Ⅰ 地理信息系统的特征有哪些
地理信息系统的特征:
1、公共的地理定位基础;
2、具有采集、管理、分析和输出多种地理空间信息的能力;
3、系统以分析模型驱动,具有极强的空间综合分析和动态预测能力,并能产生高层次的地理信息;
4、以地理研究和地理决策为目的,是一个人机交互式的空间决策支持系统。
(1)简述地理信息系统的不确定性有哪些扩展阅读:
许多学科受益于地理信息系统技术。
活跃的地理信息系统市场导致了GIS组件的硬件和软件的低成本和持续改进。这些发展反过来导致这项技术在科学、政府、企业和产业等方面更广泛的应用,应用包括房地产、公共卫生、犯罪地图、国防、可持续发展、自然资源、景观建筑、考古学、社区规划、运输和物流。
地理信息系统也分化出定位服务(LBS)。LBS使用GPS通过所在地与固定基站的关系用移动设备显示其位置(最近的餐厅,加油站,消防栓),移动设备(朋友,孩子,一辆警车)或回传他们的位置到一个中央服务器显示或作其他处理。
随着GPS功能与日益强大的移动电子(手机、pad、笔记本电脑)整合,这些服务继续发展。
Ⅱ 地理信息系统专业 基础课程有哪些
主干学科:地理学、地图学、计算机科学与技术、地理信息系统基础。
主要课程:自然地理学、人文地理学、经济地理学、地图学、遥感技术、数据库技术、地理信息系统原理、测量学、地理信息系统设计与应用、地理信息系统二次开发、程序语言相关课程等。
(2)简述地理信息系统的不确定性有哪些扩展阅读:
相对于其他地理学类专业,地理信息系统专业更侧重培养学生的计算机技能,培养学生用计算机解决地理信息问题的能力,而不仅仅是地理学本身。因此,本科期间,学生需要学习掌握较多的计算机知识,还需要掌握遥感技术和地图制图技术等基本技能。
与该专业比较相近的专业有:地理科学、资源环境与城乡规划管理、测绘工程等。
参考资料来源:网络-地理信息系统专业
Ⅲ 地理信息系统包括哪些研究方向
美国大学一般将地理信息系统硕士课程开设在地理系。2002年,美国大学地理信息科学协会(UCGIS)为地理信息系统划分了19个研究方向,这19个 方向又可以归属于地理数据的收集、处理、分析与表达四个阶段。
在地理数据的获取和收集过程中,GIS主要研究地理数据的准确性和不确定性(Uncertainty in Geographic Information)。地理数据通常通过野外测量、数字化、遥感等手段获得,获取过程中不可避免地存在误差。该研究方向讨论的便是如何处理、减少这些 误差,以及针对数据中存在的不确定性错误进行处理的方法和技术。数据的获取手段和表达处理方式日渐成熟,但数据的误差和不确定性却会永久存在,因此该研究 方向被视为GIS研究领域中富有永久生命力的方向之一。
随着中国地理信息数据库的建设和更新以及全球地理信息数据共享热潮的到来,地理信息的组织和管理过程是当前国内GIS领域研究的重点,在中国有着最为广泛 的实践和应用空间。其中较为热门的研究方向包括空间认知(Spatial Cognition)、海量数据库机构体系(Institutional Aspects of Spatial Data Infrastructure)、空间本体论(Spatial Ontologies)、空间决策支持系统(Spatial Decision Support System)、时空数据关系及建模(Space and Space/Time Analysis and Modeling)、GIS和RS技术的集成(Incorporating Remotely Sensed Data and Information in GIS )、时空数据语义研究(Geospatial Semantic Web)、空间数据共享以及互操作研究(Integration)等。
地理信息数据获取手段的不断丰富和提高使得地理信息数据量正在以惊人的速度增长,海量的地理数据正在等待GIS专家进行分析和利用,地理数据背后隐藏的巨 大潜力仍有待挖掘。鉴于此,国外目前的GIS研究热点集中在地理信息的分析和表达过程,其中最为热门的研究方向包括与网络结合的网络地理服务 (GeoWeb)、与计量地理有关的空间数据统计分析(Geo-computation)、空间数据挖掘(Geographic Data Mining and Knowledge Discovery)、应急反应中的数据获取和分析(Emergency Data Acquisition and Analysis)、空间信息可视化和虚拟地理环境(Visualization)、社会背景中GIS的表达以及GIS在公众信息传播中的研究(GIS and Society)等。
Ⅳ 地理信息系统的特征
与一般信息系统相比,GIS具有以下特征:
(1)数据的空间定位特征。地理数据3个基本要素:属性、时间和空间位置。其中空间位置特征是地理数据区别于其他数据的本质特征,并且是地理数据所特有的。GIS应具有对空间数据表示、操纵和管理的能力。
(2)空间关系处理的复杂性。GIS除了要完成一般普通事物性信息系统的工作(属性信息处理)外,还需要完成与其对应的空间位置及空间关系处理,与属性数据的一一对应关系的处理,及空间数据的存储和管理问题。
(3)海量数据管理能力。GIS中海量数据特征来自两个方面,一是地理数据,二来自空间分析。这些海量数据带来的是数据组织、系统运转、网络传输等一系列技术难题,这也是GIS比其他信息系统复杂的因素之一。
Ⅳ 地理信息系统研究热点,包括哪些关键理论,技术
1 空间数据库的准确性研究
地理信息数据中误差处理和不确定性错误处理的方法和技术 ,包括 :
不确定性误差模型 ;
误差跟踪并对误差进行编码的方法 ;
计算和表达在 GIS应用中的误差 ;
数据精度的评估 ;
数据质量、元数据、数据标准等问题研究。
2 空间关系语言研究
以地理空间概念的规范化形式为基础 ,利用自然语言和数学方法 , 形成空间关系表达的理论 ;
关于定位表达的计算模型 ;
空间概念的获取和表达 ;
拓扑关系的定义 ;
空间信息的可视化 ;
GIS的用户接口。
3 空间数据的多种表达方式研究
为高效数据提取而组织的不同版本的数据及相应的拓扑关系 ,以及空间数据的多种表达方式 ;
满足数据一致性和精度要求的地图制图规则 ;
数据模型、链接、多机构、多尺度等对数据的需求。
4 地理信息的使用和价值研究
对 GIS获取、实现和使用起关键作用的因素和过程的理解 ;
GIS传播模型建立方法 ;
确定 GIS的经济价值。
5 海量空间数据库的结构体系研究
海量数据库中数据模型、结构、算法、用户接口等问题的实现方法 ;
空间代数学 ;
基于逻辑的计算机查询语言 ;
元数据的具体内容和组织 ;
数据压缩和加密方法。
6 空间决策支持系统
GIS及其相关学科在决策形成中的作用 ;
区域灾害问题解决的空间决策支持方法 ;
空间决策支持系统的模型和数据 ;
空间决策支持系统技术和实现 ;
用户需求和组织等问题研究。
7 空间信息的可视化研究
数据质量的管理和可视化表达构成研究 ;
误差模型和数据质量指标 ;
数据库中数据的质量管理 ;
使内在表达和地图显示更容易的可视化工具 ;
对数据质量信息的用户需求评估。
8 地图制图的规范化研究
研究相应的方法和准则 ,以提高空间数据的一致性 , 以及空间数据在表达方式和空间分析方面的效率和准确性 ;
地图制图语言规范化研究 ;
规范化设计评估体系 ;
将知识推理嵌入数据模型。
9 地理信息数据共享的研究
由地理信息和技术共享到空间数据共享 ;
空间数据共享的理论研究 ;
空间数据共享的场所 ;
空间数据共享的处理方法。
10 GIS中时空关系的研究
地理空间中空间、时间以及和变化相关联的对象研究 ;
不同时间概念的划分 ,如 :离散的、连续的、单调的等 ;
具体应用中 ,笛卡儿坐标和欧几里得坐标的选择 ;
将人类对时间和空间的认知过程具体化、形式化 ;
空间现象的模拟计算模式。
11 遥感和 GIS的集成研究
解决遥感和 GIS集成方面的关键问题 ,主要包括 :
数据结构和存取问题 ;
数据处理流程 ;
误差分析 ;
机构问题。
12 GIS的用户接口研究
人机交互的用户接口设计和实现 ;
在 GIS环境中 ,人和计算机相互作用的研究 ;
不同背景、语言、文化对人机交互的影响
GIS软件用户接口设计的准则和方法。
13 GIS和空间分析研究
空间统计学地理数据的空间统计分析 ;
地理边界和地图比例尺在空间数据体系中的作用 ;
空间数据的采样和内插 ;
GIS数据结构和空间统计计算之间的关系。
14 GIS在全球变化中的作用研究
全面、定量地理解 GIS应用对全球变化所起的作用 ;
从小尺度的研究出发 ,建立理论基础和计算结构 ;
全球数据质量的评估。
15 法律、信息政策和空间数据库关系研究
GIS数据适用范围 ;
科学地理解空间数据库环境中的法律和政策 ;
如何完善 GIS方面法律的内容和质量 ;
空间数据库在公众政策和法律建设方面的作用
GIS在公众政策和法律方面的有用性尝试。
16 通过协作形成空间决策系统的研究
提供开发和评估工具 ,以解决复杂空间问题 ;
建立知识获取方法 ;
建立评估方案 ;
确定协作方的相互联系方式 ;
在相互作用的环境中解决冲突的方法。
17 在社会背景中 ,如何在 GIS中表达人、空间与环境的研究
人口的管理和控制 ;
确定冲突影响的人口范围 ;
政治经济关心的自然资源的开采和使用。
18 地理信息系统的互操作研究
开放的、分布式存储的 GIS结构 ;
地理数据语义特性获取方法 ;
数据抽象和处理模型研究 ;
地理空间数据的粒度 (Granularity)。
19 地理世界的规范化模式研究
地理世界的规范化表达 ;
用空间数据结构表达现实世界时 ,基本的描述元素 ;
GIS用户对地理世界的直觉看法。
Ⅵ 地理信息系统
地理信息系统既是管理和分析空间数据的应用工程技术,又是跨越地球科学、信息科学和空间科学的应用基础学科。其技术系统由计算机硬件、软件和相关的方法过程所组成,用以支持空间数据的采集、管理、处理、分析、建模和显示,以便解决复杂的规划和管理问题。 地理信息系统处理、管理的对象是多种地理空间实体数据及其关系,包括空间定位数据、图形数据、遥感图像数据、属性数据等,用于分析和处理在一定地理区域内分布的各种现象和过程,解决复杂的规划、决策和管理问题。 通过上述的分析和定义可提出GIS的如下基本概念: 地理信息系统示意图
1、GIS的物理外壳是计算机化的技术系统,它又由若干个相互关联的子系统构成,如数据采集子系统、数据管理子系统、数据处理和分析子系统、图像处理子系统、数据产品输出子系统等,这些子系统的优劣、结构直接影响着GIS的硬件平台、功能、效率、数据处理的方式和产品输出的类型。 2、GIS的操作对象是空间数据和属性数据,即点、线、面、体这类有三维要素的地理实体。空间数据的最根本特点是每一个数据都按统一的地理坐标进行编码,实现对其定位、定性和定量的描述、这是GIS区别于其它类型信息系统的根本标志,也是其技术难点之所在。 3、GIS的技术优势在于它的数据综合、模拟与分析评价能力,可以得到常规方法或普通信息系统难以得到的重要信息,实现地理空间过程演化的模拟和预测。 三维地理信息系统
4、 GIS与测绘学和地理学有着密切的关系。大地测量、工程测量、矿山测量、地籍测量、航空摄影测量和遥感技术为GIS中的空间实体提供各种不同比例尺和精度的定位数;电子速测仪、GPS全球定位技术、解析或数字摄影测量工作站、遥感图像处理系统等现代测绘技术的使用,可直接、快速和自动地获取空间目标的数字信息产品,为GIS提供丰富和更为实时的信息源,并促使GIS向更高层次发展。地理学是GIS的理论依托。 有的学者断言,“地理信息系统和信息地理学是地理科学第二次革命的主要工具和手段。如果说GIS的兴起和发展是地理科学信息革命的一把钥匙,那么,信息地理学的兴起和发展将是打开地理科学信息革命的一扇大门,必将为地理科学的发展和提高开辟一个崭新的天地”。GIS被誉为地学的第三代语言——用数字形式来描述空间实体。 典型的GIS功能框图
编辑本段地理信息系统分类
GIS按研究的范围大小可分为全球性的、区域性的和局部性的;按研究内容的不同可分为综合性的与专题性的。同级的各种专业应用系统集中起来,可以构成相应地域同级的区域综合系统。在规划、建立应用系统时应统一规划这两种系统的发展,以减小重复浪费,提高数据共享程度和实用性。
Ⅶ 地理信息系统(GIS)
地理信息系统(GIS)是计算机科学、地理学、测量学、地图学等多门学科综合的技术。目前国际上普遍承认。虽然GIS是一门多学科综合的边缘学科,但其核心是计算机科学,基本技术是数据库、地图可视化及空间分析,是处理地理数据的输入、输出、管理、查询、分析和辅助决策的计算机系统。地质环境评价主要是综合考虑影响环境地质诸多方面的要素,借助恰当的数学模型和专家经验,对研究区的环境地质进行分区。
利用GIS可以实现地质环境信息的管理、可视化、查询、输出等功能,操作简单、移植性强。把GIS技术应用在地质环境评价与灾害预测中,其优点固然很多,但总的说来也存在如下的一些问题:
(1)在生态环境评价中,一般的GIS软件虽然都能够提供诸如数据检索、叠加分析、属性统计分析、数字地面模型(DTM)等各种空间分析功能,但是要想满足为解决实际问题进行的专业分析的数据要求,仅仅依靠这些空间分析方法往往还很不够,这就要求我们在GIS基础软件平台的基础上进行二次开发,拓展其空间分析功能,提取我们感兴趣的信息,但是具体如何操作,目前仍是一个亟需与相关学科的专家学者们相互协作、共同探讨的问题。
(2)地质环境评价具有多因素、多层次、不确定性强等特点,目前在利用GIS众多的评价预测模型中,不管是多灾种还是单灾种评价,人们都在努力寻求一种普遍适合的模型来解决地质环境的评价。虽然普遍的评价模型在宏观决策中有重要的意义,适合建立面向大众和政府的决策支持系统,但对中小尺度范围的评价时往往不尽如人意,因此寻求特定地区特定的地质环境评价模型很有必要。
(3)地质环境评价工作是一项复杂的系统工程,数据采集和处理的工作量非常大,会涉及到地层、水文、地震及人类活动等各个方面,对于这些资料的搜集和整理,必然会涉及输入到GIS中资料的准确性问题,因为GIS所能完成的工作只是依据所得到的资料,对其作出相应的处理,也就是说“如果输入GIS的数据是‘垃圾’,输出的结果也只会是‘垃圾’,这不会因昂贵的设备和高级技术人才而改变”。因此,我们必须对所有的资料做出必要的、合理的取舍,以保证输入GIS的数据合理。
(4)从GIS在地质灾害研究中的应用来看,就两者的结合方式而言,大部分应用都集中在将GIS用于数据的前后期处理和结果的显示输出方面,两者的结合还处于低阶水平。作为紧紧追随工业标准化要求发展的GIS技术,标准化适当数据的缺乏也构成其广泛应用的桎梏;此外,GIS软件处理分析能力以及对于数据误差分析能力的不足、GIS处理包括时间在内的四维能力的不足、灾害模型建立的高难度性以及机构间协调不够而造成的成果用户面太窄等因素都暂时限制了GIS在地质灾害研究中的应用。
Ⅷ 简述地理信息系统的基本概念。
信息是向人们或机器提供关于现实世界各种事实的知识,是数据、消息中所包含的意义,它不随载体的物理形式的各种改变而改变。信息具有以下特点:客观性、适用性、传输性、共享性。数据是通过数字化或直接记录下来的可以被鉴别的符号,不仅数字是数据,而且文字、符号和图像也是数据。地理信息属于空间信息,它通过经伟网或公路网等建立的地理坐标来实现空间位置的识别。地理信息还具有多维结构的特征,即在二维空间的基础上实现多专题的第三维结构,而各个专题型实体型之间的联系是通过属性码进行的,这就为地理系统各圈层之间的综合研究提供了可能,也为地理系统多层次的分析和信息的传输与筛选提供了方便。地理信息系统是指专门处理地理空间数据的计算机系统。从外部看表现为计算机软硬件系统;其内涵却是由计算机程序和地理数据组织而成的地理空间信息模型,是一个逻辑缩小的、高度信息化的地理系统。
Ⅸ 地理信息系统与地理信息科学的区别急!!!!!
地理信息系统(Geographic Information System或 Geo-Information system,GIS)有时又称为“地学信息系统”或“资源与环境信息系统”。它是一种特定的十分重要的空间信息系统。它是在计算机硬、软件系统支持下,对整个或部分地球表层(包括大气层)空间中的有关地理分布数据进行采集、储存、管理、运算、分析、显示和描述的技术系统。地理信息科学是1992年Goodchild提出的,与地理信息系统相比,它更加侧重于将地理信息视作为一门科学,而不仅仅是一个技术实现,主要研究在应用计算机技术对地理信息进行处理、存储、提取以及管理和分析过程中提出的一系列基本问题,包括:
1)分布式计算
2)地理信息的认知
3)地理信息的互操作
4)比例尺
5)空间信息基础设施的未来
6)地理数据的不确定性和基于GIS的分析
7)GIS和社会
8)地理信息系统在环境中的空间分析
9)空间数据的获取和集成等等
地理信息科学在对于地理信息技术研究的同时,还指出了支撑地理信息技术发展的基础理论研究的重要性。
随着以地理信息系统技术为核心的遥感、全球定位系统等技术的发展以及其间的相互渗透,逐渐形成了3S集成化技术系统,为解决区域范围更广,复杂性更高的现代地学问题提供了新的分析方法和技术保证。七十年代以来,由于整个人类社会面临的人口、资源、环境和发展等各方面的问题,逐渐开始重视全球变化(Global Change)以及可持续发展 (Sustainable Development)等方面的研究,这两个方面的推动,最终促成了地球信息科学的产生。
Ⅹ 地理信息科学的地理信息科学基本问题
1)分布式计算
2)地理信息的认知
3)地理信息的互操作
4)比例尺
5)空间信息基础设施的未来
6)地理数据的不确定性和基于GIS的分析
7)GIS和社会
8)地理信息系统在环境中的空间分析
9)空间数据的获取和集成等等
地理信息科学在对于地理信息技术研究的同时,还指出了支撑地理信息技术发展的基础理论研究的重要性。
随着以地理信息系统技术为核心的遥感、全球定位系统等技术的发展以及其间的相互渗透,逐渐形成了3S集成化技术系统,为解决区域范围更广,复杂性更高的现代地学问题提供了新的分析方法和技术保证。七十年代以来,由于整个人类社会面临的人口、资源、环境和发展等各方面的问题,逐渐开始重视全球变化(GlobalChange)以及可持续发展 (Sustainable Development)等方面的研究,这两个方面的推动,最终促成了地球信息科学的产生。