Ⅰ DEM 的表示方法
某地区地表高程的变化可用多种方法模拟。用数学定义的表面或点、线影像都可用来表示 DEM,如图 4-2 所示。
图 4-2 地表的表示方法
数学方法拟合表面时需依靠连续的三维函数,连续的三维函数能以高平滑度表示复杂表面。局部拟合法是将复杂表面分成正方形象元,或面积大致相同的不规则形状小块,根据有限个离散点的高程,可得到拟合的 DEM。尽管在小块的边缘,坡度不一定都是连续变化的,还是应使用加权函数来保证小块连接处的匹配,分段模拟已用于地下水、土壤特征或其他环境数据的表面内插图形法。
( 一) 线模式
表示地形的最普通线模式是一系列描述高程曲线的等高线。由于现有的地图大多数都绘有等高线,这些地图便是数字地面模型的现成数据源,用扫描仪在这些图上自动获取DEM 数据就可以了,另外是根据各局部等值线上的高程点,通过插值公式计算各点的高程,帆隐码得到 DEM。
( 二) 点模式
( 1) 人工网格法: 将地形图蒙上格网,逐格读取中心或角点的高程值,构成数字高程模型。由于计算机中矩阵的处理比较方便,特别是以网格为基础的地理信息系统中高程矩阵已成为 DEM 最通用的形式。虽然高程矩阵有利于计算等高线、坡度、坡向、山地阴影、描绘流域轮廓等,但规则的网格系统也有如下缺点,即: ①地形简单的地区存在大量冗余数据; ②如果不改变网格大小,无法适用地形复杂程度不同的地区。
( 2) 立体像对分析: 先进采样法( Progressive Sampling) 的实际应用很大程度上解决了采样过程中产生的冗余数据问题。先进采样法就是通过遥感立体像对,根据视差模型,自动选配左右影像的同名点,建立数字高程模型。在产生 DEM 数据时,地形变化复杂的地区,增加网格数量( 提高分辨率) ,而在地形起伏不大的地区,则减少网格数量( 降低分辨率) ( 周启鸣,2006) 。
高程态哪矩阵也和其他属性矩阵一样,可能因栅格过于粗糙而不能精确表示地形的关键特征,例如,山峰、洼坑、隘口、山脊、山谷线等。这些特征表示得不正确时会给地貌分析带来一些问题。
不规则的离散采样点可以按两种方法产生高程矩阵: ①将规则格网覆盖在这些数据点的分布图上,然后用内插技术产生高程矩阵。当然内插技术也可用来从一个粗糙的高程矩阵产生更精确的高程矩阵。②把离散采样点作为点模式中不规则三角网系统的基础。
( 3) 不规则三角网方法( TIN) : 对有限个离散点,每三个最邻近点联结成三角形,每个三角形代表一个局部平面,再根据每个平面方程,可计算各网格点高程,生成 DEM。
不规则三角网是产生携巧 DEM 数据而设计的采样系统。该 DEM 系统克服了高程矩阵中冗余数据的问题,而且能更加有效地用于各类以 DEM 为基础的计算。
不规则三角网数字高程由连续的三角面组成,三角面的形状和大小取决于不规则分布的观测点,或称节点的密度和位置。不规则三角网与高程矩阵不同之处是能随地形起伏变化的复杂性而改变采样点的密度和决定采样点的位置。因而能够克服地形起伏变化不大的地区产生冗余数据的问题,同时还能按地形特征点如山脊、山谷线、地形变化线和其他能按精度要求进行数字化的重要地形特征,获得 DEM 数据。
TIN 模型是在概念上类似于多边形网格的矢量拓扑结构,只是 TIN 模型没有必要去规定“岛屿”和“洞”的拓扑关系。TIN 把节点看成数据库中的基本实体,拓扑关系的描述,则在数据库中建立指针系统来表示每个节点到邻近节点的关系,节点和三角形的邻里关系列表是从每个节点的北方向开始按顺时针方向分类排列的。TIN 模型区域以外的部分由“拓扑反向”的虚节点表示,虚节点说明该节点为 TIN 的边界节点,使边界节点的处理更为简单。
TIN 网格数据包括三个节点和两个三角形,数据则由节点列表、指针列表和三角形列表三部分组成。区域中包括边界节点,故设置虚指针,其数值为 -3200。由于节点列表和指针列表包含了各种必要的信息和连接关系,因而能够满足多用途要求。对于坡度制图、山体阴影或与三角形有关的其他属性的分析等,都必须直接以三角形为基础。用三角形列表将每条有方向性的边与三角形联系起来就能完成上述分析。
DEM 生成的上述方法中,人工网格方法的精度低、工作量大,不宜采用; 立体像对分析要求有立体像对影像和特殊的软件,且运算时间较长,技术条件特殊; 三角网法在有足够离散点的情况下效果较好; 曲面拟合可反映总的地势,但局部误差较大; 等值线插值是用的比较普遍的方法,输入等值线后,可在矢量格式的等值数据基础上进行,插值效果较好。
Ⅱ DEM有哪几种常用的生成方法,它的主要优缺点是什么
DEM有哪几种常用的生成方法,它的主要优缺点是什么?
正确答案:规则格网模型(主要形式,如GRID),等高线模型,不规则三角网模型(TIN),层次模型(Pyramids,金字塔)(1)规则格网模型:优点:规则格网的高程矩阵,可以很容易地用计算机进行处理,特别是栅格数据结构的地理信息系统。它还可以很容易地计算等颂漏高线、坡度坡向、山坡阴影和自动提取流域地形,使得它成为DEM最广泛使用的格式.缺点:格网DEM的缺点是不能准确表示地形的结构和细部格网DEM的另一个缺点是数据量过大,给数据管理带来了不方便,通常要进行压缩存储。(2)等高线模型:优点:直观,便于理解;缺点:只表示离散的数据,不能表示连续的数值。不便于坡度计算、地貌晕渲等。(3)不规则三角网模型(TIN)优点:它既减少规则格网方法带来的数据冗余,同时在计算(如坡度)效率方面又优于纯粹基于等高悔樱局线的方法。缺点:1)在地形平坦的地方,存在大量的数据冗余;2)在不改变格网大小的情况下,难以表达复杂地形的突变现象;3)在某些计算,如通视问题,过分强调网格的轴方向。(4)层次模型:层次模型的存储问题,层次的数据必然导致数据冗余;自动搜索的效率,例如搜索一个点可能先在最粗的层次上搜索,再在更细的层次上搜索,直到找到碧让该点。
Ⅲ DEM是什么
数字高程模型(Digital Elevation Model),简称DEM,是通过有限的地形高程数据实现对地面地形的数字化模拟(即地形表面形态的数字化表达),它是用一组有序数值阵列形式表示地面高程的一种实体地面模型,是数字地形模型的一个分支,其它各种地形特征值均可由此派生。
DEM分辨率是DEM刻画地形精确程度的一个重要指标,同时也是决定其使用范围的一个主要的影响因素。DEM的分辨率是指DEM最小的单元格的长度。
(3)在地理信息系统中dem有哪些表示方法扩展阅读
由于DEM描述的是地面高程信息,它在测绘、水文、气象、地貌、地质、土壤、工程建设、通讯、军事等国民经济和国防建设以及人文和自然科学领域有着广泛的应用。
如在工程建设上,可用于如土方量计算、通视分析等;在防洪减灾方面,DEM是进行水文分析如汇水区分析、水系网络分析、降雨分析、蓄洪计算、淹没分析等的基础;在无线通讯上,可用于蜂窝电话的基站分析等等。
Ⅳ gis中表示和存储dem的方法
等高线、TIN、规则格网。gis中为了使表示和存储dem的方法更加简洁、方便,主要使用的是等高线、TIN、规则格网来表示和存储dem。GIS系统即地理信息系统是随着地理科学、计算机技术、遥感技术和信息科学的发展而发展起来的一个学科。在计算机发展史上,计算机辅助设计技术的出现使人们可以用计算机处理像图形这样的数据,图形数据的标志之一就是图形元素有明确的位置坐标,不同图形之间有各种各样的拓扑关系。
Ⅳ 地理学上的DEM是指什么
dem——数字高程模型(digital elevation model)。地形模型不仅包含高程属性,还包含其它的地表形态属性,如坡度、坡向等。dem通常用地表规则网格单元构成的高程矩阵表示,广义的dem还包括等高线、三角网等所有表达地面高程的数字表示。在地理信息系统中,dem是建立数字地形模型(digital terrain model)的基础数据,其它的地形要素可由dem直接或间接导出,称为“派生数据”,如坡度、坡向。
http://www.gissky.net/freshdetail.asp?ID=252
Ⅵ 什么是DEM
DEM离散单元法即Discrete Element Method的缩写,是一种显示求解的数值分析方法,该方法是继有限元法、计算流体力学(CFD)之后,用于分析物质系统动力学问题的又一种强有力的数值计算方法。
相对于FEM有限单元法,离散单元法一般认为是Cundall于1971年提出来的,它是一种显式求解的数值方法。该方法与在时域中进行的其他显式计算相似,例如与解抛物线型偏微分方程的显式差分格式相似。离散单元法也像有限单元法那样,将区域划分成单元。
(6)在地理信息系统中dem有哪些表示方法扩展阅读:
单元之间相互作用的力可以根据力和位移的关系求出,而个别单元的运动则完全根据单元所受的不平衡力和不平衡力矩的大小按牛顿运动定律确定。该方法是继有限元法、计算流体力学(CFD)之后,用于分析物质系统动力学问题的又一种强有力的数值计算方法。
离散单元法通过建立固体颗粒体系的参数化模型,进行颗粒行为模拟和分析,为解决众多涉及颗粒、结构、流体与电磁及其耦合等综合问题提供了一个平台,已成为过程分析、设计优化和产品研发的一种强有力的工具。
目前DEM在工业领域的应用逐渐成熟,并已从散体力学的研究、岩土工程和地质工程等工程应用拓展至工业过程与工业产品的设计与研发的领域。在诸多工业领域取得了重要成果。
随着离散单元法在工程应用的不断成熟,相关软件不断出现。EDEM是Favier博士创立的英国Dem—Solution公司的主导产品。
参考资料来源:网络-DEM