① 测绘科学的学科介绍
大地测量学:测绘学和地学领域的基础性学科
(一)现代测绘基准体系
现代测绘基准体系,是为地理空间信息的获取提供空间位置、高程以及重力等方面的起算依据。它由相应的参考系统及其相应的参考框架构成。提供空间位置起算依据的是大地测量参考系统和大地测量参考框架,国际上几乎所有发达国家都在采用国际地球参考系统(ITRS)和国际地球参考框架(ITRF)。近十年来,我国也在利用空间观测技术,建成了2000国家GPS大地控制网,并完成了该网与全国天文大地网的联合平差工作,使2000国家大地坐标系(即CGCS2000)不仅有明确的定义,而且具有高精度的参考框架。
我国的高程基准采用1985黄海高程系统,基准是青岛水准原点及其高程值。其参考框架则为国家一、二等水准网。高程基准的另一种表现形式是海拔高程(正高或正常高)的起算面,我国采用CQG2000似大地水准面。关于重力基准,国际上有波茨坦重力系统和国际重力标准网(IGSN71)。我国目前采用2000国家重力基本网作为重力基准。
(二)卫星导航定位技术
GPS系统美国已制订出到2020年的“GPS现代化规划”。其实质可归纳为以下三个方面,即“3P”政策:一是保护(Protection);二是阻止(Prevention);三是保持(Preservation)。欧洲空间局( ESA) 已经最终确定了包括30颗Galileo卫星的空间构形和相应地面控制站布设的最有效的方案。同时确定了Galileo和外部系统的关系。预计2010年以后系统投入正式运行。俄罗斯目前正在着手GLONASS系统维护与更新建设工作,并进行了整体规划,开发新一代GLONASS-M卫星,增长卫星寿命和提高卫星性能,使星座卫星数量达到24颗。我国正在发展北斗二代卫星导航定位系统,卫星星座设计考虑到准备向全球导航定位系统过渡。
GPS技术的定位方法的进展主要体现在,一是精密单点定位技术(Precise Point Positioning),可以利用国际GPS地球动力学服务局(IGS)预报的GPS卫星的精密星历或事后的精密星历作为已知坐标起算数据,同时利用某种方式得到的精密卫星钟差来替代用户GPS定位观测方程中的卫星钟差参数,这样用户利用单台GPS双频双码接收机的观测数据在数千平方千米乃至全球范围内的任意位置,都可以2~4dm级精度进行实时动态定位,或以2~4cm级的精度进行快速的静态定位。二是网络RTK,它是在较大的区域内建立多个坐标已知的GPS基准站,对该地区构成网状覆盖,并以这些基准站为基准,计算和发播相位观测值误差改正信息,对该地区内的卫星定位用户进行实时改正的定位方式。国外一些发达国家和我国已经利用网络RTK技术建立了区域连续运行卫星定位服务系统。多频组合、多卫星系统集成的卫星导航定位已成为当今国际卫星导航定位领域的研究开发热点。
(三)地球重力场理论研究与大地水准面精化
确定地球重力场模型可以用地面已知的重力异常观测值解算出来。目前建立地球重力场模型多采用卫星重力法,一是观测人造卫星轨道对参考(正常)轨道的摄动,这可以是由地面观测卫星轨道摄动,也可以是由一颗高轨卫星(如GPS卫星)对低轨卫星(如CHAMP卫星)观测轨道摄动,然后根据卫星轨道摄动理论及其观测数据求解位系数;二是利用同一低轨上两颗卫星(如GRACE卫星)的相互跟踪,测出星间距离变化量,反演地球重力场的位系数;三是在低轨卫星中装有重力梯度仪(如GOCE卫星),直接测出卫星轨道上的重力梯度,以此求解位系数。
确定大地水准面,一般还是解算适合某一区域或国家的相对大地水准面。现在国内外最常用的最好的一种求解重力大地水准面的方法就是移去——恢复技术。另外通过GPS的大地高和精密水准测量可以直接观测到大地水准面差距。为了最终获得一个既有高精度,又有高分辨率的大地水准面,可将高分辨率的重力大地水准面拟合到高精度GPS水准求得的大地水准面上。近年来,我国建立了全国和许多省、市的高精度高分辨率的似大地水准面,其中有的城市似大地水准面精度可达到cm级,分辨率可达到2’30”×2’30”。
(四)地壳运动监测与大地测量地球动力学
随着空间大地测量观测手段的不断发展,地表可观测的覆盖面的扩大和精度的提高,研究对象由局部(如断层)扩展到地区(如板块)及至全球。目前我国的地壳运动监测与大地测量地球动力学的研究主要取得以下实践成果。求出了中国大陆现今地壳运动速度场和变形场及其水平应变率场;建立了中国大陆的二维DFEM模型;求解了五个主要板块的绝对和相对板块运动参数;得到了实测的板块运动模型GVMI。另外对我国某些区域如鄂尔多斯地块、青藏高原、川滇地区、华北地区等的地壳运动和昆仑山口MS8.1级地震也进行了相关的研究。
摄影测量与遥感学:基于电子计算机的现代图象信息学科
(一)数字摄影测量技术
1.新一代数字摄影测量处理平台
我国正在着手建立新一代航空航天数字摄影测量数据处理平台,出现了刀片集群处理系统。它是由高性能刀片式计算机系统、磁盘阵列、后备电源等组成,是以最新影象匹配理论与实践为基础的自动数据处理系统,打破了传统的摄影测量流程,集生产、质量检测、管理为一体,可以进一步提高数字摄影测量的生产效率。
2.基于DGPS/IMU组合导航技术和LIDAR激光雷达扫描技术的摄影测量
利用在飞机上装载差分GPS和IMU构成的组合导航系统可以获取摄影相机的外方位元素和飞机的绝对位置,实现定点摄影成像和无地面控制的高精度对地直接定位。机载激光雷达(Light Detection and Ranging,LIDAR)是一种集激光,全球定位系统和惯性导航系统于一身的对地观测系统,能直接获取真实地表的高精度三维信息。我国集中在地表信息的获取、数据处理、与遥感影象及其它技术的整合等方面进行研究和应用。
3.航空数码相机的应用技术
数码相机的最大优势在于不增加飞行成本的大重叠度(例如80%以上)影象获取能力,能大幅度提高影象匹配及三维重建(或立体测图)的精度和可靠性,并制作真正射影象。在我国已自主研发出大幅面数码相机。
4.数码城市建模中的数字摄影测量技术
从大比例尺的航空影象获取城市房屋真三维模型是实现三维城市建模的有效途径之一。目前是利用低空飞行平台作为传感器载体,将数码相机安装在可以旋转的平台上,分多条航带拍摄城区影象,再结合地面车载或手持数码相机拍摄的影象进行整体处理,生成建筑物立面影象拼接图等产品,满足数码城市和三维场景可视化的需求。
5.稀少或无地面控制的卫星影象对地定位技术
数字摄影测量技术和方法已经广泛用于高空间分辨率卫星影象的几何处理中,大量研究集中在稀少控制点和无控制点条件下如何提高影象的平面和高程精度。在我国西部至今尚有200万平方公里的国土没有1:5万地形图。我国将采用航天遥感、数字航空摄影、航空航天合成孔径雷达、卫星导航定位、地理信息系统、无控制点或稀少控制点测绘等现代地理空间信息技术的集成手段进行西部测绘工程。
(二)航天遥感测绘技术
1.航天遥感数据的获取
目前,中国已初步形成了五个遥感卫星系列——返回式遥感卫星系列、“风云”气象卫星系列、海洋卫星系列、地球资源卫星系列和环境与灾害监测小卫星群系列,开始组成长期稳定运行的卫星对地观测体系,实现对中国及周边地区甚至全球的陆地、大气、海洋的立体观测和动态监测。
2.遥感影像信息提取和多源遥感影象融合技术
利用高光谱影像进行自动目标检测与识别是遥感信息处理领域比较活跃的研究课题。例如在一个复杂的未知背景中,因为人工目标与背景的光谱响应不同,且其尺寸相对很小,所以可将其视为异常目标。在没有足够多先验知识的情况下,如何从高光谱影像中检测这一类目标,我国有许多研究成果。
任何来自单一遥感器的信息都只能反映地物目标某一个或几个方面的特征。数据融合技术一方面可有针对性地去除无用信息,减少数据处理量,提高效率,另一方面又能将海量多源数据中的有用信息集中起来,融合在一起,便于各种信息的特征互补,减少识别目标的模糊性和不确定性。
3.遥感影像与GIS的集成化处理
地理信息系统是用于分析和显示空间数据的系统,而遥感影像是空间数据的一种形式,类似于GIS中的栅格数据。因而,很容易在数据层次上实现地理信息系统与遥感的集成,目前已在软件上实现了。
4.遥感数据处理的理论与应用研究
在基础研究方面,我国开展了目标辐射特性、大气传播模型、反演方法和辐射定标以及在INSAR 和D-INSAR方法、成像光谱仪数据处理、遥感中的空间推理、专家系统和数据挖掘、多源遥感数据融合等领域的遥感数据处理的基础研究。
在遥感应用研究方面,我国在日常的天气、海洋、环境预报及灾害监测、资源调查、土地利用、城市规划、作物估产、国土普查、荒漠化监测、环境保护、气候变化及国防等方面研制了一些遥感数据处理的新方法和新系统。
地图制图与地理信息工程学:以图形和数字形式传输空间地理环境信息的学科
(一)计算机数字化方式的地图制图生产
地图制图生产实现了由传统的手工地图制图技术向现代计算机数字制图技术的跨越式发展。地图制图和出版的数字化与一体化已成为中国地图制图生产的基本技术手段,彻底改变了地图制图技术的落后状况,增强了地图制图与出版的科学性。
(二)多样化的地理信息服务形式
我国的GIS软件由2004年的51个增加到2005的66个,GIS产品种类从开始主要是综合性GIS基础平台软件,发展到现在的基础平台软件、应用开发平台软件、专项工具软件和应用软件的系列产品。各种专业应用GIS中的电子地图、多媒体电子地图、网络电子地图、移动设备导航电子地图等多种地图可视化系统应运而生,用户范围也更加大众化。
(三)地图自动制图综合研究
我国在解决自动综合的许多难题方面取得了充分体现自主创新精神的优秀成果,为电子计算机按照模型来模拟人在制图综合过程中的思维方式创造了十分有利的条件,比较客观和正确地反映了人脑思维特点。尽管计算机不可能百分之百地模拟在制图综合过程中人脑思维的过程,但可以最大限度的逼近这个目标。
(四)空间数据不确定性与数据质量控制
主要探讨和研究引起GIS空间数据不确定性的原因和表现、GIS空间数据不确定性的处理方法、GIS分析处理过程中空间数据不确定性的传播机理等,例如,基于Web Service数据质量信息服务系统,数字高程模型(DEM)的不确定性等成果在深化GIS空间数据不确定性的研究方面具有重要理论和实际意义。
(五)虚拟现实技术的实用化
对于虚拟地理环境,现在注重研究构建统一的分布式虚拟地理环境系统框架,目的是实现不同类型仿真系统间的互操作和部件的重用,体现了层次化、抽象的数据类型、隐含激活及支持分布式的特点。通过对虚拟现实技术中场景的建模和控制的深入研究,使系统具有真正意义的分布性、3维性、交互性,多媒体集成性和境界逼真性,从而更接近实用。
(六)空间数据挖掘和知识发现研究
近年来,空间数据挖掘和知识发现的研究取得了显着进展。在其算法研究方面,如针对目前忽视GIS数据库中存在的小部分新颖的、与常规数据模式显着不同的新的数据模式的情况,给出了空间离群点检测算法。
(七)地球空间信息网格技术
地球空间信息科学或测绘科学技术领域提出了空间信息网格,它实质上是网格技术与空间信息技术的融合与集成。在我国对它从广义和狭义两个层面进行了研究。
(八)地图制图学与地理信息工程理论
地图制图学与地理信息工程学科中除了地图投影、地图综合和地图符号等传统理论外,又增加了如地图空间认知理论、地理信息传输理论、地图视觉感受理论等现代理论,地图制图学与地理信息工程科学的理论体系正在逐步形成。
工程测量学:国民经济和社会发展中的测绘科学技术应用学科
(一)精密大型工程测量新技术
卫星定位技术已被广泛用于各种类型工程控制网。特别是随着大地水准面精化工作的深入开展,使工程控制网从二维发展到三维,彻底改变了传统工程控制网的缺陷。在精密大型工程测量中高精度实时RTK技术用于施工放样。并结合工程特点设计和制造出一些专用的仪器和工具,使众多学科技术在施工测量中渗透与融合,并在施工测量中得到应用。GPS、GIS技术将紧密结合工程项目,在勘测、设计、施工管理一体化方面发挥重大作用。
(二)数字城市与工业信息系统
当前城市大比例尺地形图、地籍图、房产图、竣工图、地下管网图、导航电子地图等基本上都已经实现了数字化测绘,出现了各种类型的数字化测图系统。这些测图系统与常用地理信息系统的接口,实现了野外采集数据与GIS数据间的交换,使野外数字测图系统成为GIS系统前端数据获取的一个子系统。现在城市规划、建筑设计正在推行三维规划和三维设计;房地产业在网上推行三维立体房销售;导航电子地图也出现三维导航地图。这些都对测绘提出绘制三维现状图的要求。全面应用数字测图技术,发展内、外业一体化数据采集与制图系统,对于大型工程建设的工程勘察、设计、施工和竣工存档,提供高质量、多形式的空间基础信息支持。
全国省会以上城市和部分地级市都建立了城市基础地理信息系统。市政设施现代化管理越来越重要,现在国内外都十分重视市政设施现代化管理中的空间信息网格技术的研究,将市政设施信息按网格建库进行管理,并进行动态变化监测。
(三)变形监测技术
变形监测,是为了保证构筑物在施工、使用过程中的设备和人员的安全所必须进行的测量工作。现在超大型建筑物、构筑物、地库等工程不断出现,变形监测精度要求也很高,一般都在1mm左右,有的要求亚毫米。其数据处理要根据实际情况建立反映变形量与变形因子的数学模型,对引起变形的原因进行分析,必要时还要对变形趋势进行预报。现代变形监测往往是将现代大地测量仪器和空间技术、激光技术、无线通信技术相结合实现连续、动态、实时、自动化监测,具有自动照准、自动观测、自动记录、自动数据处理、自动生成各种图形和报表。
(四)工业测量技术
现代工业生产要求对产品的设计、模拟、生产自动化流程,生产过程控制,产品质量检验与监控等进行快速的,高精度的测量、定位,并给出复杂形体的数字模型或运行轨迹等,因此,兴起了为工业生产服务的测量技术。其手段和仪器设备,主要是以电子经纬仪或全站仪、摄影仪或显微摄影仪、激光扫描仪等传感器在电子计算机硬件和软件的支持下形成的三维测量系统。这些技术的引进,使工业现场精密测量自动化水平大大提高。
(五)城市地下管线探测技术
地下管线探测、检测与评估技术为摸清城市已有地下管线的现状,以及评估地下管线的风险提供了一种快捷、经济和有效的手段。非金属管线探测技术中的探地雷达弥补了常规地下管线探测仪在探测非金属地下管线方面的缺陷,已成为探测非金属地下管线的重要技术方法之一。电子标识器的使用为探测非金属地下管线提供了一种新的方法。城市地下管线信息管理系统建设已由原来孤立的系统建设模式,逐步发展成为充分整合城市已有的地下管线信息资源,建立城市地下管线信息共享平台。
海洋测绘学:海洋空间的测绘科学技术学科
(一)海道测量
在海洋测深过程中,为解决回声测深仪波束角效应使记录的测深图象失真问题,提出了波束角效应的改进模型及其改正算法。针对多波束测深数据集,采用改进的距离反比权重算法和多细节层次模型技术来建立海底数字地形模型(DTM)。应用双频GPS动态后处理高精度定位技术建立了一套完整的GPS无验潮海洋深度测量作业模式,显着提高水深测量成果的精度。
(二)海洋重力场与磁力场测量
有关海洋重力的确定,首先研究了建立我国陆海新一代平均重力异常数字模型问题:基于重力场的频谱理论,给出了扰动引力在全球平均意义下的功率谱表达式;推导了垂线偏差同大地水准面差距偏导数的转换公式;推导了水平重力梯度边值问题的级数解。
对海洋磁力测量的研究,从磁偶极子磁场出发,推导出一个简单的测线间距计算公式。基于磁力线定义和均匀磁化球体周围的磁场分布,推导出一个简单的磁力线簇公式。以陆用地磁日变站为基础,结合DGPS系统和浮标技术,自行设计开发数据实时采集与传输系统。采用布设海底地磁日变观测锚系的技术方法,解决了远海区磁测日变改正观测资料问题。
(三)空基海洋测绘技术
首先重点研究了利用有理函数模型实现高分辨率卫星CCD影象的单片定位的方法;其次提出了一种遥感图象半自动提取建筑物的方法;第三提出了一种基于多分辨率小波高频特征系数的高光谱遥感影象亚像素目标识别方法;第四针对IKONOS高分辨率卫星影象处理中的不适应性,提出一种更为精确细致的图象融合方法—自适应小波包分析法;第五从测高卫星飞行轨道的规律出发,提出了采用“距离加权平均”计算正常点海面高的新方法;第六研究了观测卫星的选择对基线解算质量的影响,提出了提高基线解算质量的人工选星的基线处理方法。
(四)海图制图与海洋地理信息工程
首先提出了基于Circle原理和“优胜劣汰”思想的地图综合新算法;其次探讨了数字测图中的坐标变换方法,总结了一套作业思路和方法;第三提出了基于Flash技术制作多媒体电子地图的解决方案及实现过程;第四研究了一种由计算机自动生成Delaunay三角网的增点生长构造法;第五实现了MapInfo图形数据在IE中的显示与浏览,从而验证了用VML实现地理空间数据可视化的可行性;第六建立了计算机海图档案系统。
② 没有卫星前的世界地图是怎么测绘的哦
你所问的19世纪是怎么绘图的,我可以告诉你,用测绘仪器,我国在很早时期就有测绘仪器了
现在到南京紫金山天文台参观,我们会看到两架奇特的古代仪器。其中结构复杂,环环相套的叫 浑仪;两组支柱支撑着双环的叫 简仪。它们是明代制造的,就是测绘仪器
在我国古代,浑仪是用来测量天体球面坐标的一种仪器。在战国时代已经开始制造了,不过那时不一定称为浑仪。浑仪结构复杂,是由一环套一环的同心圆环构成,好像一个镂空的球体,这些圆环分别代表地平圈、子午圈、赤道圈、赤经圈、黄道圈和白道圈。东汉时的天文学家张衡说过:“立圆为浑”,因此称这种仪器为浑仪。
浑仪在应用过程中,不断得到改进,但总的思路是增多圆环,致使结构愈加复杂,遮挡星空的范围增多,影响观测。此外,要求多重圆环安装要同心,这是十分困难的,由此导致浑仪产生偏心差。到了北宋,科学家沈括首先在浑仪上取消了白道环,开辟了浑仪向简化方向发展的新途径。到了元代,郭守敬、王恂等科学家在沈括的基础上对浑仪又进行了大规模改进,创造了新的简仪,简仪进一步取消了黄道环。这样,简仪从浑仪的复杂结构中分离出来,分解成由赤道环和赤经环组成的赤道经纬仪和由地平环及地平经环组成的地平经纬仪两个独立的仪器。这样的简仪结构十分简单,大大增加了观测的视野,克服了浑仪的两个最大缺陷,大大提高了观测精度。赤道经纬仪和地平经纬仪是分装在同一个长方形的铜基座上,总称为简仪。
观测时只要转动赤道经纬仪的赤经双环和窥管,就可以观测到天球上任何位置的星星,并从赤经双环刻度上读得该天体的去极度。至于天体的赤经值,则可在转动南端的赤道环上求得。简仪的地平经纬仪实际上是一个新的创造。观测时,只要转动立运双环和窥管,就可以测得任一天体的方位角和高度角。后来航海用的六分仪也是这个原理.
康熙皇帝在位期间就亲自主持过测绘作业,使用的就是这种仪器(那时候,又经过改进了,但是原理一样),并绘制成图,其精度,就今天看来,也很精确.
说了这么多,你要是不懂我也没辙了
具体的可以去看 中国古代地图测绘 一书
里面记载的很详细
③ 划重点丨测绘地理信息“十三五”规划说了啥
一、发展现状与面临形势(一)“十二五”主要成就发展方向更加明确。确立了“全力做好测绘地理信息服务保障,大力促进地理信息产业发展,尽责维护国家地理信息安全”的发展定位,明确了测绘地理信息总体发展思路。发展基础更为坚实。统筹建成2200多个站组成的全国卫星导航定位基准站网,基本形成全国卫星导航定位基准服务系统。实现我国陆地国土1:5万基础地理信息全部覆盖和重点要素年度更新、全要素每五年更新,基本完成省级1:1万基础地理信息数据库建设。“资源三号”卫星影像全球有效覆盖达7112万平方千米,后续星研建进展顺利。“天地图”实现30个省级节点、205个市(县)级节点与国家级主节点服务聚合,形成网络化地理信息服务合力。333个地级城市和476个县级城市数字城市建设全面铺开。全国智慧城市试点取得阶段性成果。完成了第一次全国地理国情普查。形成了天空地一体化的数据获取能力。测绘科技创新能力稳步提升,机载雷达测图系统、大规模集群化遥感数据处理系统、无人飞行器航摄系统等方面建设取得重要突破,研制的30米分辨率全球地表覆盖数据产品在国际上产生重要影响。全面改革扎实推进。国家测绘地理信息局取消和下放1/3行政审批事项。政企分离和事业单位分类改革积极推进。积极引导地理信息企业、科研院所、高等院校共建科技创新平台。修订印发《地图管理条例》,推进《中华人民共和国测绘法》修订。国家版图意识宣传教育不断深化,地图市场特别是互联网地图市场更加规范。服务成效日益彰显。形成1000多个基于“天地图”的业务化应用。累计开发数字城市应用系统超过5600个。为APEC会议、第三次经济普查、第一次全国水利普查、不动产登记等重大事项和各级政府决策、环境治理等重要方面提供高效有力的技术支持与产品服务。地理信息产业形成千亿级的产业规模。(二)“十三五”发展形势经济社会发展对测绘地理信息提出新需求。“一带一路”建设、京津冀协同发展和长江经济带发展等重大战略实施,为创新地理信息资源开发利用模式,全方位做好支撑保障提出更高要求。拓展我国经济发展空间、实施“走出去”战略和促进海洋经济发展,需要进一步拓展测绘地理信息覆盖范围。优化国土空间开发格局,推进“多规合一”,需要加快提升测绘地理信息工作的深度和广度。落实“互联网+”、“中国制造2025”、“促进大数据发展”等行动计划,为发展地理信息产业提供了更加广阔的舞台。总体国家安全观赋予测绘地理信息新使命。地理信息作为国家重要的基础性、战略性信息资源,在维护国家安全中发挥着重要作用。今后一个时期,为应对地缘政治压力、保障边境地区稳定、维护我国海洋权益和全球战略利益,需要进一步加强海洋、边境地区乃至全球的地理信息资源开发建设。科学技术快速发展为测绘地理信息发展注入新动力。我国测绘地理信息技术与以移动互联网、物联网、大数据、云计算为代表的新一代信息技术加速融合,催生各种地理信息新应用、新产品和新服务。北斗卫星导航系统、现代测绘基准体系、地理信息公共服务平台等基础设施不断完善,机载雷达、无人机、倾斜摄影等新型技术装备在测绘地理信息领域的应用日益广泛,将极大地提升生产服务的质量和效率。二、总体要求(一)指导思想按照“五位一体”总体布局和“四个全面”战略布局,坚持创新、协调、绿色、开放、共享的发展理念,按照“加强基础测绘、监测地理国情、强化公共服务、壮大地信产业、维护国家安全、建设测绘强国”的总体发展思路。(二)基本原则——坚持科学发展。——坚持深化改革。——坚持法治建设。(三)发展目标到2020年,形成适应经济发展新常态的测绘地理信息管理体制机制和国家地理信息安全监管体系,构建新型基础测绘、地理国情监测、应急测绘、航空航天遥感测绘、全球地理信息资源开发等协同发展的公益性保障服务体系,显着提升地理信息产业对国民经济的贡献率,使我国测绘地理信息整体实力达到国际先进水平,开创测绘地理信息事业发展的新格局。——地理信息资源更加丰富。统筹建成2500个以上站点规模的全国卫星导航定位基准站网,陆海一体的现代测绘基准体系进一步完善。获取“一带一路”沿线及重点区域的地理信息资源。海洋地理信息资源开发建设取得阶段性成果。基础地理信息、地理国情信息、应急测绘保障信息等资源实现有效融合。——公共服务保障更加有力。基础测绘成果供给更加有效。向相关行业和社会公众提供高精度位置服务的能力全面形成。地理国情监测与经济社会发展深度融合,实现监测业务常态化。基本建成4小时抵达80%陆地国土和重点海域、覆盖全国的应急测绘体系。“天地图”具备全球地理信息服务能力。建成一批智慧城市时空信息云平台。——自主创新能力明显提高。科技体制改革、自主创新和成果转化等取得重大突破,市场导向的技术创新机制更加健全,人才、资本、技术、知识自由流动,企业、科研院所、高校、事业单位协同创新,科技创新资源配置更加优化,自主创新效率显着提升。测绘地理信息标准体系更加科学完善。——依法行政能力全面提升。测绘地理信息法律规范体系更加完备,统一开放、竞争有序的测绘地理信息市场体系基本形成。——产业竞争能力显着增强。地理信息产业保持较高的增长速度,2020年总产值超过8000亿元,培育一批具有较强国际竞争力的龙头企业和较好成长性的创新型中小企业,形成一批具有国际影响力的自主品牌。三、重点任务打造由新型基础测绘、地理国情监测、应急测绘、航空航天遥感测绘、全球地理信息资源开发等“五大业务”构成的公益性保障服务体系。(一)推进新型基础测绘建设按照陆海兼顾、联动更新、按需服务、开放共享的要求,构建以北斗卫星以及自主技术装备为主要支撑的现代测绘基准体系。1、加快现代测绘基准体系建设 实现我国地心坐标框架的动态维持与更新,形成覆盖全国的分米级实时位置服务能力,全面提升基准和位置服务水平。统筹开展全国似大地水准面精化工作,建成新一代全国统一的厘米级似大地水准面。完善国家重力基准,开展重力空白区航空重力测量,构建新一代高阶重力场模型。建立国家测绘基准数据库,提升测绘基准成果的管理和社会化服务水平。强化国家、行业及地方卫星导航定位基准站的统筹管理、资源整合、数据共享,加强测绘基准服务机构建设,制定相关管理制度、建设标准和技术规范,形成一体化管理和协同服务机制。深入推进北斗卫星导航系统应用,拓展测绘地理信息领域北斗卫星导航系统的业务范围、产品体系和服务模式。2、加强基础地理信息资源建设扩大高精度基础地理信息覆盖范围,实现省级基础地理信息对陆地国土必要覆盖,市县级基础地理信息对全国县级以上城镇建成区全面覆盖。完善基础地理信息数据联动更新机制,持续做好国家级基础地理信息重点要素年度更新,省级基础地理信息按需更新,城市重点区域大比例尺基础地理信息及时更新。进一步加强边疆地区、农村地区、自然灾害频发地区基础测绘工作。持续推进我国海岛(礁)测绘工作。组织开展海洋地理信息资源开发利用战略研究和规划编制工作,沿海地区根据需要组织开展沿海滩涂、近海海域等测绘工作。持续开展极地测绘工作,提升服务极地考察活动能力。继续推进内陆水体水下地形测绘。加快开展地下管线测绘,构建地下管线信息系统。3、开展新型基础地理信息数据库建设优化基础地理信息数据库模型与结构,丰富数据内容,拓展社会、经济、人文、资源、环境等要素,建成综合性强、应用面广、标准化程度高的基础地理信息数据库体系,形成全国基础测绘成果“一个库”。选择合适地区开展新型基础测绘试点。探索建立基于地理实体的成果采集和管理模式,逐步推动现有国家基础地理信息数据库向地理实体数据库的转型,实现基础地理信息数据的集成应用和联动更新。(二)开展地理国情常态化监测形成一批具有影响力的监测成果。1、开展基础性和专题性监测对我国陆地国土范围的地形地貌、植被覆盖、水域、荒漠与裸露地等自然地理要素以及与人类活动密切相关的交通网络、居民地与设施、地理单元等人文地理要素开展基础性监测。适时开展“一带一路”建设、京津冀协同发展和长江经济带发展等国家重大战略实施及国家级新区建设格局、全国地级以上城市空间格局、生态安全屏障建设、海岸带保护利用状况等专题性监测。开展地理国情监测服务于空间性规划“多规合一”和主体功能区建设,推进地理国情监测服务于生态文明建设目标评价考核、资源环境承载力监测预警评价、领导干部自然资源资产离任审计等生态文明体制改革重点领域。2、形成常态化监测支撑体系充分利用各种对地观测技术手段,建立空天地多方位、立体化的地理国情监测网络。构建地理国情信息时空数据库,建立地理国情信息在线服务平台。开展统计分析、数据挖掘和开发应用,形成多样化的监测成果。完善地理国情监测的内容指标、技术规范、工艺流程,形成地理国情常态化监测能力。逐步完善地理国情监测组织实施、部门协作及信息发布等机制。推动各地将地理国情监测纳入年度计划和部门预算管理。(三)加强应急测绘建设1、建立应急测绘业务体系根据国家应急规划和应急体系建设要求,完善应急测绘体制机制,重点加强联动响应、资源统筹、数据服务以及日常运维等机制建设。按照上下协同、部门协作、军民融合的原则,合理划分保障区域,明确保障职责,布局国家应急测绘业务体系,建立健全应急测绘标准。加强应急测绘业务机构以及专业技术人才队伍建设,重点增强国家和省级应急测绘专业力量。2、强化应急测绘综合保障加强国家航空应急测绘能力,建设12个国家航空应急测绘保障区,重点装备高性能无人机航空测绘应急系统。增强国家应急测绘现场勘测能力,建设3支国家应急测绘保障分队,重点装备多功能、集成化的地面采集与处理设备。提升国家应急测绘数据处理能力,重点加强数据快速处理、制图、存储和服务等系统建设。提高国家应急测绘资源共享能力,建成国家应急测绘资源数据共享网络及平台,丰富国家应急测绘基础底图数据库。各地针对当地特点和需求,开展区域性应急测绘保障能力建设,加强协作,实现军地、部门、区域应急测绘资源的高效共享和协同服务。(四)统筹航空航天遥感测绘进一步建立健全国家航空航天测绘遥感影像资料获取的统筹协调和资源共享机制,实现多种类、多分辨率航空航天遥感影像对重点区域的及时覆盖,对陆地国土的全面覆盖,以及对境外区域的有序覆盖。1、加强航空航天遥感影像获取和管理实现优于2.5米分辨率卫星影像每年全面覆盖陆地国土一次。获取我国500万平方千米优于1米分辨率影像。加大城市地区优于0.2米分辨率的航空影像获取力度。推进机载激光雷达、倾斜摄影、航空重力等新技术生产应用。加强航空航天遥感影像获取的统筹规划,建立国家基础航空摄影定期分区更新机制、航天遥感影像数据分级分区获取机制。完善航空航天遥感影像的保管、提供、使用制度以及资料信息定期发布制度。2、强化航空航天遥感影像应用服务建立和完善系列测绘卫星应用系统,提升卫星测绘数据获取、处理、提供的业务能力。完善航空航天遥感影像产品体系,加大立体测绘影像产品、专题应用产品及增值产品的开发力度。推进多传感器、多视角、多时相遥感影像数据的标准化处理,基于倾斜航空摄影测量、卫星立体测绘等技术,建设高识别度、高容量、高现势性的三维实景中国影像数据库及信息服务系统,形成常态化的航空航天遥感影像产品生产和分发服务能力。探索建立测绘卫星用户委员会机制,理顺卫星用户与卫星运营单位之间的关系,促进卫星测绘应用的深度和广度。(五)推进全球地理信息资源开发建立全球地理信息数据采集、管理与在线服务一体化的生产技术支持体系。1、加快全球地理信息资源建设加强全球地理信息资源建设的顶层设计,确定建设重点、细化建设内容、明确技术路线。加快形成全球多尺度地理信息数据快速采集与处理能力,逐步拓展全球地理信息资源的覆盖和更新范围。完成“一带一路”沿线及重点区域约4500万平方千米多分辨率数字正射影像、数字地表模型及地理名称等数据生产,开展中巴经济走廊、东盟非盟等重要区域的数字高程模型、核心矢量要素、多时相地表覆盖等数据生产。加快建立多分辨率、多时相的全球地理信息数据库,形成多尺度、多类型、多样式的全球地理信息产品。2、强化全球地理信息服务应用依托国家地理信息公共服务平台,构建境外分布式数据中心,形成全球地理信息服务能力。强化与北斗卫星导航定位系统的集成,完善边境地区卫星导航定位基准站网,形成高精度位置服务能力。构建国产卫星海外接收站及处理系统,提高全球卫星资源接收处理能力。制定全球地理信息数据产品、生产工艺及应用服务标准规范。构建全球地理信息资源快速处理、高效管理、动态更新与实时服务的技术装备体系。四、能力建设全面提升公共服务有效供给能力、基础设施装备保障能力、地理信息产业竞争能力、创新驱动发展能力和协调融合发展能力。(一)提升公共服务能力构建以“五大业务”为支撑的公益性服务体系,建立起保证基本公共需求和增强按需定制服务相协调的服务架构。1、加强公共服务的有效供给面向全社会对测绘地理信息的基本公共需求,深化供给侧改革,强化新型基础测绘和航空航天遥感测绘等普惠性服务的有效供给。扩展基础测绘成果内容,发展以地理实体为主要表现形式的公共产品。推出标准化的三维实景影像产品,拓宽应用领域、提高应用频次。加强服务流程信息化建设,简化成果提供审批程序,提升公共服务效率。开展服务“一带一路”建设、京津冀协同发展和长江经济带发展等重大战略的区域性地图产品、反映国家辉煌成就地图产品、国家大地图集、城市地图集等系列专题地图编制工作。2、拓宽公共服务的发展空间针对经济社会发展对测绘地理信息的多样化需求,拓展定制化专题服务的领域。围绕区域协调发展、国土空间开发、自然资源资产管理、生态环境保护、新型城镇化建设等开展重要地理国情监测,服务国家重大战略的实施和全面深化改革重大事项的落实。强化城市地下、水体水下应急测绘保障能力,做好基于地理空间的孕灾环境分析和监测服务。拓展全球地理信息资源应用服务领域。在继续做好数字城市地理空间框架建设基础上,健全数字城市维护更新和管理应用的长效机制,推进智慧城市时空信息云平台试点示范应用,提升对城市精细化管理的支撑能力。探索建立政府和社会资本合作(PPP)等新型测绘地理信息公共服务供给模式,加强政府与企业在地理信息资源开发服务中的合作。3、提升网络化综合服务水平强化“天地图”公益性服务的战略性地位。建设“天地图”国家数据中心、区域数据中心,融合集成基础地理信息数据库、地理国情信息时空数据库、国家应急测绘基础底图数据库等信息资源,整合政府部门权威信息和全球热点地区重要信息,加强地理信息大数据开放共享和深化应用。加强涉密版、政务版“天地图”的统筹建设,发挥其以地理信息聚合部门数据、促进部门之间信息共享的基础平台作用。充分利用市场机制推动公众版“天地图”建设,惠及群众生产生活。推出覆盖全行业、一站式的地理信息资源目录服务系统。(二)提升基础设施装备保障能力以加强重大技术装备建设为重点,进一步完善测绘地理信息基础设施,推动生产、服务技术体系的网络化、信息化和智能化改造,满足“五大业务”协同发展的迫切需要。1、加快装备现代化积极推动“资源三号”后续光学卫星和雷达卫星、重力卫星等的立项、研制和发射,逐步形成多源航天遥感数据获取体系。加快建设多分辨率、多传感器、全天候综合航空遥感体系,大力发展长航时航空遥感平台,促进无人飞机、轻型飞机、浮空器等新型平台和机载激光雷达、重力仪、倾斜摄影仪等新型传感器的推广应用,配套建设数据传输和通信指挥系统。加快推进地理信息地面获取技术装备的更新换代,提高水下、地下测量装备水平。加强数据规模化快速处理系统建设,提高多源海量数据综合处理的自动化、智能化和实时化水平。进一步完善测绘产品质量检验和测绘仪器计量检测体系。探索建立卫星测绘应用系统等基础设施建设的多元化投入机制。2、推进生产服务体系信息化加快生产流程的信息化改造,提升生产服务的信息化、智能化水平。整合核心技术、重大装备、资料数据等方面资源,建设生产管理信息平台,形成生产原始资料数据集中管理、分布式处理、生产质量统一监管和生产成果集中入库管理的信息化测绘地理信息生产布局。加强网络基础设施建设,依托国家电子政务内外网资源,构建国家、省、市三级互联互通的测绘地理信息传输网络。3、增强安全防护能力建设国家互联网地理信息安全监管平台,形成由国家级互联网地图监管中心和省级互联网监管分节点组成、上下联动的监控网络。加强卫星导航定位基准站建设和运行的安全管理,同步规划、设计和建设相关安全基础设施。加快开展网络基础设施核查分类,完成网络基础设施更新改造,大力推进行业等级保护和分级保护工作,加强关键网络基础设施和重要信息系统安全保障。完善地理信息定密和新技术测绘成果公开使用政策,加强新型地理信息成果保密处理技术研究,促进地理信息安全使用。加强国家版图意识宣传教育,提高公民对地理信息安全维护的意识和能力。(三)提升地理信息产业竞争能力推动地理信息产业向价值链高端延伸,向精细化和高品质转变。1、发展地理信息产业重点领域大力发展测绘遥感数据服务,开展测绘航空航天遥感数据的商业化获取和增值服务,建成较为完整的测绘航空航天遥感数据获取、处理、服务产业链,培育3-5 家测绘遥感数据服务龙头企业。推动地理信息系统通用软件开发应用,推进高性能遥感数据处理软件以及行业领域应用软件的产品化和产业化,培育2-3家以地理信息软件开发和集成为核心业务的龙头企业。引导和推进现代高端测绘地理信息技术装备制造业的资源整合,紧密结合“中国制造2025”行动计划,发展一批拥有自主知识产权的高端遥感技术装备和高端地面测绘装备生产制造企业。推进地理信息与导航定位融合服务类企业兼并重组,促进产业链各环节均衡发展。支持面向中亚-西亚、俄蒙日朝韩、东盟的北斗产业化应用。加快推进地理信息与北斗卫星导航定位的融合,支持发展以移动通信网络、互联网和车联网为支撑,融合实时交通信息、移动通信基站信息等的综合导航定位动态服务。积极发展测绘基准服务业。繁荣地图出版业,发展地图文化创意产业,形成地图文化产业集群。2、优化地理信息产业发展环境适度放宽地理信息成果使用许可和增值开发政策,支持充分利用基础地理信息资源开展社会化应用和增值服务。建立健全地理信息获取、处理、应用以及安全保密监管等相关配套制度措施。加快国产测绘遥感卫星数据有关政策研究制定,推进遥感数据的商业化应用。坚持简政放权、放管结合、优化服务,持续推进行政审批制度改革,健全市场准入和退出机制。继续推进地理信息产业分类标准、产业单位名录库和统计指标体系建设,逐步完善统计工作机制。充分发挥相关学会、协会在促进产业发展中的作用。充分利用产业基金、产业基地等支持企业创新创业。(四)提升科技自主创新能力推进重点领域科技创新,提高测绘地理信息标准化水平,深化国际交流合作,提升科技创新的引领和推动作用。1、完善科技创新体系完善测绘地理信息科研项目管理、科技成果登记与信息公开公示、成果转移转化统计和报告等制度,健全科学研究、信用评价、创新团队认定、科技人才评价等方面的政策。优化测绘地理信息科技创新组织体系布局,加强测绘地理信息领域科研基地(平台)建设,积极开展创新联盟、协同中心、创客或众创空间等新型创新平台建设,支持大众创业、万众创新。强化企业的技术创新主体作用,鼓励参与制定科技规划、政策和标准,支持申报国家和地方人才计划、牵头实施国家科技项目。建立以企业为主体的创新平台,形成一批具有国际竞争力的创新型领军企业和具有较强创新能力的科技型中小型地理信息企业。支持野外观测台站、检校场、大型科研仪器设施等科研条件平台的建设与共享。加强地理信息技术和知识产权交易平台建设。2、加强科技攻关和标准化以支撑重大工程和成果广泛应用为重点,统筹优势科技力量,着力开展地理国情监测、海洋测绘、全球地理信息资源开发、地下空间测绘等关键技术攻关。加强物联网、云计算、大数据以及移动互联网等高新技术在测绘地理信息领域的应用研究,支持对大地测量基准、位置智能感知、遥感机理、数据挖掘与地理信息网络安全等方面的原始创新。加快测绘地理信息新型智库建设,加强发展战略研究。构建新型测绘地理信息标准体系。建立跨部门测绘地理信息标准化协调机制。完善测绘地理信息标准制修订程序,重点研制地理国情监测、卫星导航定位基准站等方面的标准,促进标准制定与科技创新和重大工程的相互转化,发挥标准的技术考核作用。加强科技标准宣传贯彻。开展测绘地理信息标准化综合试点。3、深化国际交流合作推动地理信息技术、装备、标准、服务“走出去”,积极接纳发达国家的地理信息产业外包业务,开拓非洲、南美、东南亚等新兴经济体市场,深度融入全球地理信息产业链、价值链。继续引进、消化、吸收国际先进技术,深化测绘地理信息科技及人才国际交流。积极参与全球及区域性测绘科技合作计划和国际测绘地理信息标准制订,争取主导编制4项国际标准,参与制修订国际标准化组织(ISO/TC211)主导的30%以上国际标准。根据受援国意愿和我对外战略需要,研究推动向相关国家提供测绘项目、技术、人才等方面的援助。(五)提升协调融合发展能力促进各地区测绘地理信息事业协调发展。进一步打破军民测绘地理信息领域技术、标准和行业壁垒,加强军民测绘融合发展。鼓励各有关领域、行业根据需要加强测绘能力建设与数据资源共享,提升全国测绘地理信息协调融合发展水平。1、推进区域测绘协调发展围绕国家区域发展重大战略,推动形成西部、东北、中部、东南沿海和京津冀等五大区域测绘地理信息协调发展格局,支持建立五大区域测绘地理信息发展联盟。加大跨行政区域的测绘地理信息工作统筹力度,通过建立跨行政区域测绘地理信息联席会议制度,推进跨行政区域的基础测绘、地理国情监测、应急测绘等方面合作,促进地理信息产业集群发展。鼓励发达地区对相对落后地区进行帮扶,为贫困地区提供精准测绘地理信息服务。加大对新疆、西藏和四省藏区援助力度,在技术、人才等方面加强对边远地区、少数民族地区测绘地理信息工作的支持。2、深化军民融合发展加强国家层面的宏观统筹与顶层设计,做好规划衔接和项目、需求对接、完善工作协调机制,实现军民力量整合、资源聚合、信息融合。推进国家空间基准、航天遥感测绘、海洋测绘以及高精度位置服务等重点领域的统筹共建,加强测绘基础设施、北斗系统、地理信息、科技资源等方面的共享应用,建立跨部门跨领域地理信息资料成果通报汇交和位置服务站网共享机制,以及应急保障、国防动员等方面平战结合机制,形成军民兼容的测绘技术标准体系。按照国家军民融合示范要求推进测绘地理信息领域的试点示范工作,引导多种力量参与测绘地理信息领域军民深度融合发展,形成富有特色的军民融合发展模式。鼓励地方立足实际推进测绘地理信息军民深度融合发展。五、实施保障(一)完善管理体制机制全力抓好地理国情监测、应急测绘以及不动产测绘、地下管线测绘、海洋地理信息资源开发等方面职责职能的落实。(二)加强法规制度建设完成《中华人民共和国测绘法》修订,健全地理信息安全、地理国情监测、地理信息共享应用、应急测绘等方面的法规制度。完善测绘地理信息资质、市场监管和信用管理的挂钩政策。研究制定政府购买测绘地理信息公共服务的指导性目录和制度,推动测绘地理信息公共服务承接主体多元化。健全卫星测绘应用政策,推动建立多元投入机制。强化测绘地理信息行政执法队伍建设,完善与国土资源等综合执法工作机制,有效提升测绘地理信息行政执法力量和效能。(三)优化生产服务组织结构(略)(四)强化人才队伍支撑(略)(五)抓好规划组织实施(略)划重点丨测绘地理信息“十三五”规划说了啥
④ 关于地理测绘
就看精度要求了,到毫米级的话,肯定是人工了,大一点的一般用摄影测量跟卫星遥感,将来的发展方向肯定人工的要被取代,不过,三十年内不大可能