gas Insulated Switchgear)简称GIS,它将一座变电站中除变压器以外的一次设备,包括断路器、隔离开关、接地开关、电压互感器、电流互感器、避雷器、母线、电缆终端、进出线套管等,经优化设计有机地组合成一个整体。
GIS全称气体绝缘组合电器设备(Gas Insulated Switchgear),主要把母线、断路器、CT、PT、隔离开关、避雷器都组合在一起。就是我们经常可以看到的开关站,也叫高压配电装置。
高压配电装置的型式有三种:第一种是空气绝缘的常规配电装置,简称AIS。其母线裸露直接与空气接触,断路器可用瓷柱式或罐式。葛洲坝电厂采用的即是这种型式。 第二种是混合式配电装置,简称H-GIS。母线采用开敞式,其它均为六氟化硫气体绝缘开关装置。 第三种是六氟化硫气体绝缘全封闭配电装置。其英文全称GAS—INSTULATED SWITCHGEAR,简称GIS。
GIS的优点在于占地面积小,可靠性高,安全性强,维护工作量很小,其主要部件的维修间隔不小于20年。
⑶ 地理空间信息技术在智能交通中能发挥什么作用
地理空间信息技术在智能交通中能发挥的作用非常多,目前主要有:
民警信息管理功能——主要是对民警、民警所在组织的基本信息进行维护,维护的结果可供勤务安排、警用装备与交通设施的领用、交通管控等操作时查询和调用。
导入民警基础人事信息——该功能主要用以从人事管理系统定期导入民警基础人事信息,维护民警信息,查询统计民警信息,勤务管理,维护岗位。
系统提供分别基于GIS界面和窗体对岗位信息进行维护和查询的功能,以便及时记录所管辖的警区、岗位、备勤地点等岗位的设置及变更情况的功能。
勤务安排功能——可以建立一段时间内不同中队(民警)不同时段在不同岗位的勤务安排。
装备种类管理——警用装备是指一线执勤民警在执行警务时需要使用的装备,包括下列几大类:
警械:手枪、警棍、手铐、警绳等;
警用车辆:警用巡逻车、事故勘察车、领导指挥车等;
通讯装备:对讲机、车载终端、手持终端等;
装备基础信息维护——这个功能用以实现对警用装备的基础信息,如装备属性、类型、运行状态、售后服务等信息的维护,民警/警车警用装备配备情况记录。这个功能用以实现记录民警/警车所配备的警用装备信息。
分配车载终端——这个功能用以实现对特定定位终端分配相关号码,并将其分配给特定车辆和民警。
接报警地图辅助系统——结合指挥中心的GIS应用需求,基于平台的全局警用地理信息数据库和GIS应用服务,建立报警GIS应用系统,主要实现电话接警定位、周边警力分布查询、警视联动等功能。
固定电话报警定位——系统按照接警电话号码,在地图上自动定位到报警地址;并向接警调度 台返回案发地点所属的派出所辖区,以便于警力调度与处警。
手机接警定位——系统按照接警手机号码,在地图上自动定位到报警地址;并向 接警调度 台返回案发地点所属的派出所辖区,以便于警力调度与处警。
周边警力分布查询与调度——通过在报警点周围设置一定的周边缓冲半径,查询出该报警点周边半径范围 内警力(治安岗亭、派出所、GPS车辆等)分布情况及其属性信息,以便于警力调 度与处警。
交通违法案发统计专题图分析——根据发案时间、发案区域,对警情进行统计分析,生成等级渲染图、柱状图、饼图等。
GPS应用功能——结合交警局GPS系统,实时接收GPS车辆位置信息,实现对GPS车辆的信息查询统计、实时监控、越界报警和轨迹回放。
交通事故GIS应用
交通事故案件发案定位与案件查询——与交通事故工作平台案件库关联,实现案发点位置的地图精确定位和成图 显示;实现点选、框选、多边形选等多种形式的案件地图选择查询;
通过案件编号查询,实现案发地精确定位和属性显示。
交通事故串并案辅助分析(故意肇事)——通过选择案件串并条件:包括串并发案空间范围、发案开始结束时间、作案工具、作案对象、作案时机、作案手段、逃离方式、侵入方式等,分析得到系列串并案结果,实现串并案件的地图定位和属性显示。
常发性交通事故案件统计分析——与打防控系统案件库关联,实现常发性案件按发案区域(分局或大队辖区 或社区)、按案件类型以及按时间段的数量统计和空间分布分析,方便用户直观地分析出各类案件的空间发案规律和分布情况。
高危人群统计专题图分析——与高危人群管控库关联,对高危犯罪人群的空间分布情况进行统计专题图分析,生成等级渲染、饼状、柱状等人口分布专题图。
高危事故黑点分析——对某高危事故黑点事故情况按某个时段的时间顺序,在地图上标绘出其事故活动轨迹。
视频集成应用——平台可通过GIS接口集成全网交通视频监控系统,实现视频图像的网上点播、切换及控制功能。
基于GIS的公路网交通流动态监控功能——可以综合分析路网每条道路平均交通流量、平均车速、饱和度等指标,按照服务水平显示不同颜色,将六级服务水平划分合为三级,分红、黄、绿不同颜色显示。
基于GIS的重点目标车辆监控——重点目标车辆跟踪:接入GPS车辆定位系统,接收其定位信息,实时跟踪车辆,并在GIS地图上实时显示目标车辆行驶轨迹。
重点车辆历史轨迹显示:选择某一重点车辆,确定历史时间范围,显示在此时间范围内该重点车辆运行的历史轨迹。
重点车辆指挥调度:通过事件发生地点,自动匹配最近区域内的警用巡逻车辆,对该车辆发送指挥命令,在GIS地图上可全程查看事件处理情况。
基于GIS公路交通警情监控功能——交通拥堵、事故按照警情级别分三级分别用红、黄、绿三种颜色显示。警情类别包括:交通拥堵、交通事故、交通管制、道路维护改造、恶劣天气、危化品运输异常情况、群体性事件、车辆缉查布控报警。通过上报的各种警情信息,可结合GIS在电子地图上用不同图标标记,警情类别、级别等在GIS地图上展示一目了然。
交通诱导信息的发布功能——诱导信息发布:指挥员预定义或者即时录入诱导信息;也可以是集成平台对所采集的交通信息进行处理后发布的交通诱导信息,在有指挥员干预的情况下实现半自动交通诱导标志信息发布。
(1)指挥员人工发布交通诱导信息;
(2)交通诱导信息自动发布。
交通设备网管功能——当用户需要通过平台查询由交通设备情况时,可以双击GIS地图上的交通设备系统图标,系统显示该控制点的主要工作状态、属性等参数的当前值,也可以显示该控制点前端存储图片或视频等信息。若交通设备出现故障,GIS地图上相应坐标显示为故障状态,用户双击控制点图标,显示相关故障信息。
辅助决策功能——根据事件、案件等数据信息,实时对处置方案进行优化决策,与人工决策相结合,合理指挥调度执行系统的各种手段,并对案发地警力部署等进行分析,给出预警信息和警力合理部署的方案。主要有统计分析、事件分析,现场图像调览等功能。通过设置预案,提供特殊服务所需要的警员、警力配置,交通组织调度决策辅助,如为警卫任务和特勤提供专用路线。
应急指挥调度功能——该系统有编制出动方案、下达出动命令、应急过程的语言和数据实时记录、现场图像传输及调阅、文字传真及应急信息的综合管理等功能。系统能在接到重大警情后,自动识别主叫号码和地址,利用电子地图快速确定位置,得到周围道路、交通情况等信息,根据警力情况为指挥人员提供该位置的预设方案,并提供该方案的车辆最佳行进方案,供有关人员参考。方案确定后,集成平台系统通过网络(或其它通讯方式)下达出警命令。处置部门接到命令后,应产生相应出警信息给予相关人员,并回复监控中心,告知命令接收完成。系统通过可视化的指挥调度功能,主要是实现基于GIS的指挥调度信息的统一管理与集成,使在同一平台上完成多种业务操作,保证各业务支撑子系统支撑自动地快速地交换信息,实现指挥调度各系统的调动,为指挥决策提供依据。
联动控制——各关联系统之间的联动控制是指结合集成平台建设中系统的控制功能,实现多级复合型控制。
可以实现联动的系统有:交通视频监控系统、GPS车辆定位系统、智能卡口系统、交通诱导宣传系统、交通管理信息系统、移动警务系统、接处警系统。
可以与GPS车辆定位系统、公路车辆智能监测记录系统之间实现联动功能,当公路车辆智能监测记录系统触发报警,系统自动定位报警位置,并搜索附近区域内GPS车辆,再经过操作人员人工确认后调度相关GPS巡逻车辆进行围堵。
车辆行车轨迹分析——利用缉查布控系统接口查询缉查布控系统中报警车辆、通行车辆轨迹信息并在GIS地图中标注,并做伴随车辆相关分析。
治安卡口查缉布控——利用缉查布控系统接口查询缉查布控系统中报警车辆、通行车辆轨迹信息并在GIS地图中标注。
移动GIS可以完成以下功能:
1,通过GPRS上网连接后台服务端程序来实时传输在户外工作采集的数据到后台数据库。
2,可以实时发回PDA的GPS信息,在后台地图上直接定位PDA用户的位置,也可以下发PDA的经纬度信息让PDA用户定位和跟踪其它PDA用户,了解自己与其它PDA的位置关系,起到定位和跟踪的作用。
3,可以发回PDA当前所在地名如在天河城附近等,实现在外面工作就知道在何时何地上班打卡的效果,同时可以在后台为相应的PDA用户设置固定时长返回一次当前位置的GPS信息确保对相应PDA用户的定位,跟踪与监控。
4,移动GIS服务平台可以对PDA用户进行登记,注销等管理,在移动GIS服务平台登记的PDA用户才可登陆此服务器,依据IMSI和IMEI号来进行登陆验证,安全可靠GIS系统以空间数据库为基础,将应用数据与地图有机结合,提供强大的空间分析和查询功能,丰富的表达方式直观地显示结果。
⑷ 地理信息系统的基本功能有哪些
地理信息系统基本功能:
数据采集、监测与编辑;数据处理与变换(矢栅转换、制图综合);数据存储与组织(矢量和栅格模型);空间查询与分析(空间检索、空间拓扑、叠加分析、缓冲分析、网络分析等);图形交互与显示(各种成果表现方式)。
⑸ 地理空间信息服务研究现状
目前国内外在地理信息服务领域研究较多,主要分为下面三个方面。
1.3.3.1 地理空间信息服务标准化方面
地理空间信息服务标准化工作是地理空间信息服务得以稳健发展,高效互操作与集成的基础,得到了许多国际化组织和机构的关注,取得了不少研究成果。作为全球最大的空间信息、互操作规范的制订者和倡议者,开放地理信息系统联盟(OpenGISConsortium,OGC)已经认识到在地理信息领域中引入 Web 服务技术的重要性和紧迫性,对地理信息服务制定了一系列的规范,主要包括: 网络矢量数据服务(Web Feature Service,WFS)、网络栅格数据服务(Web Coverage Service,WCS)、网络地图服务(Web Map Service,WMS)、网络处理服务(Web Geoprocessing Service)、网络目录服务(Catalogue Service-Web)等地理信息服务的相关规范。以上这些规范既可以作为 Web 服务的空间数据服务规范,又可以作为空间数据的互操作实现规范。国际标准化组织 ISO/TC211 技术委员会在 ISO 19119 草案中也对地理信息服务的相关概念、标准做了规定。在 ISO/TC211 技术委员会和 OGC 组织制定地理信息服务的内涵和标准的基础上,越来越多的学者投入到地理信息 Web 服务研究中。然而,国内在地理空间信息服务标准化方面的研究人员和研究工作非常少。
1.3.3.2 地理空间信息服务模式及框架方面
国外 Panatkool(2002)介绍了一种基于 P2P 网格的分布式网络地理信息服务模式,在这个模式下,地理信息服务可以在节点间迁移。Onchaga(2006)研究了一种服务质量(QoS)支持的服务链方法,使得地理空间信息服务在发现、组合以及执行过程中能同时顾及功能性以及质量上的要求,并且构建了一个服务质量管理框架以对服务链中基础的概念,规则以及机制进行定义。Shu et al.(2006)提出了如下图 1.8 融合 OGC 技术和网格技术的地理空间信息共享架构。
图 1.8 于 OGC 服务的网格框架(Shu et al.,2006)
梁旭鹏等(2006)在分析了传统的解决空间信息共享与互操作方法存在的不足的基础上,提出从数据共享、功能互操作系统集成等多面考虑实现空间信息共享与互操作的设计思想,建立基于 Web 服务的分布式空间信息共享与互操作模型。陈应东(2008)提出了适合空间信息特点的空间信息服务模式组成结构,并详细论述了空间信息服务模式的基本组成要素和特征,以及模式之间的演变规律; 并在此基础上阐述了面向服务的空间信息服务活动过程的实现架构与运行流程,空间信息服务资源管理体系以及基于脱坡结构的描述服务之间关系的方法(陈应东,2008)。罗英伟等(罗英伟等,2003; 王文俊等,2005)设计了一个基于 Web Services 技术的、可实现城市空间信息服务集成与互操作的框架 - π 系统框架,系统由 6 个层次组成: 应用层、WWW 服务层、Web 空间应用集成层、空间应用集成服务层、元数据服务和空间信息服务层以及空间信息库层,系统给城市空间信息应用的开发者提供了一个二次开发的平台和应用系统的基础框架,屏蔽了城市空间信息应用的分布性和 GIS 平台的异构性,整个系统贯穿 Web Services 的概念,使系统具有良好的开放性,为支持其他 GIS 平台和空间信息服务提供基础。李琦等(李琦等,2002; 黄晓斌等,2004)在阐述空间智能体 GeoAgent 的概念、特点和行为等有关内容的基础上,提出基于 GeoAgent 的地理信息服务模式。该模式能够利用 GeoAgent 的优势来克服现有GIS 的不足,并通过与 Web 服务等技术相结合,为数字城市中地理信息服务的构建提供有效的方法和有利的支撑。汪洋等(2004)认为,区域性/全国性的海洋环境监测系统需要集成许多已有业务化运行的海洋信息系统,并且要为成千上万的应用系统提供服务,迫切需要一个支持分布式异构环境的海洋监测信息及服务集成框架来指导系统的建设。因此他提出了基于 XML,Web Service,Ontology 等技术的集成框架包括集成总线及 Adapter Serv-ice,元数据库及集成协调器与供二次开发的 API 及 Web Service 工具集。这一集成框架是开放的可扩充的,它实现了数据互操作,软件互操作与语义互操作,可以应用于大规模海洋监测系统的动态集成,并能有效利用网上丰富的涉海商业 Web 服务(汪洋等,2004)。
1.3.3.3 地理空间信息服务应用方面
这方面研究比较多,Best(2007)介绍了一种是通过在科学工作中使用地理空间信息服务的方法来实现动态环境中对海洋哺乳动物栖息地的预测。Hamre(2009)在 InterRisk项目(欧洲海洋海岸带环境风险互操作服务)中建立了基于网络地理信息服务的海洋污染监测与预报互操作服务,并成功运用于挪威、英国、爱尔兰、德国以及波兰的水域。Foerster et al.(2010)在网络服务环境下基于 OGC 的 WPS 服务实现了地理空间数据的地图综合以及模式转换。王兴玲(2002)对基于 Web 的地理信息服务模式以及相关方面的问题进行了初步的探索和研究,利用 XML(GML/SVG)和 Web Service 技术构建了一个基于 Web 的地理信息服务平台,并成功应用到 “北京指南”平台中。马林兵等(2003)提出了一个基于可重用 Web Services 技术在全球范围内解决 GIS 数据集成和共享问题的新方法,并应用于城市交通管理信息系统中。刘文亮等(2009)、杨峰等(2008),分别通过 Web Service 实现了在分布式环境下海洋标量场数据与矢量场数据的远程时空过程可视化。何亚文等(2009b)通过 Web Service 实现了网络环境下的 NDVI 的计算,研究了基于Web Service 的 Argo 数据服务框架及相应的实现方法,为用户提供透明的、 “一站式” 的Argo 数据 Web 应用(何亚文等,2009a)。
⑹ 地图服务和数据服务的区别
地图服务和数据服务的区别
答案:
网格GIS是空间信息网格的实现技术,具体讲是基于网格计算结构或网格服务结构实现空间数据共享及GIS功能共享的技术。OGC在网格GIS方面做了大量的工作,制定了一系列的规范和标准。根据相关规范,网格GIS主要包括三个方面的地理信息服务类型。(1分)
(1)网络地图服务:是将具有地理空间信息的数据制作成为地图提供给用户。地图的形式通常以图像的格式进行表达,如PNG、GIF或JPEG,也可以是基于矢量图形的,例如SVG。(3分)
(2)网络覆盖服务:支持网络化的地理空间数据的相互交换。与WMS不同,WCS提供给用户端原始的、未经可视化处理的地理空间信息。(3分)
(3)网络要素服务:未浏览器提供经过地理标记语言格式封装的地理空间数据,支持对地理要素数据的插入、更新、删除、查询和发现等操作。实现WFS的必要条件是要素必须在交互过程中使用GML进行表达。(3分)
⑺ 环保中的空间地理信息系统是一个怎么的系统
我认为空间地理信息系统是采用信息化技术和通讯定位技术对环境问题定位。然而智慧之间的空间地理信息系统利用网络、通讯、信息技术、3S(GPS GIS GRS)技术,整合各类环境信息资源,建立统一的环境信息资源数据库,将环保数据中心汇集在各级各类环保业务信息,完整准确地定位在信息相关的地理环境中,为环保管理者提供直观、高效、便捷、综合性的管理手段。
⑻ 地理空间数据集成
早期GIS系统几乎是完全独立的系统,拥有自己特定的软件组件、文件格式和自己专门采集的空间数据,不同GIS系统之间很少进行交互和集成。随着网络和数据库技术发展及GIS应用领域的扩大,发展了许多空间数据集成理论和方法。
根据侧重点的不同,地球空间数据集成的概念有如下几类:①GIS功能观点,认为数据集成是地理信息系统的基本功能;②简单组织转化观点,认为数据集成是数据层的简单再组织;③过程观点,认为地球空间数据集成是在一致的拓扑空间框架中地表描述的建立或使同一个地理信息系统中的不同数据集彼此之间兼容的过程;④关联观点,认为数据集成是属性数据和空间数据的关联。这些观点,从不同角度揭示出地球空间数据集成的多样性和综合性(李军,2000)。
按照数据集成的类型及实际应用中数据集成需求,地球空间数据集成分为4大类:①区域集成,指根据一定区域范围集成各种类型的数据(Eugene,1992);②专题集成,以要素作为数据集成主要指标的集成;③时间集成,以时间为集成主体,内容包括多时间尺度数据集成、时间序列数据集成等;④数据综合集成,即综合度差异数据之间的集成,从数据与其表达的地学过程空间尺度的关系分析即是多空间尺度数据集成。
这四类集成中每一类都包含具体的集成类型,其中数据的综合集成是最为复杂的一类,常规意义的制图综合和数据细化都包含在该类数据集成中。
按照数据集成模式可以把GIS数据集成分为3种模式:①数据转换模式,是经专门的数据转换程序进行不同数据格式的集成;②数据互操作模式,是根据OGC颁布的规范,所有数据源的软件(数据服务器)需要提供统一的数据访问接口以便数据客户进行访问,并处理数据客户的请求从而完成数据服务;③直接数据访问模式,指在GIS系统中实现对其他数据格式的直接访问、存取和分析,利用空间引擎的方法实现多源数据的无缝集成(宋关福等2000;闾国年等,2003)。
这三种集成模式各有利弊,其中,①模式是传统的一种模式,但由于不同数据格式描述空间对象时采用的数据模型不同,因而转换后不能完全准确表达源数据信息,此外由于这种数据格式转换的涉及输出和输入两个过程,相对比较复杂;②模式,由于实现各种数据格式宿主软件的数据访问接口,一定时期内还不现实,且对于数据客户来讲,同时需要拥有两种格式的GIS软件,并同时运行才能完成数据的互操作,给数据的集成带来了局限性,因此目前还有很大的局限性。而③模式虽然提供了更为经济实用的多源数据集成模式,是实现空间数据共享的理想方式,但由于构建成本比较大,且需要具备多源空间数据无缝集成技术和一种内置于GIS软件中的特殊数据访问体制,目前是相对比较困难且技术要求较高的集成模式。
综上所述可知,关于地理空间数据集成,目前主要集中于物理实现和逻辑模型层次上的集成方法,是从数据本身入手来研究数据集成,属一种微观的数据集成。因此,数据集成必须同时集成数据的语义,才能满足用户应用的需要。
2.2.1.1 接口规范与标准
自从20世纪70年代开始,许多国家加强了地理信息标准化工作,迄今,已取得了长足进步。国际上地理信息产业的标准和规范发展十分迅速,各国对地理信息产业的标准和规范空前重视,在地理信息标准化的研究和标准的制定方面合作十分密切,国际标准化组织地理信息技术委员会(ISO/TC211)和以开放地理空间信息联盟(OGC)为代表的国际论坛性地理信息标准化组织,以及CEN/TC287等区域性地理信息标准化组织,在其成员的积极参与下建立了完整的地理信息标准化体系,研究和制定出了一系列的国际通用或合作组织通用的标准或规范。国际地理信息标准化工作大体可分为两部分:一是以已经发布实施的信息技术(IT)标准为基础,直接引用或者经过修编采用;二是研制地理空间数据标准,包括数据定义、数据描述、数据处理等方面的标准。
我国于1997年成立了全国地理信息标准化技术委员会(CSBTS/TC230),负责我国地理信息国家标准的立项建议、组织协调、研究制定、审查上报等。
2.2.1.2 分布式空间查询处理技术
国际上的研究主要集中在分布式空间索引技术和分布式查询处理策略等方向上。英联邦科学与工业研究组织(CSIRO)的Abel和新加坡国立大学的Ooi等人(1995)基于分布式数据库理论中的半连接思想,首先研究了分布式空间数据库的空间连接查询处理问题,提出了空间半连接算子,并基于空间对象的一维索引结构,提出了一种空间半连接查询处理算法。新加坡国立大学的Tan等人(2000)将上述算法扩展到多维索引结构,并分析了算法在不同数据分布和网络带宽情况下的性能。实验结果表明,采用空间半连接操作可以极大地降低网络数据传输量,这对于网络带宽有限的分布式环境来说,如网络将很好地改善查询的整体响应时间。但是,空间半连接操作也带来了额外的CPU和I/O开销,在高速网络环境下,且传输数据量较小时,采用基于空间半连接操作的查询处理策略反而可能引起性能的下降。此外,还有学者研究了在并行计算体系结构下的分布式空间查询处理问题,Patel等(2000)提出在并行计算体系结构下的两种空间连接查询处理策略。
2.2.1.3 组织管理与集成体系结构
对于组织管理与集成体系结构即空间数据组织管理与集成技术研究,分为三个阶段:①传统的空间数据组织管理与集成阶段。②面向服务的空间数据的组织管理与集成阶段。③网格环境下空间数据的组织管理与集成阶段。海洋时空数据属于地理空间数据的范畴,但是由于海洋现象的复杂性、多样性以及海洋时空数据自身的特点,决定了海洋时空数据与其他空间数据的组织管理与集成有着很大的区别。
⑼ 空间信息的空间信息服务平台的技术路线
整个系统分为四大子系统:运营支撑子系统、数据管理子系统、空间信息资源共享子系统、空间信息服务子系统。
建立统一的基础空间数据共享服务平台,在公开数据结构基础上实现对影像数据、电子地图数据、DEM数据、图片数据以及其它(与空间位置相关)多媒体数据的入库、更新和维护管理,并提供基于大型商用空间数据库的公开数据存储方案。
实现统一的可视化综合基础空间数据共享服务平台展示。将遥感影像数据、矢量电子地图数据、DEM数据以及其他(与空间位置相关)多媒体数据进行有效的集成和充分展示,实现基础空间数据共享服务平台数据基本应用展示。
建立统一的基础空间数据共享服务平台共享接口,为市政府及各委办局提供数据共享服务。
⑽ 地理信息系统
地理信息系统是计算机科学、地理学、测量学和地图学等多门学科的交叉,它是以地理空间数据库为基础,采用地理模型分析方法实时提供多种空间的和动态的地理信息,为地理研究和地理决策服务的计算机技术系统。
从表现形式来看,GIS表现为计算机软硬件系统,其核心是管理、计算、分析地理坐标位置信息及相关位置上属性信息的数据库系统。它表达的是空间位置及所有与位置相关的信息,所以,GIS又是地球空间实体的再现和综合,其信息的基本表达形式是各种二维或三维电子地图。因此,GIS也可简单定义为“用于采集、模拟、处理、检索、分析和表达地理空间数据的计算机信息系统”。
(一)GIS发展简史
GIS最早起源于20世纪60年代“要把地图变成数字形式的地图,便于计算机处理分析”这样的目的。1963年,加拿大测量学家R.F.Tomlinson首先提出了GIS这一术语,并建成世界上第一个GIS(加拿大地理信息系统,CGIS),用于自然资源的管理和规划。那时的GIS注重于空间数据的地学处理。
20世纪70年代以后,随着计算机软、硬件水平的提高,以及政府部门在自然资源管理、规划和环境保护等方面对空间信息进行分析、处理的需求,GIS得到了巩固和发展。
进入20世纪80年代,GIS的应用领域迅速扩大,商业化的软件开始进入市场,其应用从基础信息管理与规划转向空间决策支持分析,地理信息产业的雏形开始形成。
20世纪90年代以后,伴随着计算机技术和网络技术的迅猛发展,GIS的应用也日趋深化和广泛,在国土资源、农业、气象、环境、城市规划等领域成为常备的工作系统。尤其是1998年“数字地球”的概念被提出以后,GIS在全球得到了空前迅速的发展,广泛应用于各个领域,产生了巨大的经济和社会效益。
我国GIS的发展自20世纪80年代初开始,以1980年中国科学院遥感应用研究所成立全国第一个GIS研究室为标志,经历了准备(1980~1985年)、发展(1985~1995年)、产业化(1996年以后)3个阶段。尤其是近年来,国内出现了不少优秀的GIS软件。
(二)GIS的最新发展
1.日趋与计算机信息技术融合
近年来随着计算机软、硬件技术和通信技术的高速发展,GIS技术也得到了迅速的发展和更广泛的应用,并日趋与主流IT技术融合,成为信息技术发展的一个新方向。
GIS发展的动力一方面来自于日益广泛的应用领域对GIS不断提高的要求;另一方面,计算机科学的飞速发展为GIS提供了先进的工具和手段。许多计算机领域的新技术,如面向对象技术、三维技术、图像处理和人工智能技术都可以直接应用到GIS中;同时,由于空间技术的迅猛发展,特别是遥感技术的发展,提供了地球空间环境中不同时相的数据,使GIS的作用日渐突出,GIS不断升级并能提供存储、处理和分析海量地理数据的环境。
组件式GIS技术的发展使之可以与其他计算机信息系统无缝集成、跨语言使用,并提供了无限扩展的数据可视化表达形式。
2.动态、多源、多维、网络化
最新GIS技术将逐渐摆脱先前的主要处理静态的、二维的、数字式的地图技术的约束,而从传统的静态地图、电子地图发展到能对空间信息进行可视化和动态分析、动态模拟,支持动态的、可视化的、交互的环境来处理、分析、显示多维和多源地理空间数据。其中,可视化仿真技术能使人们在三维图形世界中直接对具有形态的信息进行实时交互操作;虚拟现实技术以三维图形为主,结合网络、多媒体、立体视觉、新型传感技术,能创造一个让人身临其境的虚拟的数字地球或数字城市。
先进的对地观测技术、互操作技术、海量数据存储和压缩技术、网络技术、分布式技术、面向对象技术、空间数据仓库、数据挖掘等技术的发展都为GIS的发展和创新创造了新的手段。
(三)第四代GIS技术
随着计算机硬件性能的提高以及面向对象、网络和数据挖掘等主流IT技术的发展,在科技部有关部门的倡导下,目前国内学术界又提出了第四代GIS技术的概念。第四代GIS技术将主要有如下特点:
(1)支持“数字地球”或“数字城市”概念的实现,从二维向多维发展,从静态数据处理向动态数据处理发展,具有时序数据处理能力。
(2)基于网络的分布式数据管理及计算、WebGIS和B/S体系结构,用户可以实现远程空间数据调用、检索、查询、分析,具有联机事务管理(OLTP)和联机分析(OLAP)管理能力。
(3)面向空间实体及其相互关系的数据组织和融合,具有矢量和遥感影像数据互动等多源数据的装载与融合能力,可实现多尺度比例尺数据无缝融合与互动。
(4)具有统一的海量数据存储、查询和分析处理能力及基于空间数据的数据挖掘和强大的模型支持能力。
(5)具有与其他计算机信息系统的整体集成能力。例如与MIS、ERP、OA等各种企业信息化系统的无缝集成;微型、嵌入式GIS与各种掌上终端设备集成,如PDA、手机、GPS接收设备等。
(6)具有虚拟现实表达及自适应可视化能力,针对不同的用户出现不同的用户界面及地图和虚拟现实效果。
(四)GIS的应用
人类使用的信息中有80%与地理位置和空间分布有关,所以GIS具有非常广泛的应用。目前,GIS已经比较成熟地应用于军事、自然资源管理、土地和城市管理、电力、电信、石油和天然气、城市规划、交通运输、环境监测和保护、110和120快速反应系统等。
今后,GIS的应用将在市场分析、企业客户关系管理、银行、保险、人口统计、房地产开发、个人位置服务等领域得到广泛的应用,这些领域将是GIS产业发展的新的增长点。实际上,GIS的应用将加速度地深入人们的工作和生活的各个方面。GoogleEarth的流行就是GIS技术深入到日常生活每一个角落的明证。
由于地理信息在人类生活和国民经济中的重要作用,GIS在未来的几十年中将保持高速发展的势头,成为IT高科技领域的核心技术。
近几年来,随着移动通信技术的发展,GIS的应用范围迅速扩展到人们的日常生活中。集成GIS、GPS、GSM的技术已开始广泛应用于车辆安全防范系统和调度系统,为人们提供车辆反劫防盗、报警、道路指引、医疗救护以及在此系统平台基础上扩展各种电子商务增值服务。
以医疗救护为例,当患者向监控中心请求急救时,监控中心可以从GIS电子地图上查看到患者的具体位置,并同时搜索最近的急救车辆,让最近的车辆前去接患者。患者进入救护车后,监控中心可以通过双向通话功能,指导救护车上的医生实施救护治疗,同时通过GIS的最优路径功能,给救护车指引道路,使其以最快的速度到达医院或急救中心。而在救护车行进的过程中,患者的家属可以通过互联网立即上网查询救护车的行进位置及患者的状态信息。通过GIS,并结合GPS和GSM无线通信及网络,使患者、家属、救护车及医生之间建立了无缝沟通体系,最终使患者能得到快速、及时的治疗。
如果在车辆移动目标、家居固定点目标、重点保护单位甚至路灯上都安装了GPS、GSM或其他无线通信设备,那么我们在城市生活中,无论是开车、行走或者是在单位、在家里,都可以通过由GIS、GPS、互联网以及无线通信技术构成的综合服务系统获得急救、报警和各种商务服务,真正使我们处于立体的、全方位的数字化生活中,体验数字空间高科技价值。
GIS、RS、GPS等构成的空间信息技术将是未来发展最快的、最激动人心的领域之一,它结合通信及其他IT技术,为人类展现了一种全新的工作和生活模式(A.R.Mermut,H.Eswaran,2001)。当利用最新的GIS技术把城市、国家乃至整个地球都高度浓缩到计算机屏幕上的时候,人类对自己的命运和未来就有了更充分的把握。
(五)GIS与土地管理
GIS早已不限于地理学研究和应用的领域,目前已与各行各业和我们的日常生活产生了千丝万缕的联系,更重要的是它的应用领域还在不断扩大,甚至可触及企业信息化的过程中。
GIS应用于土壤科学的研究,它是现实世界的一个模型和模拟实现。土壤资源信息可以在GIS系统中进行存取、变换和对话式操作,作为土壤资源分类、评价、规划、管理与利用决策的依据,为土壤资源可持续利用服务。GIS应用于土壤学研究的各个方面,包括:①土壤制图技术及土壤采样技术;②土壤侵蚀预测与评价;③土壤资源污染与防治;④土壤养分流失评价;⑤土壤资源评价和管理;⑥作物生长模拟等。具体如1983年美国土壤保持局开发出农用土地评价和用地估计系统,系统中的农用土地评价包括土壤生产力的分等定级、土壤适宜性评价、土壤生产力潜力评价。1989年美国土壤保持局运用土壤信息系统保护土壤生态环境,控制土壤污染。1990年土壤侵蚀预测模型在土壤信息系统中已经能够成功运用,主要采用的分析手段有土壤侵蚀诺漠图、微机软件图、小溪河岸侵蚀诺漠图。
1.建立为农业生产服务的应用系统
如日本的农耕地土地资源信息系统,它包括了土壤信息系统、作物栽培试验信息系统、农业气象信息系统等子系统;保加利亚的计算机农业综合管理系统从20世纪80年代初开始运行。
进入20世纪90年代,GIS在土壤学研究领域的应用方面继续拓展,其作用和地位日益受到关注。从1994年开始的第15、16、17届国际土壤大会上持续讨论了土壤信息系统在持续农业和全球变化中的应用、土壤数据库的结构和联网等有关问题。同时,在应用上进一步趋向农业实际生产,直接服务于农场管理和经营,如进行农业技术咨询、牧场水源选点、作物生产管理、机械化施肥等方面。
中国的土壤工作者于20世纪80年代中期也开始进行土壤数据库建立、土壤信息系统的研制和应用工作。1986年底,北京大学遥感中心等主持了土壤侵蚀信息系统研究,建立了区域土壤侵蚀信息系统,这是我国较早关于土壤信息系统方面的研究。1989年,南京土壤研究所用两年时间研究了1∶50万东北三江平原土壤信息系统土壤图与数据库的建立;1990年,又研究了1∶5万江西红壤生态站土壤信息系统土壤侵蚀图;1991年,在“利用信息系统技术编制土壤退化图”研究中,应用从土壤土地数据库建立到土壤退化评价方法等一系列现代信息系统技术,编制出了实验区的土壤水蚀危害和风蚀评价图;1992年,又基本完成了海南岛土壤和土地利用信息库及信息系统制图工作。1991年,中国科学院沈阳应用生态研究所主持了“区域微机土壤信息系统的建立与应用”研究,在吉林省农安县的试验结果表明,这是一个简单但实用的土壤信息系统。1999年,胡月明等运用基本土壤数据库建立了红壤分类和评价的信息系统。
2.预测土壤空间变化及分布
由于GIS技术在土壤制图中的深入应用,怎样更准确地由有限的单个点位的土壤原始数据分析土壤属性的空间分布成为关注的焦点。具体来说,由于土壤数据库的信息来源于土壤分类、分色制图及制图的综合,产生了土壤空间分异类型的位移,而现代GIS技术又要求大量信息源,因此许多土壤科学家将兴趣集中到土壤空间变异性正确表达(即土壤图在GIS中的正确表达)的研究上。
(1)地形分析。Morre、Bourennane、Gessier和Oden等的研究均表明,某地区土壤属性与该地区的地形地貌特征和景观位置有明显的相关性,也就是与土壤的成土过程密切相关,可用下式表示:
中国耕地质量等级调查与评定(广东卷)
式中:
Si——土壤属性如土壤厚度、pH等;
i——由气候、母质、地貌历史、植被等因素决定的某地区海拔、坡度、坡形凹凸、水流长度和特定流域面积等原始地形数据可以通过一定精度的DEM计算出,复合地形数据,可以依经验判断或根据描述下垫面的物理发生过程的方程式进行简化。DEM可以由GIS技术生成,所以GIS的应用和地形分析可以提高土壤属性空间分布预测的精度。
(2)地质统计学与GIS的结合。GIS在存储、查询和显示地理数据方面发展得相当快,但在提供空间分析模块方面则发展得较慢。由于缺少通用的空间分析模块,使得GIS在解决某些空间问题中的应用受到很大的限制。
地质统计学是由南非矿山地质工程师D.G.Krige于1951年提出的,因此这一理论也以“克里格法”(Kriging)来命名,并由法国地质学家Dr.Matheron于1962年完善并创立。该学科在矿产储量研究方面起到了巨大作用。这是一种求最优、线形、无偏内插估计量值的方法(BLUE),在充分考虑信息样品的形状、大小及其与待估块段相互间的空间分布位置等几何特征以及品位的空间结构以后,利用变异函数(Varigram)为工具,对每一样品值分别赋予一定的权系数,加权平均来估计块段品位。
国内外土壤科学家已广泛地应用克里格法来预测非采样点的土壤属性,常用的方法有普通克里格法(OK)、泛克里格法(UK)、指示克里格法(IK)、协同克里格法(CK)、回归克里格法(RK)、点克里格法(PK)、块克里格法(BK)等。他们的研究还表明,在应用克里格法建立模型的时候,综合应用土壤和土地信息,如土壤分类、参比地区土壤属性、坡度、高程等,可以大大提高克里格法的插值精度,还可以降低由于测定大量样品而需要的成本,也可以减少由于样品点太少而带来的误差。我国从20世纪80年代开始利用克里格法研究土壤参数的空间变异性,2000年以后在这方面的报道已经越来越多。
近几年来,一些学者开始研究地质统计学和GIS之间的相互关系,并在GIS软件中提供一些空间分析功能。例如,美国圣巴巴拉NCGIA的SAN模型提供了在ArcGIS软件中计算和显示空间自相关和其他空间量的功能,二者的相互结合一方面可以大大加强GIS的分析功能,使大量数据所隐含的空间信息得以表达,发挥更大的作用;另一方面,也可以增强空间分析的能力。考虑到空间分析技术目前的发展十分迅速,新理论不断出现,空间分析模块已经成为GIS中的必选模块。