导航:首页 > 地理科目 > 地理物理会考C怎么办

地理物理会考C怎么办

发布时间:2022-01-22 00:29:46

❶ 举例论述数字信号处理理论在地球物理数据处理中的应用

数字信号处理理论内容很广,它在地球物理数据处理中的应用也很多,不知道dota002009 是想知道那种方法在地球物理数据处理中的应用。有小波变换、时频分析、还有反滤波方法(如,最小平方等)可以用来提高地震分辨率。还有虚谱法(也叫伪谱法),谱估计(如,高阶谱)可用来提取子波。去噪还有很多方法,具体就不多介绍了。
希望对你有帮助,若还有问题:请就你具体做的方面再说吧!

❷ 物理会考知识点高中

第1章力
一、力:力是物体间的相互作用。
1、力的国际单位是牛顿,用N表示;
2、力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;
3、力的示意图:用一个带箭头的线段表示力的方向;
4、力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;
(1)重力:由于地球对物体的吸引而使物体受到的力;
(A)重力不是万有引力而是万有引力的一个分力;
(B)重力的方向总是竖直向下的(垂直于水平面向下)
(C)测量重力的仪器是弹簧秤;
(D)重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心;
(2)弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力;
(A)产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力;
(B)弹力包括:支持力、压力、推力、拉力等等;
(C)支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向;
(D)在弹性限度内弹力跟形变量成正比;F=Kx
(3)摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力;
(A)产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力;
(B)摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;
(C)滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力;
(D)静摩擦力的大小等于使物体发生相对运动趋势的外力;
(4)合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力;
(A)合力与分力的作用效果相同;
(B)合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力;

❸ 中国地质大学地球物理学要学哪些科目

中国地质大学地球物理学专业基础主干课:工程数学、物理学、综合地质学、数字信号处理、应用地球物理系列课程、工程勘探、电工电子技术、计算机高级语言、面向对象程序设计方法、图形图像分析与软件设计及信息技术等。
主要实践性教学:实验物理、计算机程序设计、周口店教学实习、北戴河专业实习、毕业设计等。
学生毕业后就业于国土资源、能源、环境、水利、冶金、有色金属、电力、环保、信息技术等国民经济建设各部门和企业,以及相关科研机构和高等院校。

❹ 生物地理会考c级是多少分

c是60以上70以下。

A为优秀,分数段在总分的80%以上(含80%);

B为良好,分数段在总分的70%~80%(含70%);

C为合格,分数段在总分的60%~70%(含60%);

D为不合格,分数为总分的60%以下。

(4)地理物理会考C怎么办扩展阅读:

会考注意事项

一、考前

1、静心复习,系统梳理各科知识体系,做到心中有数,充满自信。

2、注意生活细节,不要改变已形成的生活习惯(如生物钟、饮食习惯等)。

3、保证良好的睡眠(尤其是考试前夜),以保证充足的体力和清醒的头脑。

4、注意安全,不要在考前受伤。

5、保管好自己的准考证,不丢失,不损坏,不污染。

6、爱护临时教室的公物,损坏两倍赔偿。

二、考中

1、遵守考场规则,尊重监考老师(切不可与监考老师发生冲突),服从监考老师的指令(在广播或监考老师发出“开始答题”指导令前不能答题),看清并认真填写答题卡的卷头内容。

2、认真审题,仔细答题,做到不急不躁,遇到不曾见过的题目,不要紧张,认真思考,沉着作答。

3、先做完选择题,再涂答题卡,认真核对,不要弄错顺序。

4、非选择题可直接答在答题卡上,不用先填试卷,再抄上答题卡,以节省时间,检查答题卡的填涂情况。

❺ 地球物理

(一)重力特征

重力密度参数:变质岩大于沉积岩,老地层大于新地层,界与界的地层间存在明显差异,如元古宇与中生界重力密度参数值分别为-0.14g/cm3、-0.07g/cm3,这一重力密度界面能反映出盆地构造、基底起伏变化特征。

1.地壳结构

由深地震剖面测深所得的地壳结构剖面(图1-4)表明,本区地壳结构模型以三层速度结构为主,即以稳定的地震相P°2、P°3、P°4为标志。P°2为地壳中间界面反射波,比较稳定;P°3为一梯度层,是下地壳弱界面反射波,可能是下地壳界面;P°4是莫霍面反射波,是壳幔间的重要界面,即莫霍面。上地壳为匀速层(速度梯度小),下地壳普遍为明显的梯度层。

在地壳结构剖面图中也可以看出,区内汤郎—易门断裂、元谋—绿汁江断裂、渡口—南华隐伏断裂均为切穿莫霍面的深断裂,普渡河断裂为切穿上地壳的深断裂。

2.重力异常特征

楚雄盆地内布格重力异常全为负值,场值由南东向-160×10-5m/s2向西降低至-250×10-5m/s2,总体形成由南至北场值缓变带,并在此带形成永仁—牟定北—武定和华坪—宾川场值升高地段及其二者之间的场值降低区域。

而滇中地区布格重力区域场垂向二阶导数异常,反映了同样的分布特点,浅层密度不均匀体的布格重力局部异常,在负背景场中形成宾川—祥云、华坪、姚安西、永仁、牟定北、武定、新平西7个局部重力高地段,以及元谋、双柏东、元谋南、大姚—永胜5个局部重力低地段,总体上构成永仁、牟定北、禄丰北、武定和华坪、宾川 祥云、姚安西两处重力高分布地段及其两者之间夹持的局部重力低分布地段,与深部重力场分布相对应,揭示了深部隆坳分布和浅层沉积盆地具有同向相关的特点和坳隆相间的台陷盆地构造格局(图1-5)。禄丰—武定铜铁多金属矿带则分布于重力高异常带内,与隆起的褶皱基底紧密相关。

3.地壳厚度

由重力资料反算地壳厚度编制的滇中红盆及邻区地壳厚度图(图1-6)可以看出,滇中红盆中部,即渡口—永仁—双柏,为一南北向展布的地幔隆起区,地壳厚度较小,为38~42km。其北东侧为地幔凹陷区,地壳厚度增至44~47km。西部期纳—大姚一带为地幔斜坡凹陷区,地壳厚度44~50km。莫霍面总体显示由南东向北西倾斜,北西部陡,南东部缓的特点。

(二)航磁异常特征

1.1﹕100万航磁异常特征

楚雄盆地即为元谋古隆起带西侧坳陷。楚雄盆地隆起带下部为一套稳定的强磁性刚性基底,推测为苴林群深变质杂岩系;坳陷带深埋基底磁性相对较弱,可能为昆阳群浅变质岩系组成;盆地基底埋深呈北高南低、东高西底的总趋势,绿汁江断裂以东基底埋深又增加,反映出本区域基底层因深大断裂产生断块不均匀台陷、倾斜和隆起的特征。

区域航磁异常为壳内磁性体的综合反映。滇中地区的航磁化极异常总体表现为在负背景场中呈南北向的带状、封闭状正负相间异常(图1-7)。在禄劝 昆明 晋宁以及楚雄盆地以东的永仁—牟定—楚雄和盆地以西的永胜—宾川—详云为3个正异常带,场值为50~200nT;正异常带之间的大姚—盐津和武定—禄丰—易门一带为负异常带,场值为-25~-100。总体上航磁异常与区域场垂向二阶导数异常特点类同,基本与布格重力异常反映的深部隆坳对应。

图1-4 滇中红盆东西向爆炸地震剖面图(据郭远生等,2008,修编)

图中未标单位的数字为地震波速(单位:km/s)

图1-5 滇中地区重力区域场垂向二阶导数异常示意图(据郭远生等,2008,修编)

反映浅层磁性不均匀体的局部异常则表现为负背景场中叠加的场值不一的局部正、负异常。局部正异常有华坪西、永胜、宾川和元江、新平西、楚雄南、牟定、永仁、武定北等,局部负异常主要有华坪、盐津、双柏、元谋、武定等,宏观上构成的局部磁力高地段和局部磁力低地段的分布格局与布格重力异常分布格局大致相同,从另一个侧面佐证了重力异常显示的滇中地区和楚雄盆地坳、隆相间的构造格局,揭示了永仁-楚雄一带与华坪一宾川一带和元谋以东环州盆地基底升降的差异性。前者反映的是磁性较强的苴林群(普登群)、大红山群,而后者反映的是磁性较弱的昆阳群。

图1-6 滇中红盆及邻区地壳厚度图(据郭远生等,2008.修编)

图1-7 滇中地区航磁化极区域场垂向二导异常示意图(据郭远生等,2008,修编)

楚雄盆地东侧的磁场值比西侧强,且场值盆地、西侧相同,往大姚—盐津一带降低。航磁异常显示,滇中砂岩铜矿床及铜矿化集中区,一般也分布于航磁化极正、异常过渡带,且靠向场值升高一侧,亦反映其形成与基底的相对凹陷相关。

而禄丰—武定地区的东川式铜多金属矿带则分布于航磁化极负异常区域,显示其与磁性相对弱的昆阳群褶皱基底层隆起关系密切。

2.1﹕2.5万航磁测量

1978年完成的1﹕2.5万航磁测量,完整地圈定出禄丰—武定地区的磁异常形态(图1一8)。该异常面积约60km2,为低缓的正异常,场值25~80nT,其范围包括鸡冠山、白石岩、小松坡、大美厂。南北长l1km,宽4~6km。鸡冠山以北为半环状的低缓负异常,场值25~80nT;鸡冠山与白石岩之间,为1km2的正异常中心地段,场值50~80nT。

图1-8 禄丰—武定铜铁多金属成矿综合地质图

其中,有C38(过水沟、大宝山)、C39(东方红)、C40(下狮子口)、C41(岔河、罗斯冲)、C42(邵家坡)、C50(白岭岩)及陆子沟(鹅头厂铁矿)异常都证明了与铜铁矿有关。

一碗水C58,强度230nT。25nT等值线范围约6km2,异常曲线北陡南缓,北侧有负异常伴生,并且在异常中心形成两个较高的峰值,呈双山峰式展布。1987年经地面磁法检查,50nT以上等值线由5个小异常构成,反映为多个磁性体的叠加异常,重力和次生晕剖面检查,反映出重磁同源的特征,并具鹅头厂式铜铁矿的元素组合特征,平均异常w(Cu)为469×10-6、w(Mn)为5782×10-6、w(Ni)为37×10-6,因此推断为深部次火山岩和磁铁矿引起。

白石岩C64异常,据磁异常特征推断为埋深350~1000m的倾斜薄板状强磁性层引起的异常,结合本区的磁性特征分析,深部有鹅头厂式铜铁矿体赋存的可能性较大。

(三)航空放射性伽马异常特征

如华坪、宾川、姚安及元谋等异常在空间上与碱性岩及花岗岩、斑岩分布地段相吻合,部分产出于苴林群、大红山群、昆阳群出露地段,多数沿平川街断裂、大姚一南华隐伏断裂及绿汁江断裂边缘产出,并与基底局部隆起相对应,反映出岩浆活动与基底构造关系密切。

(四)大地热流特征

滇中红盆和滇东地区同属中热流区,据汪缉安等(1990)的研究,大地热流的分布与热流值的变化、地幔蠕动性、构造活动性,以及大地构造单元的特点密切有关。滇中红盆是一个地幔隆起区,莫霍面深度为40~55km,中生代以来,印支运动、喜马拉雅运动、喜马拉雅运动对本区都有强烈影响。西侧丽江、剑川、大理一线和东侧安宁河断裂带自新生代以来一直都是地震强烈活动带。据汪缉安等(1990)所作云南500m 深地温图和云南1000m 深地温图,滇中红盆500m深地温为35~40℃,1000m 深地温为45~50℃,地热等值线大致沿渡口—楚雄为轴线,呈长椭圆形分布。但在一些断裂带附近,如程海断裂及小江断裂附近深度1000m的地温可高达150℃,所以本区总体上是一个中温地热区,而在几个深大断裂带上局部为高温热线与热点区。

❻ 求地球物理方面的论坛

http://petroforum.cn/forum-9-1.html
http://bbs.geonet.cn/

❼ 高二上学期物理会考怎么复习,哪些是重点

高中会考题都是比较简单的基础题,只要平时多看看书本和做书后练习题,把会考纲要的题目做一遍,就基本能及格。
物理知识要点主要有:
一、质点的运动(1)------直线运动
一)匀变速直线运动
1.平均速度V平=s/t(定义式)
2.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
3.末速度Vt=Vo+at
4.中间时刻速度Vt/2=V平=(Vt+Vo)/2
5.位移s=V平t=Vot+at2/2=Vt/2t
6.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2
7.有用推论Vt2-Vo2=2as
8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
二)自由落体运动
1.初速度Vo=0
2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算)
4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
(3)竖直上抛运动
a.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2)
b.位移s=Vot-gt2/2
c.有用推论Vt2-Vo2=-2gs
d.上升最大高度Hm=Vo2/2g(抛出点算起)
e.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:
(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;
(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;
(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动、万有引力
一)平抛运动
1.水平方向速度:Vx=Vo
2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot
4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2;合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,
位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
注:
(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;
(2)运动时间由下落高度h(y)决定与水平抛出速度无关;
(3)θ与β的关系为tgβ=2tgα;
(4)在平抛运动中时间t是解题关键;
(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。
二)匀速圆周运动
1.周期与频率:T=1/f
2.线速度V=s/t=2πr/T
3.角速度ω=Φ/t=2π/T=2πf
4.向心加速度a=V2/r=ω2r=(2π/T)2r
5.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合
6.角速度与线速度的关系:V=ωr
7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)
8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。
注:
(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;
(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。
三)万有引力
1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}
2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它们的连线上)
3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}
4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}
5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s
6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}
注:
(1)天体运动所需的向心力由万有引力提供,F向=F万;
(2)应用万有引力定律可估算天体的质量密度等;
(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;
(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);
(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s。
三、力(常见的力、力的合成与分解)
一)常见的力
1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)
2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}
3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}
4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力)
5.万有引力F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它们的连线上)
6.静电力F=kQ1Q2/r2 (k=9.0×109N•m2/C2,方向在它们的连线上)
7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)
8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)
9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)
注:
(1)劲度系数k由弹簧自身决定;
(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;
(3)fm略大于μFN,一般视为fm≈μFN;
(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;
(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);
(6)安培力与洛仑兹力方向均用左手定则判定。
二)力的合成与分解
1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成:
F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2
3.合力大小范围:|F1-F2|≤F≤|F1+F2|
4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)
注:
(1)力(矢量)的合成与分解遵循平行四边形定则;
(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;
(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;
(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;
(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。
四、动力学(运动和力)
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F´{负号表示方向相反,F、F´各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}
6.力的独立作用原理
7.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕
注:
质点平衡状态是指物体处于静止或匀速直线状态。
五、振动和波(机械振动与机械振动的传播)
1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}
2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}
3.受迫振动频率特点:f=f驱动力
4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕
5.机械波、横波、纵波〔见第二册P2〕
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}
7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)
8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大
9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)
10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}
注:
(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;
(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处;
(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;
(4)干涉与衍射是波特有的;
(5)振动图象与波动图象;
(6)其它相关内容:超声波及其应用〔见第二册P22〕/振动中的能量转化〔见第一册P173〕。
六、冲量与动量(物体的受力与动量的变化)
1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}
2.冲量:I=Ft {I:冲量(N•s),F:恒力(N),t:力的作用时间(s),方向由F决定}
3.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}
4.动量守恒定律:p前总=p后总或p=p’´也可以是m1v1+m2v2=m1v1´+m2v2´
5.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}
6.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}
7.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}
8.物体m1以v1初速度与静止的物体m2发生弹性正碰:
v1´=(m1-m2)v1/(m1+m2) v2´=2m1v1/(m1+m2)
9.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
10.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失
E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s相对子弹相对长木块的位移}
注:
(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;
(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算;
(3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);
(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;
(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。
七、功和能(功是能量转化的量度)
1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}
2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}
3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}
4.电功:W=UIt(普适式) {U:电压(V),I:电流(A),t:通电时间(s)}
5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}
6.汽车牵引力的功率:P=Fv;P平=Fv平 {P:瞬时功率,P平:平均功率}
7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)
8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}
9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}
10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt
11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}
12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}
13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}
14.动能定理(对物体做正功,物体的动能增加):
W合=mvt2/2-mvo2/2或W合=ΔEK
{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}
15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh2
16.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP
注:
(1)功率大小表示做功快慢,做功多少表示能量转化多少;
(2)0°≤α<90°做正功;90O<α≤180O做负功;α=90°不做功(力的方向与位移(速度)方向垂直时该力不做功);
(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少
(4)重力做功和电场力做功均与路径无关(见2、3两式);
(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化;
(6)能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;
*(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。
八、分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米
2.油膜法测分子直径d=V/s {V:单分子油膜的体积(m3),S:油膜表面积(m)2}
3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。
4.分子间的引力和斥力
(1)r<R0,F引<F斥,F分子力表现为斥力
(2)r=r0,f引=f斥,F分子力=0,E分子势能=Emin(最小值)
(3)r>r0,f引>f斥,F分子力表现为引力
(4)r>10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0
5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}
6.热力学第二定律
克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);
开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出〔见第二册P44〕}
7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}
注:
(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;
(2)温度是分子平均动能的标志;
(3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;
(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;
(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0
(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;
(7)r0为分子处于平衡状态时,分子间的距离;
(8)其它相关内容:能的转化和定恒定律/能源的开发与利用、环保

❽ 地球物理探测方法

常用的地球物理方法与探测垃圾填埋场所使用的方法基本相同,有直流电阻率法(DC)和甚低频电磁法(VLF-EM),瞬变电磁法(TEM),激发极化法(IP)。探地雷达(GPR),浅层地震反射,井中CT(跨孔电阻率成像法)等方法的应用也逐渐增加。从国内外大量成功事例来看,直流电阻率法(含高密度电阻率法)仍然是应用最广泛,效果最显着的方法之一。电阻率法是测量地下物体电性特征的方法,它与孔隙度、饱和度、流体的导电性密切相关,电阻率法已被广泛应用于地下水、土的污染调查。特点是垂向分辨率高,探测深度有限。

实例一

土耳其某垃圾场地下水污染电阻率法调查。场地地质情况:露天垃圾堆放场位于土耳其某市东南,这一地区是土耳其重要的水源地之一。第四纪的冲积层厚达100 m,主要以渗透性良好的卵砾石、沙和粘土组成,是当地的主要含水层,地势西南高,东北低。垃圾未经任何处置,直接露天堆放在上面。垃圾堆下面也没有任何的渗漏液收集系统。据调查,有2/3的含水层已受到不同程度的污染。水中NO3的含量是世界卫生组织限定的饮用水标准的5倍以上。电法勘察的目的是调查污染的范围,为布置监测孔提供最佳的位置。采用的方法有电阻率法(DC)和甚低频电磁法(VLF-EM)。在垃圾场的下游垂直地下水流向的方向布置了11条剖面,每条剖面200~250 m长不等(图8.3.4)。剖面间隔40 m,斯伦贝格排列,试验了从0.5~30 m 6种电极距的效果。从图8.3.5看出,0.5 m极距的视电阻率测量结果以很高的视电阻率为特征,主要反应的是表层的较大的卵砾石层,含水量少。极距为1 m和5 m的视电阻率结果主要反应了饱气带内地下水不饱和情况的电场特征,与0.5 m也没有太大差别,只是在横向上有一点不同。10~25 m电极距反应了地下污染源的电场特征,在图的东北角,视电阻率降为10 Ω·m,是污染的发源地,而表层的视电阻率在1000 Ω·m以上,视电阻率差异十分显着。

图8.3.4 测线布设位置示意图

图8.3.5 不同极距的视电阻率测量平面图

实例二

中国北方某市的两处垃圾填埋场渗出液的实测电阻率分别为0.39 Ω·m和0.40 Ω·m,远远低于自来水的电阻率23 Ω·m(表8.3.7)。与日本Boso Peninsula垃圾场的测量

表8.3.7 垃圾填埋场渗漏液电阻率测试结果

结果很相近。与清洁的自来水电阻率32.040 Ω·m相比,二者相差80多倍。含水土层的视电阻率在10 Ω·m左右,与上述土耳其的例子相当,这就为电阻率测量提供了充分依据。测量装置见图8.3.6,计算公式如下:

环境地球物理学概论

式中:S为水样的横截面积;I为电流;V为电压;L为MN间的距离。

(1)北京阿苏卫垃圾填埋场渗漏检测

这是北京兴建的第一个大型垃圾卫生填埋场,位于北京市昌平县沙河镇北东约6 km,地处燕山山脉以南的倾斜平原地带,山前冲洪积扇的中上部位,是城区地下水及地表水的上游部位。该区基底为第四纪洪积层,有粘土、粉质粘土、沙土、中细沙层。粘土层渗透系数为1.0×10-8 cm/s~9.42×10-7cm/s,隔水性好,但局部有渗透系数达1.84×10-3cm/s的粉沙土透水层,区域地下水由北西流向南东。日处理垃圾2000 t,全机械化操作,属现代化卫生填埋场,底部为不透水的粘土层,厚度0.4~1.4 m不等,反复压实作为隔水层,设有渗沥液收集系统,周围设有观测井。堆场向下深4 m,计划垃圾堆高40 m。

在北京市政管理委员会的支持下,第一次利用地球物理探测方法进行渗漏检测,在同一条剖面上选用了高密度电阻率法、瞬变电磁法、探地雷达法、地温法及化学分析法。

测线布置在地下水下游方向,填埋场的南侧,南围墙外面,并与南墙平行,相距8 m,测线长660 m(图8.3.7,彩图)。

用美国SIR-10A探地雷达仪,100 MHz屏蔽天线,时窗400 ns。地温法采用日本UV-15精密测温仪,仪器精度0.1℃。化学分析样取1.5 m深土样,实验室用气相色谱分析三氯甲烷、四氯化碳、三氯乙烯和四氯乙烯等有机污染物。这三种方法的测量结果,都没有异常显示。说明该区地表粘土层比较致密,渗透性不好。

高密度电阻率法,使用E60B仪器,电极距3 m,斯伦贝格排列,同时沿剖面布置60个电极。数据经预处理后,进行二维反演。勘测深度15 m。视电阻率的水平距离深度剖面见图8.3.8(彩图)。

由图可见,在4~8 m深度有一层高阻(>30 Ω·m)层,但并不连续,反应了本区粘土层的特征。垃圾渗沥液由局部透水层渗入深部。在220~240 m处9 m深度以下的低阻(<10 Ω·m)体,经钻井证实为垃圾渗漏液污染的结果。已于2002年开始施工,做地下水泥防渗墙处理。

图8.3.6 测定垃圾渗漏液电阻率的装置

(2)北京某垃圾填埋场的渗漏探测

垃圾填埋场是近年兴建的大型卫生填埋场,底部铺设有塑胶衬底的防漏层,有渗沥液收集装置,有效填埋面积19.6×104 m2(300亩强),日填埋垃圾2500 t,设计封顶高度为30m。基底为第四纪松散沉积物,厚度在100 m左右,第一含水层顶深10~20 m,厚度5~10 m,粗沙到细沙;第二含水层顶深20~30 m,厚度9~25 m,沙砾石层,渗透系数40~200 m/d。第三含水层顶深38~60 m,厚度8~15 m,以中粗沙和砾石为主。地下水由西北流向东南。现已下降形成漏斗。浅层水质较差,不能饮用。

根据渗沥液的电阻率值差异,主要使用高密度电阻率、瞬变电磁法以及探地雷达方法。考虑到地下水流方向,三条测线布置在填埋场的东南方向,测线I位于东侧,距填埋场平均27.5 m(长400 m);测线Ⅱ和测线Ⅲ在填埋场南侧,测线Ⅱ距填埋场平均35.5 m(长741 m);测线Ⅲ距填埋场15 m左右(长700 m)。测线Ⅱ高密度电阻率法距离深度剖面结果示于图8.3.9(彩图)。垃圾填埋场地表深5~10 m主要是干砂质粘土层,电阻率比较高,向下测到的电阻率低(<15 Ω·m),应当是垃圾渗漏液。根据阿尔奇法则ρ·a·φ-m,式中:a=1;m=2;ρ=0.39。土壤孔隙度φ取30%,则ρ=4.4与剖面中ρ=5是很接近的。说明低阻区是渗漏液的地下分布。在垃圾场东边,剖面I10~15 m以下有渗漏区(A1.1;A1.2)。在垃圾场南边,10 m以下有渗漏区,剖面Ⅱ(图8.3.9)中可划分出3个较大的异常段(A2.0,A2.1,A2.2)及几个小异常体。渗漏液异常分布清晰可见。

电磁法(EM):电磁法一般用来圈定淡水和咸水的界限,对地下水研究应用较多的是瞬变电磁法(TEM法)和探地雷达法(GPR法)。在我国北方某市垃圾填埋场渗出液检测证明TEM是有效的,瞬变电磁法沿测线Ⅱ进行的,仪器为长沙白云仪器开发公司研制的MSD-1脉冲瞬变电磁仪,采用20 m×20 m供电线圈工作,目的在于了解较深部情况。测量结果如图8.3.10(彩图)所示。在深40 m以下,有三个异常区段,即A2.0(0~15 m);A2.1(50~60 m);A2.2(80~100 m)。揭示了渗漏液污染范围在向深部扩展。

实例三

废弃物填埋场为了防止渗漏,常用塑料作为衬底,形成隔离层,比单纯的依靠粘土层作为隔离层要有效。但由于废弃物中常混有尖硬物质或在堆放废弃物时层层压实,遇到局部软(硬)土而受力不均,使污水由漏洞流出。常规的标准方法是污水示踪,或监测污水压力变化,这样做时间长,而且要大流量时,才是有效的,也很难提供进行修补的确切位置。

应用适当布置电极位置的电阻率法,可以准确测定漏洞位置(Willianl Frongos,1997)。有塑料膜衬底的废物填埋场,正在使用,两个供电电极,一个放在填埋场内(A),一个放在塑料膜之外(B),可以放置在足够远处,如图8.3.11所示。驱动电流流过漏洞,漏洞就是电流源。填埋场内废物的电阻率由于正在填埋,很不稳定,一般为2~10 Ω·m。面积为1 m2,厚度为1 mm埋入地下的聚乙烯膜的电阻率为10000 Ω·m,衬底外土壤是导电的,电阻率为20 Ω·m。对于一个漏孔的平面塑料膜而言,在均匀半空间的表面上,点源用格林函数可以描述通过漏孔流过电流引起的电位。如果孔径不大,则电流(U)可写为

环境地球物理学概论

式中:I为通过漏孔的电流(为总电流的一个分量);ρ为基底土壤电阻率,R是漏孔与源之间的距离;c为常数,代表参照电极的任意电位。

图8.3.11 漏洞探测观测系统工作原理图

图8.3.12 点源(漏孔)电流归一化电位图

图8.3.12是漏孔上的电位函数的图示,其观测网为30 m×24 m,观测点间距1 m。孔位(点源):x=14 m,y=11 m,z=0,电极进深0.5 m。

用这个方法在斯洛伐克一个填埋场,发现6个漏洞,其中5个较小,属点源异常;一个较大的裂口,6个异常都被开挖证实。进行了修补(修补后异常消失),观测确定的漏孔位置平均误差约为30 cm。

如果填埋场衬底塑料膜不是一层,而且漏洞不在同一位置,要测定每层塑料膜漏洞位置,难度要大一些。如图8.3.11所示,可以分层跨层分别布置电极,如在测第一层塑料膜漏洞时应当将B电极放在第一层与第二层塑料膜之间的导电物质之中。

实例四

澳大利亚北部有一个铀矿山,1980年开始开采,计划于2005年关闭。在开采过程中,大量的废渣和废液被滞留在尾矿坝中。现在发现尾矿坝中富含Mg2+和的废水,沿着地下裂隙和断裂,发生渗漏,在周围一些地表的植物中已检测出上述离子浓度有明显增加。从钻孔水文调查结果发现,废液的渗漏是广泛和无规律的。这已对当地的自然环境构成严重危害。矿业公司为调查渗漏情况,采用了多种物探方法:自然电位法(SP)(也称氧化 还原法)、激发激化(IP)法、直流电阻率法(DC)、瞬变电磁法(TEM)。研究区的地质构造情况和测线布置见图8.3.13。已有的测量结果表明:在河床地带的片麻岩的电阻率在1900~8300 Ω·m,地表沉积物的厚度在2~5 m之间,粉砂质粘土和粘土的电阻率在0.1~600 Ω·m范围。对当地的水文地质情况的调查结果发现,主要有两个含水层:第一含水层是地表粘土和风化后的岩石,厚度在20 m;第二含水层实际就是基岩中的断裂带。两套含水系统是互相连通的。地下水位的升降随季节而变化,在干燥季节,水位的日下降幅度在12~14 mm。在丰水季节,地下水位的日上升幅度在14~40 mm之间。枯水期与丰水期地下水位的相对落差为2~3 m。

图8.3.13 研究区位置及主要的地质构造分布

在测线1、测线2、测线3分别进行了自然电位、直流电阻率法、激发激化法测量,并重点分析了测线的直流电阻率法、激发激化法测量结果以及二维(2D)自然电位的结果。

激发激化法测量:斯伦贝格排列,31个接收电极,由一根电缆与接收机相连。极距10 m,一个发射电极距测线1.7 km(视为无穷远),另一个发射电极置于两接收电极之间,随测线一同向前移动。电极排列见下图8.3.14,剖面布置见图8.3.15(彩图)。发射电极AB和接收电极MN以n×a的距离同时向两边移动,获得测线上电阻率随深度的测深剖面。

在图 8.3.16(彩图)中,有三个比较大的近地表异常,中心位置分别是 8370 E,8525 E,8650 E。前两个异常是由粘土和粉砂质粘土层引起的,第三个异常紧邻南北向的2 a断裂,认为是渗漏引起的异常。其次,可以看出,从西到东,激电异常有增加的趋势,从距测线1(距测线3约150 m)的钻孔地下水的化验结果发现地下水中Mg2+和的浓度向东逐渐升高,证实了激电的结果。

图8.3.17(彩图)是电阻率观测结果,在8250E、8300E和8350E处呈低电阻率异常。前一个异常与片麻岩和眼球状片麻岩地质单元的交界处对应,视为地层差异引起的异常。8300E异常正好位于一个灌溉用的水管下面。8350E和8500E的低阻异常都与当地的灌溉有关。8550E处的高阻异常正好对应于片麻岩地层。

从激电法和直流电阻率法的测量结果来看,激电法对地表污染(2~5 m)的反应没有电阻率法灵敏,这是由于在很小的极距下(10 m)地表污染还不足以产生明显的激电效应,相对于地下含有高浓度的污染物而言,被污染的粘土层和地下水更容易产生明显的激电效应。

图8.3.14 斯伦贝格排列

图8.3.18(彩图)是在不同的时间观测到的自然电场变化,尽管图形在形状上略有差异,但基本上保持了很好的一致性。为了避免其他方法的干扰,测量是在激电法和直流电阻率法结束后进行。对自然电法的解释需结合实际进行,因为自然电场的场源不固定,受地下水水力梯度,水中离子浓度的综合影响。在靠近断层的地方,显示高电位。其次,还进行了电磁法测量:50 m单线圈,25 m点距。视电阻率的反演精度小于1%(图8.3.19,彩图),与电阻率法、自然电位法有良好的对应关系。

❾ 与地球物理有关的 C语言程序

一个球从10米高空落下,落地后反弹高度是原高度的一半,下落高度与时间的函数关系是h=1/2*g*t^2,球与地面碰撞第十次时小球经过的路程和所用的时间,请编程解决问题。(设当地的重力加速度是9.8m/s^2。)

阅读全文

与地理物理会考C怎么办相关的资料

热点内容
word中化学式的数字怎么打出来 浏览:720
乙酸乙酯化学式怎么算 浏览:1387
沈阳初中的数学是什么版本的 浏览:1332
华为手机家人共享如何查看地理位置 浏览:1025
一氧化碳还原氧化铝化学方程式怎么配平 浏览:864
数学c什么意思是什么意思是什么 浏览:1387
中考初中地理如何补 浏览:1274
360浏览器历史在哪里下载迅雷下载 浏览:683
数学奥数卡怎么办 浏览:1365
如何回答地理是什么 浏览:1003
win7如何删除电脑文件浏览历史 浏览:1035
大学物理实验干什么用的到 浏览:1464
二年级上册数学框框怎么填 浏览:1678
西安瑞禧生物科技有限公司怎么样 浏览:900
武大的分析化学怎么样 浏览:1229
ige电化学发光偏高怎么办 浏览:1317
学而思初中英语和语文怎么样 浏览:1625
下列哪个水飞蓟素化学结构 浏览:1406
化学理学哪些专业好 浏览:1469
数学中的棱的意思是什么 浏览:1034